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1. Introduction

The radical theory is an important tool for studving the structure and the clas-
sification of algebraie structures, It attracts large interest of many authors [1. 2. 3. 5.
7. The concept of radical has been proposed and studied for rings. K-algebras and algoe-
braie structures closely related to them. There. the radicals are defined based upon their
particular substruetures. namely their ideals.

This paper deals with the concept of the linear radical of lattices. For a lattice L.
we consider a partienlar type of its congrnencies. which we call linear congruencies. The
mtersection of these congrencies. denoted by (L), is called to be the linear radical of 1.
We wall prove that this radical property satisfies some fundamental properties similar to
those of radicals of rings. Moreover., we also show that the class of all distributive lattices
is r-sen simple. By Theorem 3.1 we present an application of the radical to classifving
modular Iattices.

2. Linear radical of lattices and its properties

2.1. Notations. Let L he a lattice. a,b € L and p be a congruence on L:
(#) Svinbol alb means that a is incomparable with b and [a], is p- equivalence class
of a.
() ), < [bi, if and only if [a], # [b], and 3 @ € [a],.2 y € {bl,.0 < y.
(¢) The trivial and the largest congruencies on L are denoted by A and 7. respece-
tivelv.

2.2, Definition.

a) Let L be a lattice. A congruence p on L is called to be lincar if the guotient
Lattice Lopis linear.

h) The lattice L is called to be r-radical and r-semi simple if (L) = r andr(L) = A
respectively, The class of all the r-semi simple lattices is called to be r-semi simple.

2.3. Proposition. If D is a distributive lattice and a,b € D, a # b. then therc exists
congruence p. which consists exactly of two classes: [a], and [b],,.

For an arbitrary lattice L, there exists at least one linear congruence, for example
(. Thus. the family of linear congruence on L is non-cmpty. Then we have:

2.4. Definition.. Let L be a lattice. The intersection of all linear congruencies on L is
called to be the linear radical of L and it is denote by r(L).
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2.5. Examples. Consider lattices My and Nj:

| 1

0
M, N;

1) For My, there exists linear congruence 7 only. Therefore r(AMy) = 7.

2) For Ny. besides 7. there exist 2 linear congruencies. Namely, p; consists of the
classes {a.b.1}.{0. ¢} and ps consists of the classes {0,a,b}, {c.1}. Thus v(N5) = p; M ps.
whichi consists of classes = {a.b}. {c}.{0}.{1}.

2.6. Proposition.
(1) For an arbitrary lattice L, the quotient lattice L/r(L) is distributive.
(2} Let D be a lattice. Then D is distributive if and only if (D) = A.

Proof. (1) We have (L) = 1p,lt € T}. where p,.i € 1. are linear congruencies on
L. As well-known. L/r(L) is the sub-direct product of quotient lattices L/p,,7 = I. On
the other hand, by definition, L/p, is distributive for each ¢ € I. Thus. the quotient lattice
L/ r(L) is distributive too.

(2) It follows directly from (2.3) and the part (1). [

2.7. Remark. (a) Let p.o be congrnencies on L such that p € a. The svinbol p/o
denotes a congriuence on L/ p as follows:

(el o) €a/p < (x,y) € 0.

(b) Let p: L — L' be a lattice homomorphism and o be a congruence on L. Then
on 2 L) there exists a congruence (o) :

(), p(y)) € wlo) & (xr.y) € 0.

Setting p = Ker p we have (L) = L/p and (o Vv p)/p are a congruencies on L/ p.
[t can be casily deduced that (@(r), ¢(y)) € (o) < ([zlp. [ylp) € (o V p)/p.

2.8.Proposition.. Let L. L" be lattices and ¢ : L — L' be a homomorphisin. then
HrtL)) € rle(L)).

Proof. Put p = Kerp. According to (2.7)(b). instead of ¢(L) and (r(L)) we counsider
L/pand (r(L)V p)/p . respectively.

According to the definition of radical, #(L/p) is equal to the intersection of the
linear congruence on L/p. By (2.7)(a) these congruencies are presented as o/p. where o
is a congruence on L such that pE o T,

First. we prove: ¢/p is linear on L/p if and only if o is linear on L.

Necessity. Let a/p be linear and xz,y € L, (x,y) ¢ o. It is needed to prove that
o < [ylo or [yla < [2]5. According to (2.7)(a): ([z)a, [yle) € o/p and so we shall show:
s < lyl.” Since o/p is linear, without loss of generality, we can assume that [z, < [y],.
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By (2.1)(b). there exist &' ¢ [&], and y' € [y], such that 2" < y'. Since p C o. it implies
b€ [rle, i € lyla. i e < [Y]e.

Sufficiency. The proof is trivial.

Now. considering all the linear congruence a,/p.i € I, on L/p, we have r(L/p) =

la, ' pii < 1}y = tleji € I}/p. May be {o;lt € I} does not contain all the lincar

congruence on L. Therefore #(L) € No,li € T}, Thus. (r(L) Vv p)/p € {o.li € T} /p. 1.
e.. p(r(L)) € rip(L)).

The proof is completed. [

Surnaing up. we have proposed the concept of linear radical #(L) of a lattice L and
showed the important properties of (L) (see Propositions 2.6 and 2.8):

[) If o L — L' s a homomorphism then ¢(r(L)) < r(e(L)).

2) For an arbitracy lattice L. r(L/r(L)) = A.

[t s worth mentioning that these properties are formulated analogously 1o those of

radicals of rings.
3. Application

In this section we present an application of the linear radical to classifving modular
lattices. Here. for lattices. it is particular that P is r-semi simple class. Therefore. the
classification problem is of interest itself.

For example. consider a modular lattice M. As in Example 2.5, we see that Ay
is r-radical lattice. On the other hand, the sublattices of M which arc isomorphic to
Ay prevent M from being distributive. Since M/r(AM) is distributive, each sublattice
isomorphic to My belongs to one of equivalence classes of (M),

Based upon the above reasons we arrive at the study of the particular modular
lattices formulated in the following theorem.

3.1. Theorem. Let M o be a modular lattice which is not distributive. Let A be a
sublattice of M such that:

1) A is convex.

2) A is r-radical.

3) A contains all sublattices of M which are isomorphic to M.

Then r(M) has one class equal to A, the other classes (if they exist) are distributive.

Proof. We can assume that M ## A and use the following lemima.

3.2.Lemma. [fb e M A then in M there exists a two-classes congruence, one class of
which contains A | the other contains b.

Proof For b and A. we have the following alternatives:

(I) da € A.a < b.

(IT) Either Ya € A.a|lbor da € A.a > b.

For case (I). consider the principal filter generated by b : F(b) = {& € Mc > b}.
If 3¢ € F(b) M A then v < b < e, it implies that b € A (due to convexity of A). but it
contradicts the assumption. Thus F(b) N A = ¢.

We denote by F the family of all filters containing b but not any element of A.
Consider F with relation €. Let {F|i € I} be a chain on F | it is casy to deduce that
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{F,/i € I} € F. Due to Zorn's Lemina. there exists a maximal eloment of F which we

denote by F.

We consider the ideal generated by A again J(A) = {or € M/ - ufor somea € A},
Obviously. J(b) N F = @.

For case (I1), we take the principal ideal generated by b : J() - {&v € M|r
Obvionsly, J(b)N A = ¢

Similarly to case (I) we can deduce that there exist the maxiial ideal J and the
maximal filter F suchthatbe JJJJNA=¢and ACF,JF = q.

Now. for both cases (1) and (II) we shall prove that ./ F = 1/

We suppose that 3c € M.ec € JU F. First we prove the assertion:

(i) }jeJjveeF.

Indeed. if Vj € J j Ve d F. take the sublattice K generated by J U {¢}. So K
('(Jll‘w’i‘ﬂ'\ of elements as ¢.j.j V¢ with j € J. Denote J(K) = {& = Mr < k for some

b},

IA

<= K}, it implies that J € J(R') and J(K) N F = ¢. This contradicts the maximally of
.I. Thus (1) is proved.
By duality we have the similar assertion:
(i) Ife F. fAce d
In the rest. we consider 3 elements j, f.c. We have:
infinefaced and u=0GA L)V {Gae)V{fae) e d
iIVEivVefVeeF and v=V [f)A{JVIA(fVe)s
It implies that v < v and since J N F = ¢, u < v.
Put @, y. z as follows:
=(jAv)Vu=(jVu)Auwv,
=(fAv}vVu=(fVvu)au,
z=(cAv)Vu=(cVu)Auv.
Furthermore, the equalities:
JAv=jA[GVIAINGVEAN(FVE =AYV (1)
fvu=fVv[infIV{FAc)V(fAe)=fV(nrc (2)
hold.
Stnnning up. we have:
FAy=[(FAC)VUA[(fVu)A
={[JAv)VuAv}A(fVu)

={[(jAv)Av]Vu}A(fVu) (u < v)
=[(FAV)VUA(fVau)
=[G AV A(F V) Ve (i

={FA(fVIA[fV(FAR)}Vu (see(1).(2)
={(fvanrlinlfvinroj}vu
=(fveninevigVvhHlvu (iAe<)
=(GAOVGYHVu=1u
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By dnality we also obtain » vy = 1.

Here. elements ooy, 2 play the similar role.  Therefore. o A 2 = y /22 = u and
FV 3= %2= 1

Tlhins. in M there exists sublattice H = {roy. 2. u v}, Sinee H is isomorphic to M.
it nuplies that cither H = J or H © F according to the identification of J and F. DBut
this contradicts the fact that w < JJ and ¢ £ F.

In final. we see that /o0 F = M. This means that J and F form a two-class
cauuvalence. where either A < J b€ Fin case (Iyor b€ J. A C F in case (I1). Because J
is an deal and F s a filter, it follows that this equivalence is a congruence. The Lemma
is proved.

Now we finish the proof of Theoremn 3.1, Since A is a r-radical lattice, every linear
congritence on L has a class containing A. By virtue of Lemma (3.2) the equivalence class
of (M) containing A is exactly equal to A. The other classes are sublattice of M. These
sublartices contain no sublattice isomorphic to M. therefore, they are distributive.

The proof of theorem is completed. [

3.3.Remark. It is worth remarking that lattices, in general, are not distributive becausc
thev mav contain not only the sublattice M5, but also N.. Therefore, the classification
problem is difficult (see Example 2.5).
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TAP CHI KHOA HOC DHQGHN, Toan - Ly, t. XV, n"1 - 2002

VE CAN TUYEN TINH CUA CAC DAN
Nguyen Die Pat
Khoa Toan. Dai hoc Khoa hoe T nhién - DPHQG Ha Noi

Bai bao nay d¢ cap t6i khdi niém cua cac dan. Can tuyén tinh cua dan L duoc
hieu la giao cta ho tat ¢i cic wong ding tuyén tinh trén né va duge ky hi¢u la r(L).
Can tuyén tinh cua dan thoa man cac tinh chit co ban nhu cdc ¢an cua vanh va nhan lop
cac dan phaan phoi lam 16p r-nira don. Dinh 1y 3.1 cho dp dung hiru ich cua can tuyén
tinh trong viéc phan loai cic dan Modular



