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QUANTIZATION OF AXIAL VECTOR FIELD

Nguyen Suan Han

Department of Physics, College of Science, VNU

ApstracT. The possibility of constructing the Hamiltonian quantization for axial
electrodynamics with anomalies in a four - dimensional space is studied. It is shown
that in this theory the Jacobi identity for operators of the Hamilton , of a time
component of the current and of the very field is broken. The usual quantum theory
is consistent only for a zero magnetic field.

1. Introduction

The absence of anomalies in the gauge theories represents one of the fruitful princi-
ples for constructing physical theories [1 —3]. At the same time these is an opinion [4 — 10]
that the gauge theories with anomalies con be be considered as physical ones. However, up
to now despite numerous attempts [7 — 11] these is no consistent quantization of the the-
ories with anomalies . In the present paper , we shall study the possibility of Hamiltonian

quantization [12 — 13] of such gauge theories with anomalies.

2. The formulation

Let us consider the classical theory of massless free fermions in a four dimensional

space time.
5= /d‘”ﬁo(:c); Lo = Tid; (9= 1,0, % = ¥+ 0) (1)

We demand that the theory (2.1) should be invariant with respect to the axial gauge

transformation

P(z)? = 5P Ey(z) (2)

According to the classical principle of the local gauge invariance the invariance of the

theory (2.1) is achieved by introducing the fermion interaction with an axial vector field

B e /d*;r@if)w = fd4:v (Eiéw - JEA,;) ;

iD = y,(i8u + V5 Au), J5 = ¥y, 759,

(3)
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whose transformation

A= p— A3(2) = Au(@) + BuB(2), (4)

compensate the transformations (2.2)

However, if the fermion fields are quantum and satisfy the commutation relation

[w:(?l t)v ?»/Ja(?, t)] — 50(,863 (?F - ?) )

so that their axial transformation are made by generator

¥(z) = Up(@)U,
U = exp {iQs(8)} , @s(8) = / 823 (2)8(2), (5)

then the ”classical” principle of the local gauge invariance is broken.

What is the physical of this breaking?

The quantum fermions differ from classical ones by the Dirac sea (continuum) that
aries from the requirement for the quantum Hamiltonian being positive. In the external
classical) axial vector field (2.3) the Dirac sea is rearranged so that the current commu-

tators become anomalous [14 — 17].

NPT GNCAN

l[JO(’E t)”]O(y’t)] GWQBk(y)a.’Ek(S (CE y)a

i [J2(T, 1), (Y, t)] = _6Tr-zfikt£Ak(y)£€‘53($ - ) (6)
0

Bi(y) = xi;0:4;(y), Aw(y) = aAk(y)-

Solving by these commutators the Heisenberg equation for

2 Bla) =i [#, B, M

where H is the Hamiltonian of the theory
H = /dSCC W’L"}v,alw - JSA#] y

we get the anomalous divergence of the axial current

1 o
apJZ(I) — @Fqupw

F‘JU = E,uuuﬁFa[j-
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Formula (2.8) is consistent with the calculation of the anomalous triangle diagram
[14 — 17]. From eq.(2.8) we see that the action (2.3) for the quantum fermions is non-
invariant under the axial gauge transformation (2.5) and acquires the extra term

AS = / d*zB(x)0,J3(z) = / d%ﬁ(x)LFj’ . (9)

4A8m2” KT HY

3. Quantization of axial - vector field

We consider the interaction of massless quantum fermions with an external axial -

vector field
1 -
L(x) = _ZFﬁu + Yy (23# + A7) . (10)

As it is pointed above, this lagrangian is not invariant with respect to transfor-
mation (2.4), (2.5) (see eq.(2.9)). We can restore the symmetry of the theory (2.3) by
introducing into the Lagrangian an extra term whose transformation compensates the
anomalous reaction (2.9) of the initial action (2.3).

For example, we choose the following extra term [1]

1 FopFug
Lmod(x) = L(z).AL(x), AL(x) = g (OuAL) T (11)
or a classical equivalent
FopF,
AL(T) = 0,x (8ud+ AL) + & 4‘;#2‘3,
0 s —O=>¢——1(8A) -
"800 0T B kA

For quantization of the axial - vector field we choose transverse variables which are fixed
by transformations

A;f =A,+ BPOT(A),

wT _ eiGT(A)w’

o7 = ¢~ 07(A),67(4) = —%(am, (13)

X =

The transverse physical field (3.4) are nonlocal (gauge invariant) functionals of the ini-
tial fields A,v, ¢ [12 — 13]. The transverse variables are convenient for the Hamiltonian
quantization and are only variables consistent with the classical equation [17] for the time

component of the field (Ay).
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Due to the nonlocality (3.4) the gauge of the variables is not fixed and follows the
time - axis rotation in the course of the relativistic transformations [12 — 13].Upon passing

to the transverse variables we have only one nondynamic variable A? and the constraint

equation
6S 24T T T 3i¢TBiT
The Hamiltonian of the theory (3.2), (3.3) has the form
H :‘/dgliiro()7
Too =ATEL + ¢Tnd + xTnT + 97wy — Lioa
1 Yo N T2 T2 ;i T 15T ALz
:§ (Ak) + (akAo) + (Bk) + 7T¢7TX == A‘i Ji
+ ETi%aﬂPT +8;x7 007,
where the canonical conjugate momenta Ej , 7}, 7 , 71 are given by the following formulae
5 3 ¢T BT : 1
E,{ = A;"; + Tk ('ﬁ_ s X T = g = 5k5§<9i i (16)
= 9od’ + Ag,% = Gox T ww =T, (17)
1 0;¢T BI
T _ T i 1
Ay = 82<J5 +¢,+—g7r—2—— . (18)

Foe the boson operators we choose the usual commutation relations
(BT, 0, AT (V0] = (8 - 00y ) 8 = 7).
i [73(T,1),67(7,1)] =i [71(T, 6), X7 (¥, )] = (T - V), (19)
[ (=,1), AT (¥, 1)] =0.
Then we check the divergence of the axial current with the help of the Heisenberg equation

O B ()= [H, 7). (20)

We get an expression of the type (2.8) with a new term

1 ~ 1/ .\2
Oul" (2) = gz FanFap + / d*y [5 (47)" W), JS%)], (21)

that appears owing to the axial field quantization. This term can easily be calculated

/ dSyE (Az‘)2<y),J8T<z] [ @v3{Ate) [ w. 57@)
1 0

+ [47 (), @) Acw) } =~ 5ma 5y (AFBD).

(22)
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Thus, instead of eq.(2.8) we get

1

— FopFug. 2

The usual choice of the commutators (3.10) leads also to nonzero Jacobi brackets

(AL @), 8,55 (v) ={ [AL @), [H, 57 )]

+ [ W), (4T @), H]] + (B, [557 (), AT()]]}
1

Violation the Jacobi identities for the very current is noted in ref. [9 — 11]. Thus, the
ordinary quantum theory with axial anomalies is not consistent for the quantum gauge

fields. In any case the application of the ordinary part integral is problematic [6 — 8].

4. Conclusions

We have attempted to construct the Hamiltonian operator formalism for the Abelian
axial gauge theory. It is shown that the ordinary commutation relation for the gauge
fields breaks the Jacobi identity for operators, of the Hamiltonian, of the time component
of the very field. These operators do not satisfy the associativity law respect to their

multiplications and cannot be represented by linear operators in the Hilbert space.
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