SYMMETRIC SPACES AND POINT-COUNTABLE COVERS

Dinh Huy Hoang, Le Khanh Hung

Department of Mathematics, Vinh University

ABSTRACT. In this paper, we prove some properties of symmetric spaces and pointcountable covers in symmetric spaces.

1. Introduction

Since generalized metric spaces determined by point- countable covers were discussed by Burke, Gruenhage, Michael and Tanaka and other authors [2,3], the notion point-countable covers have drawn attention in general topology. The symmetric spaces were introduced and investigated by A.V. Arhangelskii [1], G. Gruenhage [3], Y. Tanaka $[6,7,9]$. In this paper, we shall consider the relations among certain spaces with a symmetric space and prove some properties of point- countable covers in the symmetric spaces.

We assume that all spaces are T_1 and regurlar. We begin at some basic definitions.

Definition 1.1. Let X be a topological space.

1) *X* is called a *symmetric space* if there exists a nonnegative real valued function *d* on $X \times X$ satisfying

- a) $d(x, y) = 0$ if and only if $x = y$;
- b) $d(x,y) = d(y,x)$ for every x and y in X;
- c) $U \subset X$ is open if and only if for each $x \in U$, there exists $n \in \mathbb{N}$ such that $S_n(x) \subset U$, where

$$
S_n(x) = \{ y \in X : d(x, y) < \frac{1}{n} \}.
$$

X is called a *semi-metrizable (or semi-metric) space* if we replace c) by " For $A \subset X, x \in \overline{A}$ if and only if $d(x, A) = 0$ ", where $d(x, A) = \inf \{d(x, a) : a \in A\}$.

2) *X* is called a *sequential space*, if $A \subset X$ is closed in *X* if and only if no sequence in *A* converges to a point not in *A.*

3) We call a subspace of X a fan (at a point x) if it consists of a point x, and a countably infinite family of disjoint sequences converging to *X.* Call a subset of a far. a *diagonal* if it is a convergent sequence meeting infinitely many of the sequences converging to *X* and converges to some point in the fan.

X is call α_4 -space if every fan at *x* of *X* has a diagonal converging to *x*.

Definition 1.2. Let X be a space, and P a cover of X. Put

$$
\mathcal{P}^{<\omega} = \{\mathcal{P}' \subset \mathcal{P} : |\mathcal{P}'| < \omega\}.
$$

1) \mathcal{P} is a *k-network* if, whenever $K \subset U$ with K compact and U open inX, then

 $K \subset \cup \mathcal{F} \subset U$

for some $\mathcal{F} \in \mathcal{P}^{\leq \omega}$.

2) P is a *network* if for every $x \in X$ and U open in X such that $x \in U$, then

 $x \in P \subset U$

for some $P \in \mathcal{P}$.

3) P is a p-k-network if, whenever $K \subset X \setminus \{y\}$ with K compact in X, then

$$
K\subset \cup \mathcal{F}\subset X\setminus \{y\}
$$

for some $\mathcal{F} \in \mathcal{P}^{\leq \omega}$.

4) P is an *s*-network if it is network and for any non closed set $A \subset X$, there exists a point $x \in X$ with the property: For any neighborhood *U* of *x*, there exists $P \in \mathcal{P}$ such that $P \subset U$ and $P \cap A$ is infinite.

5) *P* is a cs^* -network if $\{x_n\}$ is a sequence converging to $x \in X$ and U is a neighborhood of x, there exists $P \in \mathcal{P}$ such that

$$
\{x\} \cup \{x_{n_i} : i \in \mathbb{N}\} \subset P \subset U
$$

for some subsequence $\{x_{n_i}\}\$ of $\{x_n\}$.

6) *P* is a wcs^{*}-network if $\{x_n\}$ is a sequence converging to $x \in X$ and U is a neighborhood of x, then there exists a $P \in \mathcal{P}$ such that

$$
\{x_{n_i} : i \in \mathbb{N}\} \subset P \subset U
$$

for some subsequence $\{x_{n_i}\}\$ of $\{x_n\}$.

7) *P* is a *p-wcs*^{*}-network if $\{x_n\}$ is a sequence converging to $x \in X$ and $x \neq y$, then there exists $P \in \mathcal{P}$ such that

$$
\{x_{n_i} : i \in \mathbb{N}\} \subset P \subset X \setminus \{y\}
$$

for some subsequence $\{x_{n_i}\}\$ of $\{x_n\}.$

Definition 1.3. For a space *X* and $x \in P \subset X$, *P* is called a *sequential neighborhood* at x in X if, whenever $\{x_n\}$ is a sequence converging to x in X, then $x_n \in P$ for all but finitely many $n \in \mathbb{N}$.

Definition 1.4. Let $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$ be family of subsets of X which satisfies that for each $x \in X$,

1) \mathcal{P}_x is network of *x* in *X*,

2) If $U, V \in \mathcal{P}_x$, then $W \subset U \cap V$ for some $W \in \mathcal{P}_x$.

 $\mathcal P$ is an *sn-network* for *X* if each element of $\mathcal P_x$ is a sequential neighborhood of *x* in

X.

 $\mathcal P$ is a weak base for X, if a subset G of X is open in X if and only if for each $x \in G$ there exists $P \in \mathcal{P}_x$ such that $P \subset G$.

A space *X* is an *snf-countable space* if *X* has an sn-network P such that each P_x is countable.

A space X is a *gf-countable space* if X has a weak base P such that P_x is countable for every $x \in X$.

Definition 1.5. Let X be a space. A cover P is called *point-countable* if for every $x \in X$, the set $\{P \in \mathcal{P} : x \in P\}$ is at most countable.

It is clear that $[10]$

In this paper we shall provide some partial answers for connections between kinds of network in the symmetric space.

2. The main results

Theorem 2.1. Let X be a symmetric space. Then

- *1) X is a gf-countable space;*
- *2) X is* a *sequential space;*
- *3) X is an snf-countable space;*
- *4) X* is an α_4 -space.

Proof. 1) For each $x \in X$ put

$$
\mathcal{P}_x=\{S_n(x):n=1,2,...\}
$$

and $\mathcal{P} = {\mathcal{P}_x : x \in X}$. It is clear that $\mathcal P$ is a weak base for *X*. Since $\mathcal P_x$ is countable for every $x \in X$, X is a gf-countable space.

2) Let *A* be a subset of *X*. Assume that, if any sequence $\{x_n\}$ in *A* converging to *x* then $x \in A$. We show that *A* is closed. If it is not the case, then, there exists $x \in X \setminus A$ such that $S_n(x) \cap A \neq \emptyset$ for every $n \in \mathbb{N}^*$. For each $n \in \mathbb{N}^*$ choose $x_n \in S_n(x) \cap A$. Then, the sequence $\{x_n\}$ is in *A* and converges to *x*. Since $x \notin A$, we have a contradition.

Conversly, suppose that *A* is closed. It follows easily that, if $\{x_n\} \subset A$ is sequence converging to x, then $x \in A$. Thus X is a sequential space.

3) It is sufficient to show that P is an sn-network. Suppose the assertion is false. Then, there exists $P_0 \in \mathcal{P}_x$ and a sequence $\{x_n\} \subset X \setminus P_0$ with $x_n \to x$. It follows that the subset $\{x_n : n \in \mathbb{N}\}\)$ is not closed and hence $X \setminus \{x_n : n \in \mathbb{N}\}\)$ is not open. Let $y \in X \setminus \{x_n : n \in \mathbb{N}\}.$

If $y = x$ then

$$
y \in P_0 \subset X \setminus \{x_n : n \in \mathbb{N}\}, P_0 \in \mathcal{P}_y.
$$

Assume that $y \neq x$. Then $y \in X \setminus (\{x_n : n \in \mathbb{N}\} \cup \{x\})$. Since $\{x_n : n \in \mathbb{N}\} \cup \{x\}$ is closed, there exists $P \in \mathcal{P}_y$ such that

$$
y \in P \subset X \setminus (\{x_n : n \in \mathbb{N}\} \cup \{x\}) \subset X \setminus \{x_n : n \in \mathbb{N}\}.
$$

Hence $X \setminus \{x_n : n \in \mathbb{N}\}\$ is open. This is a contradiction.

4) Assume that *M* is a fan at *X* in *X* with

$$
M = \{x\} \bigcup_{n \in \mathbb{N}} \{x_{nm} : m \in \mathbb{N}\},\
$$

where ${x_{nm}: m \in \mathbb{N}}_{n \in \mathbb{N}}$ is a countable family of disjoint sequences converging to *x*.

Symmetric spaces and point-countable covers 27

Since P is an sn-network, $S_n(x)$ is sequential neighborhodd of x for every $n = 1, 2, ...$ It follows that for each $k \in \mathbb{N}$ and for each $S_n(x)$ there exists $m_{nk} \in \mathbb{N}$ such that

$$
x_{km} \in S_n(x) \quad \text{for} \quad m \geq m_{nk}.
$$

This yields

$$
\{x_{km} : m \in \mathbb{N}\} \cap S_n(x) \neq \emptyset \quad \text{for all} \quad k \quad \text{and} \quad n \in \mathbb{N}.
$$

Choose

$$
y_n \in \{x_{nm} : n \in \mathbb{N}\} \cap S_n(x)
$$

and put $C = \{y_n : n \in \mathbb{N}\}\.$ Then

$$
C \cap \{x_{nm} : m \in \mathbb{N}\} = \{y_n\} \text{ for all } n \in \mathbb{N}.
$$

Let U be a neighborhood of *x*. Then there exists $n_0 \in \mathbb{N}$ such that $S_{n_0}(x) \subset U$. Hence

 $y_n \in S_n(x) \subset S_{n_0}(x) \subset U$ for all $n \geq n_0$.

This means that $y_n \to x$ and hence *C* is a diagonal of *M* converging to *x*. Thus *X* is an α_4 -space.

Proposition 2.2. Let X be a symmetric space. Then the following are equivalent :

- *1) X is a semi-metric space;*
- *2)* For every $x \in X$ and $r > 0$, the subset

$$
S_r(x) = \{ y \in Y : d(x, y) < r \}
$$

is a *neighborhood of X.*

Proof. Assume that *X* is a semi-metric space, $x \in X$ and $r > 0$. Then,

$$
A=\{y\in X:d(y,A)=0\}\quad\text{for all}\quad A\subset X.
$$

Put

$$
E=X\setminus S_r(x).
$$

Since $d(x, E) \geq r > 0, x \notin \overline{E}$. It follows that, there exists a open subset *U* in *X* such that

$$
x\in U\subset X\setminus \overline{E}.
$$

If $z \in U$, then $z \notin E$. This means $z \in S_r(x)$ and hence $U \subset S_r(x)$. Thus $S_r(x)$ is a neighborhood of *X.*

Conversly, assume that $S_r(x)$ is a neighborhood of x for every $x \in X$ and $r > 0$. Let A be a subset of X and $x \in \overline{A}$. Then $S_r(x) \cap A \neq \emptyset$ for all $r > 0$. Hence $d(x, A) = 0$.

Let $x \in X$ with $d(x, A) = 0$. Suppose $x \notin \overline{A}$. Then

$$
x \in U \subset X \setminus \overline{A}
$$

for some neighborhood *U* of x. It follows that, there exists $n \in \mathbb{N}$ such that

$$
S_n(x) \subset U \subset X \setminus \overline{A}.
$$

This yields

$$
d(x, A) \geq d(x, \overline{A}) \geq \frac{1}{n} > 0
$$

We have a contradiction. Hence $x \in \overline{A}$ and

$$
\overline{A} = \{x \in X : d(x, A) = 0\}.
$$

Thus *X* a semi-metric space.

For any space, the following hold:

 k -network \Rightarrow wcs^{*}-network,

 $p-k-network \Rightarrow p-wcs*-network.$

The converses are false in generality case. However, we have following results for symmetric spaces.

Theorem 2.3. Let X be a symmetric space and $\mathcal P$ be a point-countable cover of X. Then

1) V is a k-network if and only if it is a wcs-network.*

2) V is a *p-k-network if and only if it is a p-wcs*-network.*

Proof. 1) The "only if" part is clear, so we only need to prove the "if" part. Let K be a compact subset of X and U an open set in X such that $K \subset U$. For each $x \in X$, since P is point-countable, we have

$$
\{P \in \mathcal{P} : x \in P \subset U\} = \{P_n(x) : n \in \mathbb{N}\}.
$$

We will show that *K* is covered by some finite subset $\mathcal{P}' \subset \{P_n(x) : x \in U, n \in \mathbb{N}\}\.$ If it is not the case, let $x_0 \in K$. Then, there exists $x_1 \in K \setminus P_0(x_0)$. Since

$$
K \nsubseteq P_0(x_0) \cup P_1(x_0) \cup P_0(x_1) \cup P_1(x_1),
$$

there exists

$$
x_2 \in K \setminus \bigcup \{ P_i(x_j) : 0 \leqslant i, j < 2 \}
$$

Symmetric spaces and point-countable covers 29

Continued applying this argument, we obtain the sequence $\{x_n\} \subset K$ such that

$$
x_n \in K \setminus \cup \{ P_i(x_j) : 0 \leqslant i, j < n \} \quad \text{for} \quad n = 0, 1, 2. \tag{1}
$$

By the Theorem 2.1, X is a sequential space. Since K is compact, there exists a subsequence $\{x_{n_i}\}\$ of $\{x_n\}$ such that $x_{n_i} \to x \in K$. As P a wcs*-network, there exists a subsequence $\{x_{n_{i_k}}\}$ of $\{x_{n_i}\}$ such that

$$
\{x_{n_{i_k}} : k \in \mathbb{N}\} \subset P \subset U
$$

for some $P \in \mathcal{P}$. Then, there exist *m* and $x_{n_{i}}$ such that $P = P_m(x_{n_{i}})$. Put $n_0 =$ $max(m, n_{i_j})$. By (1),

$$
x_n \notin P_m(x_{n_{i_i}}) = P \quad \text{for all} \quad n > n_0.
$$

This is a contractiction. Thus P is a k-network.

2) The proof for 2) is similar, with *U* is replaced by $X \setminus \{y\}$.

Proposition 2.4. [9] *1)* If P is an s-network in any space X, then P is a wcs*-network. 2) If X is a sequential space and P is a wcs^{*}-network, then P is an s-network.

Proof. 1) Let $\{x_n\} \subset X$ be a sequence converging to *x*. Without loss of generality we can assume that $x_n \neq x$ for all n. Put $A = \{x_n : n = 1, 2, 3, ...\}$. Since A is not closed and P is an s-network, there exists $y \in X$ with the property: For any neighborhood *U* of y, there exists $P \in \mathcal{P}$ such that $P \subset U$ and $P \cap A$ is infinite. Hence there exists the subsequence ${x_n}$ of ${x_n}$ such that

$$
\{x_{n_i}\} \subset P \subset U
$$

Thus we only need to show that $y = x$. Suppose $y \neq x$. Then, since $A \cup \{x\}$ is closed, there exists the neighborhood *U* of *y* such that $U \cap (A \cup \{x\}) = \emptyset$. For each $P \in \mathcal{P}, P \subset U$ we have $P \cap A = \emptyset$. This is a contracdiction.

2) Let *A* be a not closed subset in *X .* Since *X* is a sequential space, there exists the sequence $\{x_n\} \subset A$ such that $x_n \to x \notin A$. For every neighborhood *U* of *x*, since *P* is a wcs^{*}-network, there exists $P \in \mathcal{P}$ and the subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that

$$
\{x_{n_i} : i \in \mathbb{N}\} \subset P \subset U.
$$

This means that $P \cap A$ is infinite and hence P is an s-network.

Corollary 2.5. The following are equivalent for a symmetric X :

- *1) X has a point-countable s-network*
- *2) X has a point-countable wsc*-network*
- *3) X has* a *point-countable cs*-network*
- *4) X has* a *point-countable k-network*

Proof. 1) \Leftrightarrow 2) by Theorem 2.1 and Proposition 2.4.

- $2) \Leftrightarrow 4$) by Theorem 2.3.
- $(2) \Leftrightarrow 3$ by Theorem 2.1 and Theorem 7 in [10].

References

- 1. A.V.Arhangel'skii^ Mappings and spaces, *Russian Math. Surveys,*21(1966),115-162.
- 2. D. Burke and E. Michael, On certain point- countable covers, *Pacific J. Math.,* 4 (1976), 79-92.
- 3. G. Gruenhage, *Generalized metric spaces,* in: K. Kunen an J. E. Vaughan, eds., Handbook of Set- theoretic Topology, North- Holland, (1984).
- 4. G. Gruenhage, E. Michael and Y. Tanaka, Spaces determined by point-countable covers, *Pacific Journal of Math.,* 113 (2) (1984) 303-332.
- 5. S. I. Nedev, On metriczable spaces, *Transactions of the Moscow Math., Soc.,* 24(1971), 213-247.
- 6. Y. Tanaka, On symmetric spaces, *Proc. Japan Acad.,* 49 (1973), 106- 111.
- 7. Y. Tanaka, Symmetrizable spaces, g-developable spaces and g-metrizable spaces, *Math. Japonica.,* 36 (1991), 71-84.
- 8. Y. Tanaka, Point-countable covers and k-networks, *Topology-Proc.,* 12 (1987),327- 349.
- 9. Y. Tanaka, Theory of k-networks II*,Q and A in General Topology*.,19 (2001), 27-46.
- 10. P. Yan and S. Lin, Point-countable k-networks, cs^* -network and α_4 -spaces, *Topology Proc.,* 24(1999), 345-354.