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A b s tr a c t . In this article, we deal with the problem o f computing stability radii f o r  
systems described by differential algebraic equations o f  the fo rm  A X ' ( t ) + B X ( t )  =  0. 
where A. B  are constant matrices. A computable fo rm u la  f o r  complex radii is given  
and the key difference between O D E s and D A  E s  cases is pointed out. A special casr  
where the real stability radii and complex one are equal is  considered.
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Introduction.

Ill the last decade, a large amount of works has been devoted to robustness measures 
among them there is a powerful tool, namely the stability radius, which was introduced by 
Hiiirichsen and Pritchart (see [2] ). It is defined as the sm allest value () o f the norm of real 
or complex perturbations destabilizing the system . If complex perturbations are allowed. 
Ị) is called the complex stability radius. If only real perturbations are considered, the 
real radius is obtained. A detailed analysis of the stability radius for ordinary differential 
equations can he found in [2,3.4].

In this article, we deal w ith the com putation of stability radii of system s described 
by a differential algebraic equation

A X ' ( t )  -  B X { t )  =  0, (1.1)

with constant, matrices A  and B .  This problem has been well investigated for the case 
of nonsingular matrix A. when (1.1) turns into an explicit system  o f ordinary differential 
equations (O DEs for short) mX ' ( t )  =  M X ( t ), where the matrix M  =  A 1B .  According to 
the works in [2]. [3]... the stability radii can be characterized by the matrix A/ and it is 
computed ill principle. If the matrix A is singular, then the investigation of the index of 
the pencil {A ,  13} is necessary but the situation becomes more com plicated.

It is known that ill ODEs case, if the original equation (1.1) is stable, then by 
continuity of spectrum , the stability radius is positive. However, this property is no longer
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valid in tin* cas<‘ of différential algebraic equations (DAEs for short). The mail! reason is 
that tho structure of solutions of differentia] algebraic equations depends strongly on the 
indrx of (hr pencil {.4. B }  and the solutions of (1.1) have some fixed components. I nder 
the perturbations, the index of the perturbed system s may he changed, that implies the 
chauvin*; o ft hr dim ension of these fixed one and som e of eigenvalues may 1)0 ’‘disappeared" 
which causr.s the stability radius of (1.1) perhaps to he equal to Ü. Moreover, it is different 
to ODE.S case, in which we always arc able to find a dist urbance whose norm equals to 
stability radius Ị) and under which our system  is unstable, such a matrix ill DAEs case 
may not exist .

Therefore, to study stability radii of algebraic differential equations, one* must pay 
attention on the index o f equation or the disturbances must having som e special forms 
that we call structured perturbations in order to  exclude “violent factors’*.

Thr article is organized rus follows: In the next section, we study some basic prop- 
(Ttk's of (inferential algebraic equations. Section 3 deals with a formula for computing 
the stability radius o f (1.1) where structured disturbances are considered. Section 4 is 
concernrd with a special class o f the pencil o f m atrices {A .  13} for which the complex and 
real stability radii are equal.

2. Preliminary.

Consider Ĩ 111* equation
A X ' ( t )  -  B X ( t )  =  Ü. (2.1)

where* A (•_ A and IỈ arc» constant matrices in / \" ixm ,(/v  =  c  or I \  — /?.), (let A =  0: 
till* pencil of m atrices {.4, B Ị is supposed to he regular, index {/1, D )  =  k  >  1. It is known 
that there exists a pair of nonsingular m atrices \ \ \ T  such that

A . H - Ự '  “ ) r - ,  B  =  w Ợ 0'  /m°_r ) r - ,  (2.2)

where / s is the unit matrix in K sXs. Further B \  €  I \ VX1\  u  is a A:- nil potent matrix 
having I.hr Jordan box form. i.e.. u  =  d ia g Ụ iy  J ‘2 , •//) with

/0  ° \./,= () 0... 1 e F l<p',(i = l,2,..,/) (2.3)
\  0 0... 0 /

Midi that !naX |< /< /p, =  A: (see [5]). M ultiplying both sides of (2.1) by w ~ l wc obtain

Y ' ( t ) -  B ỴY ( t )  =  (), (2.4)

U Z '{ t )  -  Z ( t )  =  0, (2.5)

whore T  lX( t )  = i  *Y(t )  € l \ ’\ Z ( t )  € K m~r . Since u is a k — liilpotent matrix.

it is easy to see that the equation U Z '( t )  — Z ( t )  =  0 has only a unique solution z  =  0. 
Thus, the above system  is reduced to



: "• Nguyen H uu Du, Dao Thi L ien

Y ' { t )  -  D \ Y ( t )  =  0,

Z{t) =  0,

where Y { t )  € K ' \ Z ( t )  e  K m~ r .
The trivial solution X  =  0 of (2.1) is said to be asym ptotically stable if there are 

a certain projection p  €  C ( K m ) and positive constants a ,r .  such that the solution o f the 
initial value problem

AX'(t) -  BX(t) = 0, 

P ( X ( 0) -  X o )  =  0

is unique and the estim ate ||X (/) || <  c .||n X o ||i,_cvi, t >  0 holds. In fact, if the index of 
{A . 13} =  1 wc choose p  — I  — Q  where Q  is the projection OI1 h e r A  along 5  =  {z  Ç c  : 
D z  £ /m .4}.

We denote by a ( C , D )  the spectrum o f the pencil {C\ D }, i.e.. the set o f all solutions 
of tlic equation (lot(AC -  D )  =  0. In case c  =  / .  we write sim ply rt-(D) for ơ ( Ị . D ) .  It 
is known that system  (2.1) is asym ptotically stable iff all finite eigenvalues of the pencil 
{.4 ./?} lie within the half left hand side o f complex plan (see[5]). If ơ (A ,  B )  =  0 then
(2.1) lias only a unique solution X (f)  =  0. Indeed, ơ (A , B )  =  0 im plies that for any 
s. d('t(.s/l -  B )  =  dot w  d e t ( s I (Ị ...fc — z?i)đet(ố*ơ -  I ) d e t T ~ l =  nonzero constant. Thus 
(I A* =  0. i.e., the equation (2.4) must be absent. Hence. (2.1) is equivalent to (2.5) which 
lnus only a trivial solution X ( t )  =  0. In this case we also consider (2.1) is asym ptotically  
stable by choosing p  — 0.

3. S tr u c tu r e d  d is tu r b a n c e s .

As is clone ill ODE's case, one fixes a pencil of m atrices {A ,  B )  to be stable; a pair 
of matrices E  €  F  6 K q*m . and consider the disturbed system

A X ' ( t )  -  (D  +  E A F ) X ( t )  =  0, (3.1)

when* A £ . The matrix E A F  is called structured disturbance. D enote by

V k  =  {A  €  K pxq : (3.1) is either irregular or unstable }

i.e.. V/v is the set of ubacT disturbance. Let d/t =  in f{||A || : A  €  V/v}- We call rf/v the 
structured stability radius of the quadruple { A ,  B, E ,  F } .  If K  =  c ,  we have complex  
stability radius and if K  =  R  we have real stability radius.

First, we investigate the complex stability radius of (2.1), i.e., K  =  c .  Similar as 
in ODEs. put G ( s )  =  F ( s A  — B )  1E  and we shall prove that

d c  =  [ s u p  | | G ( s ) | | ] ~ l .
a€C*»

.We point out d c  >  [sup5eo  l|G(5) |ll~ l ‘ Taking A  €  Vo, there are two cases: 
a) The pencil of matrices {A ,  B  +  E A F }  is regular. T hen, we take a value s G 

ơ (A , B  -f E A F )  (it notes that a (A , B  -f E A F )  j=- 0 since A £  V c). Suppose that x / 0
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is its corresponding eigenvector, that, is s A x  — ( B  +  E A F ) x  =  0. or equivalently, X =  
( .S'/4 -  B ) 1 E A F . 1\  which follows that

F t  =  F ị s A  B )  l E A F x  =  G ( * ) A F x

Ị |A |Ị > |K ; ( . s ) r '  >  ( sup ||ơ (.s-)|ir '

fo r  a ll A  • v< • w h ic h  im p lie s  t h a t  (!(' >  Ịs u p sẽ<:> l|G ( 's )ll] *•

h) Tilt* pm cil of matrices {A . B  ■+• E A F }  is irregular, then for any s r it exists 
a vector .V =£ 0 such that .sAr - ( B  +  E A F ) x  =  0. Bv using a similar procedure we can 
prove d e  >  i.su|>M:.r . j|G(ü)i|]

We now prove the inverse relation d c  <  I I G M - ' .F o r a n y  £ >  0. we find
.S(] G C "  such that Ị|G(so)|| 1 <  [supNícC;+ ||Cr(s)Ị|]“ l +  £. Suppose that u  € C 7 such that 
|w|| = 1 and ||G(#o)tt|| = ||G(*o)||. A corollary of Haln-Banach theorem follows that there 

is a lineal' function y* defined on c p such that Ị|y*|ị =  1 and y*G($o)u  =  |(c?(s{))//II =  
|ỊƠ(*o)||. Put A  =  ||G (so )||~ l wy* € C V*'I. It is clear that

AG(S[))a = ||G(*0)|| ]uy*G(sị))u= ||C?(.So)Il Ĵ-IIĜ o)!! = u.

Hence. ||A || >  ||G (S())||~1. On the other hand, from A =  ||G(.S())||_1 uy* we have? ||A || <  
||6'(«o)|Ị 1 • Therefore. IIAll = ||G(.Ç())|| V Further, since AG(s{))it = a. we obtain 
£AG(«o)m  =  E v  t  0. Let X :== (.SoA -  then (.So/4 -  z?).r =  E u  which fol­
lows E A F r  =  (.So/4 -  J3)t or (*{)A — B  — E £ F ) x  =  Ü. i.e.. .So £  ơ { A A Ỉ  -f* E A F ) .  This 
means that the system

A X ’{ t ) - ( B  + E ă F ) X ( t )  = Q

is unstable. Therefore. A 6 vv*. Further,

dc- <  ||A || =  |iơ («o)~ l <  [ sup \ \G (s )\ \ )-1
s£C+

Because £ is arbitrary then d c  <  [supt, €^+ Ị | G » r ' .  Thus,

dc  =  [ sup |ỊG(s)|ị]_ l .
«6 c+

We note that the function G ( s )  is analytic on the half plan then by maximum  
principle, it only attains maximum at 6* =  oc or on i R .  Thus

dr = (sup||G(5)||]-‘ .
«€ I ỈỈ

Following the above argument, we bee that if there exists So 6 c y such that

l | G f o ) l l  =  [s u p ’ t r -  ! IG (* ) I I ]  th e n

d r  =  l|G (.S(,)ir1 =  [m a x ||G (s ) ||] -1.
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Moreover, if tho matrix A  is given I)V

ă  =  \ \F ( s 0A -  B ) - ' E \ \  V
then A is '‘had'' matrix with 11 All = dc-

However, t he above argument does not allow us to com pute a “bad” matrix A whose 
norm oquals to <i(- as ill O DEs case oven we take the limit as s -» oc. Wo now show that 
if CV(.s) i does not attain its maximum over half plane C" then there is no m atrix A such 
that (!(' — A  and the system  A X '  -  ( B  4- E A F ) X  =  0 is unstable. Suppose, ill contrary, 
there is such a matrix A . Let .So €  ơ ( A , B  +  E A F )  n C 4 and X is its eigenvector, i.e..
.s()Ar -  ( B  4- E A F ) x  -  0 which implies that ||AỊ| >  ||G (so)ir~1 >  + IK*(«o)||] 1 rr
dc-  This is contradiction.

Moreover, for any sequence (s , i)  in c *  which maxim izes ||G(«sk)|Ị at oc and 
associated to s„ is constructed as above (we can suppose that there exists iim,,-»-* A,, =  
All. if not wo take a subsequence), then the system  ( A X '  — (13 -f E A ( ) F ) X  — 0 is stable. 
Since the set of matrices A such that the pencil of matrices { A . B  +  E i \ F )  has the index 
1 is open then the index of { A , B  +  E A ( ) F }  must, bigger then 1.

We consider a special case where E  =  F  =  /  (unstructured disturbances). As is 
sm i. till* stability radius with unstructured disturbances is

where G ( s )  — (sA  B )  l . We prove that if ind (i4 ,/? ) =  k >  1 then the matrix function 
G(.s) is unbounded on i.R. Indeed.

as s —> “X . Therefore, ill this case, d c  — 0. This means t hat under a very small disturbance, 
the DAEs with the index greater then 2 is no longer stable.

If ind(>4, D ) — 1. it is easy to prove that |ịơ(.s)|| is bounded oil . i.e., d(7 > 0 but
perhaps it (loos not exist any "bad” matrix A such that !|A|| =  d c .

Slimming up we obtain

T h e o re m  3 .1 . n) The com plex sta bility  ra dius o f  System (2.1) is given by

where. G ( s )  =  F(.s/1 -
bj T h ere  exists a “bad” m a trix  A  such that ||A || =  d ç  i f  and o nly  i f  G ( s )  attains  

its m axim um  over ỈR.

=  [sup ||G (s)||] 1,
sÇiK

d o  =  [sup ||G(«)||] \
A' £  i  f?



c) hi the a  ISC E  =  F  —  I , d c  >  0  i f  and on ly  i f i n ả ( As  D)  =  1 .

A question risrs Ihtc: whenever t he function ||G(«)|| attains its maximum at a finite 
value *(,. \Y< firstly remark t hat the answer depends strongly on the chosen norm of C ' n 
sinct* G ( s )  \ has maximum values in one norm but has not in another one. To simplify 
the situat ion. W(‘ solve the problem with A, B  G R w and with a Euclid norm in the set of 
m X HI matrices, that is if M  -  ( u i i j )  i-s 3- w  x m ~ matrix then ||A /||2 =
(leal wit 11 the way to obtain t he decom position (2.2). First we decom pose (A  — B ) ~ l A into 
.Iordan form by a nonsingular m atrix 5 , that is (A  -  B )  l /l =  S d i(u j ( M  , V ) S " X. where 
r  is a nilpotent matrix of the form (2.3) and M  is nonsingular. The matrix w  and T  in 
(2.2) ih given by

ir  (.4 D ) S d i a g ( M J ) :  T  =  S d i.a g { I , ( V  -  u  =  V ( V  -  I )  1. (3.2)

If G ( s )  is unbounded oil c \  then A c  =  0 and there is no thing to say. The 
assumption G’(.s) to he bounded im plies that F T d ia q ( Q .U J ) \ V ~ [ E  =  0 Vj >  1. Thus

G {s )  := F T d i a y { ( s I  -  B ị )  [ . { U  -  / r 1) ^ - 1#  =  F T d i a g { ( s I  -  B i ) - \

L e t / ( * )  =  :: ơ ( i / . s ) ị | ,J i f  6* Ỷ  u a n d  / ( 0 )  =  1ÌI1Ì.V-+OC | | G ( l / s ) | | 2 (w e  re m a rk  th a t  th is  

limit always exists). It is easy to see that f ( s )  = ||FTdm//(s(/ — si?i) 1, —I ) W  1 E\\~.
Since all entries of the' m atrix G ( s )  are only rational functions which are analytic 

then by the maximum principle, the maximum of G ( s )  takes place only at s =  oc or
s G iR .  Therefore, G (s )  attains its maximum at s =  00  iff /(.<?) has the maximum value
at s  =  0 (of course we consider only s in c t+). Thus, taking a ray Í —> t • e, t >  0 where 

=  (cosn . sin a ). <  a  <  “ , the attainm ent of maximum value at 0 of /(.s) implies
that //( ())  <  0. for every c. It is easy to see that

/ / ( 0 )  =  2 cos a  [FTrftasf(0, - / ) W r *£] * [ íT d t a p íA O )^ " 1^ ] =  2 c o s a C  * D ,

where c  =  [F7Vi/a<7(Q, — I ) W ~ l E ]  : D  =  [FT,d ia ịf(/, 0 ) i y “ !£ ]  and C' * D  denotes the 
Frobenius inner product of two m atrices C , D .

In using the expressions of w  and T  ill (3.2) we obtain

c  : =  F T d ia g [0 ,  - I ) \ v  l E

= F T d ia y iO ,  ư ( ư  - / ) ■ ' -  / ) w ' £  =  F T d ia g { 0 ,  V  -  I ) W  XE

=  F S d ia g ( J .  ( V  -  I ) ~ l ) ■ diag(Q, V  -  I ) d i a g { M ~ l , I ) S ~ l { A  -  B ) ~ l E

=  F S d ia g (0, 7 ) 5 “ *(i4 -  B y 1 E

and

D : =  F T d i a g ( 1 , 0 ) V I 1 £  =  F T W ~ l E  +  C

=  F S d ia ợ ( I , (V -  / ) - 1 )d ia$(M ~ l J ) S ~ l [A  -  B )  ~l E  +  c  

= F[Sdìag(M, V  -  I ) S ~ l] - l {A - B ) ~ l E  + C  

= F[(.4 -  B ) l A -  Sdiag(0,  / )5 - l )-1(i4 -  JB)-1JE + C
=  F U  -  (/1 -  ổ )S í/m ổ ( 0 , / ) S - 1]" 1£ ’ +  C'

Stability radii for differential algebraic equations 21
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Sum m ing up, we have: if c *  D  >  0 then G ( s )  has maximum at a finite value s. In 
the case c  * D  =  0 we can com pute higher derivatives of /  to obtain the answer but the 
formula is com plicated and we do not realize here.

E x a m p le  1. Let us calculate stability radius o f the structured perturbed equation  
A X ' ( t )  -- ( B  4- E A F ) X ( t )  =  0 where A is disturbance and

E  =

- ầ - 1
tot.icallv Stable. By a direct com putation we obtain

/ 1 0 1 \ - 2  - 1 0
.4 -  0 1 1 B  = - 1  - 1 0

V» 0 0 / V - 1  Ü - 1

It is St»011 t hat hid ( A B )  == 2 and <r(,4. fl)

G ( s )  =  F ( s A  -  B ) ~ l E  =
3s-f 1 3.s-f 1 3s4 1
«4 i • m *+1
3*4-1 3.s-f 1 3s +1..s $ Al
3*-f 1 3.9+1 3 ü ' f  1

Thus. \\G{s)\\ — 3 m ax{| |, ị ị  Ị} which attains its m axim um at So =  0 and ||C (0)|| =■

3. Hence. d(' =  1/3. Choose u =  ^ 1 ^ then ||G (0)u|| =  (7(0) =  3. Let y* =  (0 1 0). we

/ 0  1 /3  0 \
have A =  ijC7(0)II 1 uy* =  I 0 1 /3  0 I . Moreover, đet(.s/l -  B  -  JSAF) =  2.S =  0 for

\() 1/3 0 /
s =  Ü.

E x a m p le  2. Let us consider the equation /LY'(£) -  J3X (i) =  0 where A =  ^ 2*

and B  =   ̂ *2 ()**)’ ^ seen ~  Ơ{ A , B )  — - 1 .  and G (s) —

(.S/1 -  Ữ) 1 =  f  ,s/ Ŝỵ2 ^  1/ 4 ) '  Hence- \\G(S)\\ =  m a x { 3 /4 , l /2  +  |s / ( s  +  1)1} which 

doesn’t attain its maximum on c 4 . Further, lim.'-too ||G (s)|| =  3 /2 . i.e.. A c  =  2 /3 . If we 

choose Ü =  ^  y ,  it is clear that ||u|| =  1 and ||G(s)tz|| =  |ị<ST(.s)ỊI when

is large. Thus, with y* =  ( 1 0 ) . we have

A  =  ||G (s)|Ị“ Siy* =  converges to ^ 2 ^ 3  o )  30 6 00 ■

It is easy to  verify d e t ịs A  -  D  -  A ) =  - 8 / 3  for all s, i.e., ơ ( A , - ( / ?  +  A )) =  0 and 
the equation A X f(t)  — ( B  +  A ) X ( t )  =  0 i.e.. the system

/ / 5
—X I 2j* > — ~X] -f* 2 x 2 =  0

3
4

2 x\  — 4 4  +  -X j =  Ü
«J
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has a unique solution ./'I - 0: ./*•> =  0 which is asym ptotically stable.

4 . T h r  e q u a lity  o f  real a n d  c o m p le x  s ta b ili ty  ra d iis  o f  D A  Es

In I his section, wo are concerned with a special case where* the com plex stability  
radius is equal to real stability radius. For DAEs. this is a difficult question because under 
the action of the pencil of matrices ị A. D ) .  the positive cone ÌĨ+ is no longer invariant even  
both A and B  arc positive. We arc able to solve problem under a very strict hypothesis. 
Suppose that A. 11 c. IV "* '" .

A matrix I I  ~  (n, j )  c  f í " íXn‘ is said to  1)0 positive if (\, ị  >  0 lor any i . j .  D enote  
[ho nbsolutr o f tin- m a t r i x  M  =  by \M  =  (IM ill )  a n d  of the vector ./• by I./•; —
{ ../*!». . /J ......Ị.r„, ị). Wo define a partial order relation ill ftmxnt by

A/ < N  &  M  -  N  < 0.

L e t  / / ( / 1 ,  I Ỉ )  b e  t h e  a b s c i s s a  s p e c t r u m  o f  t h e  p e n c i l  { - 4 . / ? } .  i . e . .  f ỉ ( A . B )  : =  111H X { ‘}ỈÀ : A €  

a ( A J i ) } .
We consider the* equation

4 X ( / ) - Z Ỉ À ' ( 0  = 0 ,  (4.1)

where w4. /Ỉ are constant matrices in /?,,ixm . the pencil {.4. £?} is regular. ĩf’ i i i(H A . B )  > 1 
then thero is nothing to say because d c  =  (Ifi =  0. So we suppose that in d (A ,  B )  = 1 and 
the following conditions are satisfied:

i) A >  0 (4.2)
ii) There exists a sequence (/.„): t„ >  0; tu oc such that ( t „ A  -  D )  1 >  0 for all

» . (4 .3 )

iii) The equation (4.1) is asym ptotically stable.
\ \v  remark that the above conditions ensure a positive system  oil O DEs case.
Let us choose the m onotonous norm in R ,n. That is. if \x\ <  ịt/l then I'./’ll |Ị/y||.

L em m a  4 .1 . Let the system (4 .1) satisfies above conditions , then for till X such that 
'RA > f i(A , D ) ,  we have I (A.4  -  B )  X I <  (5iAi4 -  2?) Ịarị for any X € /?"*.

Proof. Let us take an t, tn €  /? such that / >  /í(A , £?).and - 1 >  iu {A y D). Suppose
that. A =  /.-Hu, we have to prove that !((/: -f i u ) A  — B ) 1 .rị <  (tA  -  B )  1 \x\ for all X €  R ni. 
By simple calculation we have

( (t  +  iaj)A B ) 1 = ( t „ A - B ) - l [ I - { t n - t - k j ) A ( t „ A - B ) - i \ i .

Putting G ( t „ )  — (t „ A  B )  1. we obtain

Ị(í +  iw )A  -  B ) } - 1 =  G ( t n) [ I  -  (tn -  t -  iü j ) A G ( t u) } J
X

< ? ( * „ )£ (« „  - i - « j ) n(A G (i„ ))" . (4.3)
7 1 = 0

The above series absolutely converges if we can prove that ||(£„ -  t -  y’u;)r(i46t(f/,)) || <  1 
where r ( M )  denotes tlu* spectrum  radius of M .
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First, it is easy to see that lim ttÈ-4oo(tn -  \tn -  t =■ t. Therefore, for e =
i f i{A . B )  >  0 we have in -  I ỉn -  t -  iuĩ\ >  t -  e =  ụ (A .  B )  for tn sufficiently large, i.e.. 
t„ ụ (A .  B )  > \tu -  i — On the other hand, by hypotheses i) and ii), A G ( t „ )  i‘s positive 
matrix, tIll'll I)V Perron-Frobenius theorem : r ( A G ( t n )) =  n ( A G ( t fl)) €  ơ ( A G i1 fl)). This 
means that cletjr(/4G (/„))/ — A G ( t f1)) =  0. Hence.

(let[ r ( A G ( t n ) ) I  -  A G ( t n )} =  0 «  d e l[(tnA  -  B )  -  A / r ( A G { t n ))\ =  0 

«  det[(in -  i / r ( A G ( t n ) ) ) A  — J5] =  0.

Thus. t„ -  (-(/t(.4(-?-yy 6  a ( A . B ) .  Therefore, r i À G ù -  t" ~  M-4 ’ # ) -  which implies |/„
/ -  7u;|r(i4G(in)) <  1. Hence, by (4.3)

|((i +  L i ) A  -  B ) - ' x I <  G ( t n) J 2  \tn -  t -  úư)|” (> 4ơ (í„ ))M|3:|
nssO

= G ( t „ ) \ I  -  |*„ -  t -  i< j\ (A G (t „ )}-- ] \x\ =  \(tn -  |t„ -  t -  M M  -  B ] - ' |x |.

Let t„ ~> oc we obtain

|[(/ + iu>)A -  Ơ]' ‘x| < ( t A - B )  1 |;r|.

Lemma 4.1 is proved. Ộ

L em m a  4 .2 . G (t )  =  (M  -  B y 1 >  0 for any t >  f i(A . D ).  M oreo ver , G (/) is decreasing  

on (f i(A . B ),  oc).

Proof. Let t() >  f i(A , D). By using Lemma 4.2 we see that |G(*o)| 5: G(ỈR/u) =  G  (tị)) 
t hen G ịtị))  >  0.

The decreasing uf G (t )  on J3), oc) follows from the first part of the Irmma and 
the fact that for s .t  >  ụ ( A % D )  one has G ( s )  — G (t )  =  (t — s)G(.s)i4G(£). Ộ

Because the function G ( s )  is analytic oil half plane c + then it only attains maximum  
at s — oc or s £  iR .  Furthermore, m onotonous norm is chosen then by Lemma 4.1 G(.s) 
attains the maximum on [O.oo). On the other hand, by Lemma 4.2, it follows that G (s )  
hap its maximum at t =  0. i.e.. ||G (0)|| =  rnax{||G(A)|| : ?RA >  0} =  IIB  1II.

From Perron - Frobenius theorem, there exists u  >  0, \\u\\ =  1 such that ||G’(0)//|| =  
;jCV(0) . By using once more Haln-Banach theorem for positive system  there exists positive 
linear functional y* satisfying y*(G (0)n) =  ||G (0)u|| ^  11 (̂0)11 all(ỉ \\y*\\ =  1- Let A  
ỊỊGT(O)II { utj* >  0. Following the way as above we can prove th at A  is “bad” matrix and 
|ỊA|| =  d r .  Therefore,

T h e o r e m  4 .3 . Suppose that the system (4.1) satisfies hypotheses i) ;  i i)  and Hi) and a 
monotonous norm  in R m is chosen, then the com plex sta bility  radius d c  and the real 
stability radius (in  are equal and (In =  (IIB- 1 )!!- 1 .

As is mentioned above, assum ing the positivity of G ( t n) for a sequence (tn ) is 
strong and it is difficult to verify. We know give a sufficient condition to ensure the
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*»Ih>\v l iv p o t  1|(‘S<\S. It is s a id  t ha t th e  s y s te m  (2 .1 )  is p o s it iv e  i f  fo r  a n y  :/•() €  IV"  =  {y  =

( / / I . / / J .......//,!,)  : //; '• n w  — 1 .2 ........ ?/ / } .  th e  s o lu t io n  X f  w i t h  X () =  i f  i t  e x is ts , sa tis fie s

the condition .V/ >  0 for all / > 0. Lot Q  he a projection on K e r A  then it is known that
(2.1) is equivalent to

A" -  zLy = 0 :  Q X  =  0. (1.4)

w linr. ộ  Q(,4 ÜQ) 1 /?; p  =  1 Q  and D  =  P (i4  -  We note that Q  (loos
not depend on thí» choice of the projection Q  and P ( A  -  B Q ) ~ l =  P (A  — Ỉ.ÌQ) Ỵ which 
implies tlirif 13 is independent of the choice of Q. So it is seen that (2.1) is positive if and 
only if p  >  0 and D  is a P -  Metlez matrix, i.e.. all entries of B  are positive except for 
rut ries h,j with p,j >  0. where p  =  (p i j ) .  Indeed, from (4.4). the general solution of (2.1) 
is Xf — exp(/ữ)PÀ'<|. Thus, the positivitv condition implies that p  >  0 (with t =  0). On 
tilt* other hand, for / is small wo h aw

0 v . x Ị ì { t ở ) r  =  / • +  =  P  +  f B  +  o(t),  as t -* TC
/ft-I

which follows that if P ' J  =  0 then bij >  0. Conversely, if B  is a P — M etlez matrix then ill 
noting that p  is a projection which commute with B  then for an a  such that o P +  D  >  0 
wo lia VO

exp ( t B ) P  =  exp ( - c t t P  +  t ( B  +  a P ) ) P  =  exp ( - a t P )  exp ( t ( B  +  ( \ P ) ) P  

=  exp (“ Or£)exp(f(B +  a P ) ) P  >  0.

w v now suppose that the system  (2.1) is positive. In adding conditions that P ( A  -  
B Q )  1 > 0 and Q { A  B Q )  1 > 0 we can prove that G (t)  =  ( tA  -  B ) ~ { >  0 for any t >  0 
and / large*. To verify this attestation we have only to  remark that

(/1 B Q )  ‘ (//1 -  B )  =  t P  -  (yl -  B Q )  ~l B  =  t P  +  Q  -  B  

= ( P + £ . / / ) [ ' /  -  (P -M Q )i? ] =  ( P  +  Q / t ) ( t I  B )

Thus.

ơ ( / )  =  [(,1  £ ( - } )  ( M - / ; ) ] ■ ' ( / ! - B Q ) - ‘ =  [ ( P  +  Q / f ) ( / / - Ỗ ) j  ‘ ( /1 B Ộ )  1 

=  ( / /  Ồ) 1P ( i 4 - B Q ) - I + í ( í / - Ỗ ) “ 1ộ ( i 4 - / ĩ ộ )  1 

= (/ -  B Y  1 P ( A  -  B Q ) - '  + Q ( A - B Q ) - 1. (4.5)

Since B  is a p  -  M etlez then there is a f() such that (t — B )  1 p  >  0 for any t >  t(). 
Thus, under the hypotheses P (i4  — B Q ) ~ l >  0 and Q ( A  -  B Q ) ~ l >  0. the relation (4.5) 
tells that G (f ) >  0 for t >  t{).

However, it is easy to give an example where the system  is positive but the resolvent 
(tA -  B )  1 is not positive. So far we do not know if the positive condition ensures the 
equality of (!(' and (//,». An answer of this problem is welcome.
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We consider the case where G { s )  attains maximum at s =  oo. From the relation  
(4.5) we see that

.Inn ||G (s)|| =  J im  \\G(t)\\ =  \\Q(A -  B Q ) ~ l \\ =  m ax ||G(.s)||.
s Ç C + . s - ï - x .  t e R + - , t - +  o c

where Q: B are given as in (4.4). Let (/.„) be a sequence in (0, 00 ) such that linin_>.x.
•X. For any n  we choose u n € R m and y* w ith  (y?ả) r  G such that =  1 WVnW = 
1: |ỊG(f„)ỉ/„|| =  ||G (/„ )|| and y * (G {tn) u „ )  =  |ỊG(í„)itrtị| as in §3. Let A „ =  ||G (/„)|ị l u n -y’, 
It is clear that t-n is an eigenvalue of the pencil {A ,  13 +  A ,,} with the corresponding 
eigenvector .vn =  (in A -  B ) ~ xUn. This means that A n £  Vft. It is easy to see that. 
liin„ ^  IIA,,11 =  lim,,-*-* liG (fM)||_1 =  d('. i.e., d o  =  d R . Thus,

T h e o r e m  4 .4 . I f  the resolvent. G ( s )  has not maxim um  value on the right-hand half of  

complex pliUi then d c  — Drt-

E x a m p le  1. Com pute the stability radius of the system  A X ' ( t )  — D X (t .)  =  0 with

ịf i 0 ° i 1r - 2  1 0 \
0 1 0 1 - 1  1

\ 0 ! 1VO u - 1 /

It is seen that ind {A , B )  =  1; ơ (A , B )  =  { - 3 / 2  -  \ /5 /2 ;  “ 3 /2  H- \ /5 /2 }  and

/ 1 0 0 \ /
0 1 0 : ồ  =

\ 0 0 0 /

Thus is P -  M etlez. Moreover.

/ 0  0 0 \  / 1  0 0 \
Q(i4 -  BQ ) Ê =  I 0 1 0 >  0; P (A  -  B Q r 1 =  0 1 1 I >  0

\ 0  0 1 /  \ 0  0 1

Then G ( s )  >  0 for any £ >  0 and it attains the maximum at .So =  0 with

( l 1 l \
0 {  0) = 1  2 2 ; and ||G (0)|| =  5.

\ 0  0 \ j

Therefore. (In =  d c  — 1/5 =  ||A || where

0 1 /5  0
A  =  I 0 1 /5  0

0 1/5 0
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BÁN K ÍN H Ổ N  ĐỊNH Đ ố i  VỚI CÁC PHUƠNCi TRÌNH VI PH ÂN  ĐẠI s ố

Nguyẻn Hữu Dư 

Khoa Toán Cơ Tin học, ĐH Khoa học Tự  nhiên, ĐHQGỈỈN
Đào Thị Liên 

Khoa Toán, Đại học Sư phạm Thái Nguyên

T ro n g  b à i b á o  n à y  c h ú n g  tỏ i đề  c ậ p  đ ế n  v iệ c  t ín h  bán  k ín h  ổ n  đ ịn h  c h o  hệ đư ợc 

mỏ tá bới phương trình vi phán dại số có dạng A X ' ( t )  + B X ( t )  = 0, trong cỉó a,b là các 
m a trậ n  h ả n g  số. M ộ t  cô n g  ih ứ c  bấn  k ín h  ố n  đ ịn h  phứ c dà  đư ợc đư a ra  và sự k h á c  b iệ t 

giữa các trường hợp phương trình vi phân thường và phương trình vi phàn đại sổ cũng 
được c h i ra . C h ú n g  tô i c ũ n e  n g h iô n  cứ u  trư ờ n g  hợ p  đ ặ c  h iệ t m à  ờ  đ ó  bán  k ín h  ố n  đ ịn h  

thự c và và  phứ c  b à n g  nhau


