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Q U A N T I Z A T I O N  O F  A X I A L  V E C T O R  F I E L D

N g u y e n  S u an  H a n

Department of Physics, College of Science, VNU

Abstract. The possibility of constructing the Hamiltonian quantization for axial 
electrodynamics with anomalies in a four - dimensional space is studied. It is shown 
that in this theory the Jacobi identity for operators of the Hamilton , of a time 
component of the current and of the very field is broken. The usual quantum theory 
is consistent only for a zero magnetic field.

1. In t ro d u c t io n

The absence of anomalies in the gauge theories represents one of the fruitful princi

ples for constructing physical theories [1 -3 ] .  At the same time these is an opinion [4 -  10] 

that the gauge theories with anomalies con be be considered as physical ones. However, up 

to now despite numerous a ttem pts [7 — 11] these is no consistent quantization of the the

ories with anomalies . In the present paper , we shall study the possibility of Hamiltonian 

quantization [12 — 13] of such gauge theories with anomalies.

2. T he  fo rm u la t io n

Let us consider the classical theory of massless free fermions in a four dimensional

space time.

We demand tha t  the theory (2.1) should be invariant with respect to the axial gauge

transformation

According to the classical principle of the local gauge invariance the invariance of the 

theory (2.1) is achieved by introducing the fermion interaction with an axial vector field

s  -  dxL o(x); Co =  ýiổĩp] (d =  ip =  ^ +7 o)/ (1 )

ĩỊ){xý  =  en ^ (x)ĩP(x) (2)

(3)
i t )  =  + 75^4m), =  -07^75^,
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whose transformation

A -  fi -» A ị(x )  = A ụ(x) + dliP (x)ì (4)

compensate the transformations (2.2)

However, if the fermion fields are quantum and satisfy the commutation relation

[v£ ( x \  t), lịiạựy, í)] =  sa063 ('~x -  ~y ) ,

so that their axial transformation are made by generator

ipP{x) = Uil>(x)U~\

u  = exp { iQ 5({3)} ,Q 5(i3) = J  d3xJ%{x)p(x), (5)

then the ” classical” principle of the local gauge invariance is broken.

W hat is the physical of this breaking?

The quantum fermions differ from classical ones by the Dirac sea (continuum) that 

aries from the requirement for the quantum Hamiltonian being positive. In the external

classical) axial vector field (2.3) the Dirac sea is rearranged so that the current commu

tators become anomalous [14 — 17].

i -  - y ) ,

i  4 ( 7 , 0 ]  =  - ^ t i k i A k ( y ) - ^ - s 3 ( - ? - y > ) ,  ( 6 )

B k { y )  =  Cki j d iAj i y ) ,  A k(y) =  g ị A k(y)-

Solving by these commutators the Heisenberg equation for

| j 05( x ) = i [ H ,J „ 5(x )], (7)

where H is the Hamiltonian of the theory

H = j  d3x [ỹiyidiĩp -  J^Ap] , 

we get the anomalous divergence of the axial current

d p j f i i x )  — 4g7r2

F ị x u  —  t / 41 / a t í ĩ  - ^ q /3 •



Formula (2.8) IS consistent with the calculation of the anomalous triangle diagram 

[14 -  17]. From eq.(2.8) we see that the action (2.3) for the quantum fermions is non- 

mvariant under the axial gauge transformation (2.5) and acquires th6 Gxtra term

Q u an tiza tion  o f  axial vec to r  field - J

A S = (9)

3. Q u a n t iz a t io n  of ax ia l - v e c to r  field

We consider the interaction of massless quantum fermions with an external axial - 
vector field

C(x) = - ị F Ị v + Ỷyl l (idtl + A t f 5) ý .  ( 10)

As it is pointed above, this lagrangian is not invariant with respect to transfor

mation (2.4), (2.5) (see eq.(2.9)). We can restore the symmetry of the theory (2.3) by

introducing into the Lagrangian an extra term whose transformation compensates the 

anomalous reaction (2.9) of the initial action (2.3).

For example, we choose the following extra term [1]

Cmoi(x) =  C (x).AC (x), A  C(x) = - ~  (dFA„) (11)

or a classical equivalent

AC(x) =  a„x  + A„) + ậ F° / Ff , 
dC ; 48^  (12)

dl‘ã ^ ) = ũ ^ ệ = a (a“A >‘) -

For quantization of the axial - vector field we choose transverse variables which are fixed 
by transformations

A l  =  Alt+a„eT(A),

=  e » T

' ìTl  A\ Ì l a  .  \ ( 1 3 )ỘT = ộ - 0 t (A ),6 t (A) =  - Ặ ( d ,  A,),

X =  X-

The transverse physical field (3.4) are nonlocal (gauge invariant) functionals of the ini

tial fields A , -0, 0 [12 -  13]. The transverse variables are convenient for the Hamiltonian 

quantization and are only variables consistent with the classical equation [17] for the time 

component of the field (i40).
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Due to the nonlocality (3.4) the gauge of the variables is not fixed and follows the 

time - axis rotation in the course of the relativistic transformations [12 -  13] .Upon passing 

to the transverse variables we have only one nondynamic variable Ẩ ị  and the constraint 

equation
ỒS

SÁ Ị
- J o  + d o X  + 67r2

The Hamiltonian of the theory (3.2), (3.3) has the form

diộT B j (14)

H  — dsxTi

Too =ẢTk E Ĩ  +  ộT7tỊ  +  XT*Ĩ  +  -  £ l od

T  t5T
(15)

+  i ^ i ' Y i d i i p 7' +  d iX T d i ệ T , 

where the canonical conjugate momenta E Ị ,  7tỊ\ 7t£, 7T̂  are given by the following formulae

E k -  ^  í  ~  ^kl Q2 1 ’6 tt2

ttJ  =  Ổo0r  +  i t f ,  <  =  Ô0XT, 7TJ  =  ^ T, 

A0 =  02 f _ J 0r  +7rĩ  +
T d T

67T2

(16)

(17)

(18)

Foe the boson operators we choose the usual commutation relations

i [ E l ( l c , t ) ,A J ( T / \ t ) ]  =  (" l̂y -  j  *3("® -  "5*)'

« A x ’i T . i ) ]  =  i 3( *  -  Ỷ ) ’
(19)

[./£(-?, i M ĩ n ? ,  <)] = 0 .

Then we check the divergence of the axial current with the help of the Heisenberg equation

!  J f w = i [/Í, j n .

We get an expression of the type (2.8) with a new term

(20)

d ^ 4 T (x) =  ^ F af3F a0 +  j  d 3y -  ( Ả [ y (y)iJoT (x) (21)

that appears owing to the axial field Quantization. This term can easily be calculated

d3y ị  J qT {x ) -  j  d3y ị { À Ĩ { y )  [À Ị(y) , J%T (x) 

'ATk (y) ,J*T (x) Ak
1 d

(2 2)

127r2 dti i



Thus, instead of eq.(2.8) we get

Q u an tiza tion  o f  axia l v ec to r  field 19

d_ 

d  t J 50T (x) 127r2 iA k ( x )B k i x )) —  9 i J ị T ( x )  +  A o _ ọ  F a p F a p .

48tt2 (23)

The usual choice of the commutators (3.10) leads also to nonzero Jacobi brackets

C { A l ( x ) ) H , 4 ' r (y)) = {  [A ỉ(x ) ,  [H, j g r Cy)]]

+  [ j 05 r (y), [AĨ(x),H ]}  +  [H, [ J ỉ r ( i ,M Ĩ ( * ) ] ] }

= f a 2 B k(x)S3{ '#  - ~ y ) .

Violation the Jacobi identities for the very current is noted in ref. [9 -  11]. Thus the 

ordinary quantum theory with axial anomalies is not consistent for the quantum gauge 

fields. In any case the application of the ordinary part integral is problematic [6 -  8Ị.

4. C onc lus ions

We have a ttem pted  to construct the Hamiltonian operator formalism for the Abelian 

axial gauge theory. It is shown that the ordinary commutation relation for the gauge 

fields breaks the Jacobi identity for operators, of the Hamiltonian, of the time component 

of the very field. These operators do not satisfy the associativity law respect to their 

multiplications and cannot be represented by linear operators in the Hilbert space.
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