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SYMMETRIC SPACES AND POINT-COUNTABLE COVERS
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ABsTRACT. In this paper, we prove some properties of symmetric spaces and point-
countable covers in symmetric spaces.

1. Introduction

Since generalized metric spaces determined by point- countable covers were dis-
cussed by Burke, Gruenhage, Michael and Tanaka and other authors [2,3], the notion
point-countable covers have drawn attention in general topology. The symmetric spaces
were introduced and investigated by A.V. Arhangelskii [1], G. Gruenhage (3], Y. Tanaka
[6,7,9]. In this paper, we shall consider the relations among certain spaces with a symmet-
ric space and prove some properties of point- countable covers in the symmetric spaces.

We assume that all spaces are T and regurlar. We begin at some basic definitions.

Definition 1.1. Let X be a topological space.
1) X is called a symmetric space if there exists a nonnegative real valued function
d on X x X satisfying
a) d(z,y) = 0 if and only if = = y;
b) d(z,y) = d(y, z) for every z and y in X;
c) U C X is open if and only if for each z € U, there exists n € N such that S,(z) C U,

where
Sn(z) ={y€ X :d(z,y) < %}

X is called a semi-metrizable (or semi-metric) space if we replace c¢) by ” For

AC X,z € Aif and only if d(z, A) = 0”, where d(z,A) = inf{d(z,a) : a € A}.

2) X is called a sequential space, if A C X is closed in X if and only if no sequerce
in A converges to a point not in A.

3) We call a subspace of X a fan ( at a point z) if it consists of a point z, anc a
countably infinite family of disjoint sequences converging to z. Call a subset of a far a
diagonal if it is a convergent sequence meeting infinitely many of the sequences converging

to x and converges to some point in the fan.
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X is call ay-space if every fan at x of X has a diagonal converging to z.
Definition 1.2. Let X be a space, and P a cover of X. Put
P<“={P' CcP:|P|<w}
1) P is a k-network if, whenever K C U with K compact and U open inX, then
KcuFclU

for some F € P<¥.
2) P is a network if for every z € X and U open in X such that z € U, then

rePcCcU

for some P € P.
3) P is a p-k-network if, whenever K C X \ {y} with K compact in X, then

KCcUFcC X\ {y}

for some F € P<¥.
4) P is an s-network if it is network and for any non closed set A C X, there exists

a point ¢ € X with the property: For any neighborhood U of z, there exists P € P such
that P C U and P N A is infinite.

5) P is a cs*-network if {z,} is a sequence converging to z € X and U is a neigh-
borhood of z, there exists P € P such that

{z}u{zn,:ieN}CcPCU

for some subsequence {z,,} of {z,}.
6) P is a wecs*-network if {z,} is a sequence converging to z € X and U is a

neighborhood of z, then there exists a P € P such that
{zn,:1€eN}CcPCU

for some subsequence {z,,} of {z,}.
7) P is a p-wes*-network if {x,} is a sequence converging to z € X and = # y, then
there exists P € P such that

{zn,:ieN}cPC X\ {y}

for some subsequence {z,,} of {z,}.
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Definition 1.3. For a space X and z € P C X, P is called a sequential neighborhood at
z in X if, whenever {z,} is a sequence converging to z in X , then z,, € P for all but

finitely many n € N.

Definition 1.4. Let P = [J{P, : 2 € X} be family of subsets of X which satisfies that
for each z € X,

1) P. is network of z in X,

2)IfU,V € P,, then W CUNYV for some W € P,.

P is an sn-network for X if each element of P, is a sequential neighborhood of z in
X.

P is a weak base for X, if a subset G of X is open in X if and only if for each z € G
there exists P € P, such that P C G. ‘

A space X is an snf-countable space if X has an sn-network P such that each P, is
countable.

A space X is a gf-countable space if X has a weak base P such that P, is countable
for every r € X.

Definition 1.5. Let X be a space. A cover P is called point-countable if for every z € X,
the set {P € P : z € P} is at most countable.
It is clear that [10]

weak base

|

sn-network

l

cs*-network

l

wcs*-network +—— k-network

! !

p-wces*-network «—— p-k-network

In this paper we shall provide some partial answers for connections between kinds of

network in the symmetric space.
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2. The main results

Theorem 2.1. Let X be a symmetric space. Then
1) X is a gf-countable space;
2) X is a sequential space;
3) X is an snf-countable space;

4) X is an as-space.
Proof. 1) For each z € X put
Pe = {Balz): n =12}

and P = {P, : ¢ € X}. It is clear that P is a weak base for X. Since P, is countable for
every z € X, X is a gf-countable space.

2) Let A be a subset of X. Assume that, if any sequence {z,} in A converging to
z then z € A. We show that A is closed. If it is not the case, then, there exists z € X \ A
such that S, (z) N A # 0 for every n € N*. For each n € N* choose z,, € S,,(z)N A. Then,
the sequence {z,} is in A and converges to z. Since ¢ A, we have a contradition.

Conversly, suppose that A is closed. It follows easily that, if {z,} C A is sequence
converging to z, then z € A. Thus X is a sequential space.

3) It is sufficient to show that P is an sn-network. Suppose the assertion is false.
Then, there exists Py € P, and a sequence {z,} C X \ Py with z,, — z. It follows that
the subset {z, : n € N} is not closed and hence X \ {z, : n € N} is not open. Let
y€ X\ {z,:neN}

If y =2 then

yeE PR CX\{zn:neN} P €P,.

Assume that y # z. Then y € X \ ({zn : n € N} U {z}). Since {z, : n € N} U {z} is
closed, there exists P € P, such that

yePCc X\ ({zn:neN}U{z}) c X\ {zn:neN}

Hence X \ {z, : n € N} is open. This is a contradiction.

4) Assume that M is a fan at = in X with

M = {z} |J {znm : m € N},

neN

where {Z,m : m € N},en is a countable family of disjoint sequences converging to .
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Since P is an sn-network, S, (z) is sequential neighborhodd of z for everyn = 1,2, ....
It follows that for each k € N and for each S, (z) there exists m,x € N such that

Tkm € Sp(z) for m = my.

This yields
{Tkm :m eN}NS,(z) #0 forall £ and neN.

Choose
Yn € {Zrnm :n € N} NS, (2)

and put C' = {y, : n € N}. Then
CN{zpm: meN}={y,} forall neN.

Let U be a neighborhood of z. Then there exists ng € N such that S,,(z) C U.Hence
Yn € Sn(z) C Spy(z) U forall n > ng. |

This means that y, — z and hence C is a diagonal of M converging to z. Thus X is an

(rg—space.

Proposition 2.2. Let X be a symmetric space. Then the following are equivalent :
1) X is a semi-metric space;

2) For everyzx € X and r >0, the subset
Sr(z)={y €Y :d(z,y) <r}

is a neighborhood of z.

Proof. Assume that X is a semi-metric space, z € X and 7 > 0. Then,
A={ye X :d(y,A) =0} forall AcCX.

Put
E = X\ S.(z).

Since d(z,E) > r > 0,z ¢ E. It follows that, there exists a open subset U in X such that
zeUCX\E.

If z € U, then 2 ¢ E. This means z € S,(z) and hence U C S,(z). Thus S,(z) is a
neighborhood of z.
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Conversly, assume that S,.(z) is a neighborhood of z for every z € X and r > 0.
Let A be a subset of X and z € A. Then S,(z)NA # 0 for all r > 0. Hence d(z, A) = 0.
Let z € X with d(z, A) = 0. Suppose = ¢ A. Then

reUcCX\A
for some neighborhood U of z. It follows that, there exists n € N such that
S.(z) cUC X\ A

This yields

d(z,A) >d(z,A) = — >0

S

We have a contradiction. Hence z € A and
A={ze X d(z,A) =0}

Thus X a semi-metric space.
For any space, the following hold:
k-network = wcs*-network,
p-k-network = p-wcs*-network.
The converses are false in generality case. However, we have following results for symmetric

spaces.

Theorem 2.3. Let X be a symmetric space and P be a point-countable cover of X. Then
1) P is a k-network if and only if it is a wes™network.

2) P is a p-k-network if and only if it is a p-wes*-network.

Proof. 1) The "only if’ part is clear, so we only need to prove the ”if” part. Let K be a
compact subset of X and U an open set in X such that K C U. For each z € X, since P

1s point-countable, we have
{PeP:z€e PCU}={P,(r) :neN}L

We will show that K is covered by some finite subset P’ C {P,(z) : z € U,n € N}. If it is
not the case, let ¢ € K. Then, there exists 7 € K \ Py(zp). Since

K ¢ Py(zo) U Py(z0) U Po(z1) U Pr(x1),

there exists

T2 € K\ J{Pilz;): 0<i,5 <2}
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Continued applying this argument, we obtain the sequence {z,} C K such that
zn € K \U{P(z;) :0£4,j<n} for n=0,1,2. (1)

By the Theorem 2.1, X is a sequential space. Since K is compact, there exists a sub-
seqnence {z,,} of {z,} such that z,, - z € K . As P a wcs*-network, there exists a

subsequer.ce {zn, } of {z,} such that
{zn, :keN}CcPcCU

for some P € P. Then, there exist m and Tn,, such that P = Pm(:nn‘.j). Put ng =

max(m,n;;). By (1),

Tn & Pm(a:n‘.j) =P forall n>no.

This is a contracliction. Thus P is a k-network.

2) The proof for 2) is similar, with U is replaced by X \ {y}.

Proposition 2.4. [ 9] 1) If P is an s-network in any space X, then P is a wcs*-network.

2) If X is a sequential space and P is a wes*-network, then P is an s-network.

Proof. 1) Let {z,,} C X be a sequence converging to z. Without loss of generality we can
assume that z, # z for all n. Put A = {z,, : n=1,2,3,...}. Since A is not closed and P is
an s-network, there exists y € X with the property: For any neighborhood U of y, there
exists P € P such that P C U and PN A is infinite. Hence there exists the subsequence
{zn,} of {z,} such that

{2u fC PCU

Thus we only need to show that y = z. Suppose y # z. Then, since A U {z} is closed,
there exists the neighborhood U of y such that UNn(AU{z}) = 0. For each P P, PC U
we have PN A = (). This is a contracdiction.

2) Let A be a not closed subset in X. Since X is a sequential space, there exists
the sequence {z,} C A such that z,, & = ¢ A. For every neighborhood U of z, since P is

a wes*-network, there exists P € P and the subsequence {z, } of {z,} such that
{zn,:ieN}CPCU.

This means that P N A is infinite and hence P is an s-network.
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Corollary 2.5. The following are equivalent for a symmetric X :

1) X has a point-countable s-network
2) X has a point-countable wsc*-network
3) X has a point-countable cs*-network

4) X has a point-countable k-network

Proof. 1) < 2) by Theorem 2.1 and Proposition 2.4.

2) & 4) by Theorem 2.3.
2) & 3) by Theorem 2.1 and Theorem 7 in [10].
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