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Abstract. In this article, we deal with the problem of computing stability radii for
systems described by differential algebraic equations of the form AX'(t)+BX(t) = 0.
where A, B are constant matrices. A computable formula for complex radit 1s qiven
and the key difference between ODEs and DAEs cases is pointed out. A special case
where the real stability radii and complex one are equal is considered.
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Introduction.

1 the last decade, a large amount of works has been devoted to robustness measures
among them there is a powerful tool. namely the stability radius. which was introduced by
Hinrichsen and Pritchart (see [2]). It is defined as the smallest value p of the norm of real
or complex perturbations destabilizing the system. If complex perturbations are allowed.
p is called the complex stability radius. If only real perturbations are considered, the
real radius is obtained. A detailed analysis of the stability radius for ordinary differential
equations can be found in [2.,3.4].

In this article, we deal with the computation of stability radii of systems described
by a differential algebraic equation

AX'(t) - BX(t) =0, (1.1)

with constant matrices A and B. This problem has been well investigated for the case
of nonsingular matrix 4. when (1.1) turns into an explicit system of ordinary ditferential
equations (ODEs for short) X'(t) = M X(t), where the matrix M = A 'B. According to
the works in [2]. [3]... the stability radii can be characterized by the matrix M and it is
computed in principle. If the matrix A is singular. then the investigation of the index of
the pencil { A, B} is necessary but the situation becomes more complicated.

[t is known that in ODEs case, if the original equation (1.1) is stable, then by
continuity of spectrum, the stability radius is positive. However, this property is no longer
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Stability radii for differential algebraic equations i

valid in the case of ditferential algebraic equations (DAEs for short). The main reason is
that the structure of solutions of differential algebraic equations depends strongly on the
index of the pencil {A. B} and the solutions of (1.1) have some fixed components. Under
the perturbations. the index of the perturbed systems may be changed. that implies the
changing of the dimension of these fixed one and some of eigenvalues may be “disappeared”
which canses the stability radius of (1:1) perhaps to be equal to 0. Moreover. it is different
to ODEs case. i which we always are able to find a disturbance whose norm equals to
stability radius p and under which our system is unstable, such a matrix in DAEs case
niay not exist.

Therefore. to study stability radii of algebraic differential equations. one must pay
attention on the index of equation or the disturbances must having some special forms
that we call structured perturbations in order to exclude “violent factors™.

The article is organized as follows: In the next section, we study some basic prop-
erties of differential algebraic equations. Section 3 deals with a formula for computing
the stability radius of (1.1) where structured disturbances are considered. Section 4 is
concerned with a special class of the pencil of matrices { A, B} for which the complex and
real stability radii are equal.

2. Preliminary.

Consider the equation

AX'(t) - BX(t) =0, (2.1)

where X & R A and B are constant matrices in K" *" (K =C or K = R), det A = ()
the pencil of matrices {A, B} is supposed to be regular, index {A, B} =k > 1. It is known
that there exists a pair of nonsingular matrices W, T such that

A 4 Ir () — | . 7 Bl 0 . |
.4_‘1(0 U)T . B=W (0 Im_’_)T . (2.2)

SANS

where 7, s the unit matrix in A° Further B, € K'*", U is a k— nilpotent matrix

having the Jordan box form, i.e., U = diag(Jy, Jy, ..., J;) with

0 1. 0
Ji=10 0. 1]ekr (i=12,..1) (2.3)
0 0. 0

such that max; -, p, = k (see [5]). Multiplying both sides of (2.1) by W~ we obtain

Y'(t) — B,Y(t) =0, (2.4)
UZ'(t) - 2(t) =0, (2.5)

Yit)
Z(t)
it is easy to see that the equation UZ'(t) — Z(t) = 0 has only a unique solution Z = 0.
Thus. the above system is reduced to

where T 'X(t) = ( ) Y(t)ye KT, Z(t) € K™ ". Since U is a k— nilpotent matrix.
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where Y (t) € K", Z(t) e K™ ".

The trivial solution X = 0 of (2.1) is said to be asymptotically stable if there are
a certain projection P € L(K™) and positive constants o, ¢. such that the solution of the
initial value problem

AX'(t) - BX(t) =0,
P(X(0) — Xo) =0

IX(#)] < clllIXplle 't > 0 holds. In fact, if the index of
{A, B} = 1 we choose P = I — @Q where @ is the projection on ker A along S = {z ¢ ("
Bz e imA}.

We denote by a(C, D) the spectrum of the pencil {C', D}, i.e.. the set of all solutions
of the equation det(AC' - D) = 0. In case C' = [. we write simply o(D) for o([.D). It
is known that system (2.1) is asymptotically stable iff all finite eigenvalues of the pencil
{A, B} lie within the half left hand side of complex plan (see[5]). If o(A, B) = 0 then
(2.1) has only a unique solution X(¢) = 0. Indeed, o(A, B) = 0 implies that for any
s. det(sA - B) = det Wdet(sly_, — By)det(sU — I)det T~! = nonzero constant. Thus
d -k = 0. ie.. the equation (2.4) must be absent. Hence. (2.1) is equivalent to (2.5) which
has only a trivial solution X (t) = 0. In this case we also consider (2.1) is asymptotically
stable by choosing P = 0.

Is unigue and the estimate

3. Structured disturbances.

As is done in ODE's case. one fixes a pencil of matrices { A, B} to be stable: a pair
of matrices E € K™*P F ¢ K7™, and consider the disturbed system

AX'(t) - (B + EAF)X(t) =0, (3.1)
where A € K779 The matrix FAF is called structured disturbance. Denote by
Vi = {A e KP*: (3.1) is either irregular or unstable }

i.e.. Vi is the set of “bad” disturbance. Let dx = inf{||A]| : A € Vg }. We call di the
structured stability radius of the quadruple {A, B, E,F}. If K = C, we have complex
stability radius and if K = R we have real stability radius.

First. we investigate the complex stability radius of (2.1), i.e., K = (. Similar as
in ODEs. put G(s) = F(sA — B) 'E and we shall prove that

de = [sup [IG()I)™"-
We point out de > [sup,c+ [|G(s)]|] 7. Taking & € Ve, there are two cases:
a) The pencil of matrices {A, B + EAF} is regular. Then, we take a value s €
a{A. B + EAF) (it notes that o(A, B + EAF) # ) since A € V¢ ). Suppose that x # 0
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i5 its corresponding cigenvector, that is sAx — (B + EFAF)x = 0, or equivalently, @ =
-1 i o 2
(sA4 - B)  EAFr, which follows that

Fr = F(sA - B) '"EAFz = G(s)AFx

Hence.,
Al 2 G = [sup 1G]~
sr(
for all A« Voo which implies that de- > [sup e [|G(s)]]]

by The pencil of matrices {A. B+ EAF} is nn.';,ul‘n. then for any s ¢ (' it exists
a vector . # 0 such that sAr — (B + EAF)x = 0. By using a similar procedure we can
prove de- > [sup,, -« 1G(s)]]] 1.

We now prove the inverse relation de: < [sup e+ [|G(s)]]] 7. For any £ > 0. we find
sp € C'" such that ||G(sp)||7! < [.s'n;)h,(_(.+ HG(.E:)H]“l + £. Suppoae that v € C'7 such that
el = 1 and ||G(sp)u '(s0)]]. A corollary of Haln-Banach theorem follows that there
is a linear fnction y* defined on C? such that [|y*|| = 1 and y*"G(so)u = [|G(sy)ul| =
LG (so)ll- Put A = ||G(sp)|l~ tuy* € CP*4. It is clear that

AG(sy)u = [|G(s0)l|~"uy" G(so)u = [IG(s0) |~ ul|G(s0)]| =

Hence. ||A|] > (|G(sg)]| ™' On the other hand from A = ||G(so)|| 'uy" we have ||A] <
IG(so)l ' Therefore. [|Al] = ||G(so)||”". Further. since AG(sg)u = u. we obtain
EAG(so)u = Eu # 0. Let x = (s04A — B)"'Eu then (s9A — B)r = FEu which fol-
lows EAFr = (sgA — B)r or (s0A — B — EAF)r = 0. i.e.. s9 € 0(A. B + EAF). This
means that the system

AX'(t) - (B+ EAF)X(t) =0

is unstable. Therefore. A € V. Further,

de <11 = Geso) ™ < [sup 1G]

Because = is arbitrary then de < [sup,ces [|G(s)]|]7!. Thus,

dc—[?qHGsmrl

We note that the function G(s) is analytic on the half plan C* then by maxinnun
principle. it only attains maximum at s = oc or on ¢R. Thus

de- = [sup [|G(s)[]] "
s€1R

Following the above argument. we see that if there exists sy € C'* such that
HG(so)ll = [sup,.¢e |G (s)]]] then

de = ||G(so)l|” [mfﬂ IG(s)] "
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Moreover. if the matrix A is given by
] 1,
A =|F(soA-B) 'E|| uy

then A is “bad™ matrix with ||Al| = de.

However. the above argument does not allow us to compute a “bad™ matrix A whose
norm equals to dee as in ODEs case even we take the limit as s — ~x. We now show that
if |G{s)]] does not attain its maximum over half plane C™ then there is no matrix A such
that de- = A and the system AX' — (B + EAF)X = 0 is unstable. Suppose. in contrary.
there is such a matrix A. Let sg € 0(A, B+ EAF)NC*' and «» is its eigenvector. i.c.,
soAr — (B + EAF)x = 0 which implies that |A]] = [|G(so)]|™! > [supeee+ [|G(s0)]]] ' =
d¢. This is contradiction.

Moreover. for any sequence (s,) in Ct which maximizes ||G(s)]| at ~~ and A,
associated to s, is constructed as above (we can suppose that there exists lim,, ., A, =
A, if not we take a subsequence), then the system (AX' — (B + EAGF)X =0 is stable.
Since the set of matrices A such that the pencil of matrices {A. B + EAF'} has the index
L is open then the index of {A, B + EAGF} must bigger then 1.

We consider a special case where £ = F = [ (unstructured disturbances). As is
seen. the stability radius with unstructured disturbances is

de = [sup |G(s)]]]7,

sk

where G(s) = (sA — B)~'. We prove that if ind(A, B) = &k > 1 then the matrix function
(:(s) is unbounded on ¢ R. Indeed.

-1

Y . ol o -1 __ SIU' 0 B Bl 0 =1
Clal =fatt = B)= =T ( 0 sU) ( 0 I,,,",) >
p(ln )t e Y
0 (sU —1I)~!
: (‘{"Ir = Bl)“! 0 F—1
== T e N/ y
( 0 - Zf___ol (SU)' 4! =7 &g

as s — x. Therefore, in this case. d¢- = 0. This means that under a very small disturbance,
the DAEs with the index greater then 2 is no longer stable.

If ind(A, B) = L. it is easy to prove that ||G(s)]| is bounded on C'* | i.e., de: > 0 but
perhaps it does not exist any “bad” matrix A such that [[A]l = dc.

Summing up we obtain

Theorem 3.1. a) The complex stability radius of System (2.1) is given by
de = [sup ||G(s)]]] 71,
seiR
where, G(s) = F(sA - B)"'E.

b) There exists a “bad” matrix A such that |Al| = d¢ if and only if G(s) attains
its maximum over i R.



Stability radii for differential algebraic equations 21

c) In the case E = F = I, d¢- > 0 if and only if ind(A. B) = 1.

A question rises here: whenever the function ||G(s)|| attains its maximum at a finite
value s, We firstly remark that the answer depends strongly on the chosen norm of ¢
since | G{s) | has maxinnun values in one norm but has not in another one. To simplify
the sitnation. we solve the problem with A, B € R™ and with a Euclid norm in the set of
m < - matrices, that is if AJ = (m,,) is a m x m— matrix then [|[M|]? = ¥ |m,; 2. We
deal with the way to obtain the decomposition (2.2). First we decompose (A— B) 'A into
Jordan form by a nonsingular matrix S, that is (4 — B) " 'A = Sdiag(M,V)S~!. where
V7 is a nilpotent matrix of the form (2.3) and M is nonsingular. The matrix W and T in

(2.2) is given by
W = (A ~ B)Sdiag(M,I): T = Sdiag(1,(V — I)™!); U=VV-I)' (32

If G(s) is unbounded on C'. then de = 0 and there is no thing to say. The
assumption G(s) to be bounded implies that FT'diag(0, U)W ~'E =0 ¥j > 1. Thus

G(s) := FTdiag((s] — B)) ", (U - IN"YWW™'E = FTdiag((sI — B,)"'. -I)\W 'E.

Let f(s) = [[G(1/5)]|? if s # 0 and f(0) = lim,,~ [|G(1/5)||? (we remark that this
limit always exists), It is easy to see that f(s) = ||[FTdiag(s(I — sB,) ', ~)W 'E|.

Since all entries of the matrix ((s) are only rational functions which are analytic
then by the maximum principle, the maximum of G(s) takes place only at s = > or
s € i, Therefore, G(s) attains its maximum at s = oo iff f(s) has the maximum value
at s = 0 (of course we consider only s in C7). Thus, taking a ray ¢ = t-e, t > 0 where
¢ = (cosa.sina). = < a < 3, the attainment of maximum value at 0 of f(s) implies
that f'(0) < 0. for every e. It is easy to see that

L)

f1(0) = 2cosa [FTdiu.g((), -NW ]E] * [FTd?'.ag(I,O)W"lE] = 2coscC * D,

where (" = [FTdiag(0.~I)W-'E]: D = [FTdiag(I,0)W ~'E] and C * D denotes the
Frobenius inner product of two matrices C, D.
In using the expressions of W and T in (3.2) we obtain
C': = FTdiagl0, - 1)W 'E
= FTdiagi0,U(U - 1) ' = DW'E = FTdiag(0,V - I)HX/"’ LE
= FSdiag(l.(V - )" - diag(0,V — Idiag{M "}, )S™ (A - B) 'E
= FSdiag(0,1)S™"(A- B)"'E

and

D: = FTdiag(I,0)W 'E = FTW'E+C
= FSdiag(I.(V — I) V)diag(M~', )S " (A-B) 'E+C
= F[Sdiag({M,V - )S™'|""(A-B)"'E+C
= F((A - B)"'A - Sdiag(0,)S™'|""(A-B)'E+C
= F|A - (A — B)Sdiag(0,1)S™'|"'E + C
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Summing up, we have: if C'* D > 0 then G(s) has maximum at a finite value s. In
the case '+ D = 0 we can compute higher derivatives of f to obtain the answer but the
formula is complicated and we do not realize here.

Example 1. Let us calculate stability radius of the structured perturbed equation
A\ X'(t) - (B + EAF)X(t) = 0 where A is (llbtlll’])al“l(t, and

1 0 1 -2 -1 0. 1 1 1 I 00
A=10 1 1 B=]1-1 -1 0 FE=11 11 F=[01 0].
0 0 0 -1 B ~l 0 0 0 0 0 1

It is scen that nd (A, B) = 2 and 0(A, B) = - l‘ Therefore the pencil { A, B} is asymp-
totically stable. By a direct computation we obtain

3;;}11 3:«:+11 3{4 ]
G F(Sfl - E - 3:-0;1 31734-_1 3s !—1
T G- ves S v
Thus. [|G(s)| = 3 x1|ax{};;’+ll] |57/} which attains its maximum at s, = 0 and [|Z(0)]| =
1
3. Hence. d¢: = 1/3. Choose u = 1) then ||G(0)u|| = G(0) = 3. Let y* = (0 1 0), we
1
0 1/3 0
have A = [|G(0)|l buyt =1 0 1/3 0 |. Moreover, det(sA — B — EAF) = 2s = 0 for
0 1/3 0

s =0

, _ 9
Example 2. Let us consider the equation AX'(t) — BX (1) = 0 where A = ( 2‘ _"1)

and B = (}2 —02). It is seen that ind (A,B) = 1: ¢(A,B) = —-1. and G(s) =

(sA — B)-! = (5'/(;'/; 1) }ﬁ) Hence, [|G(s)|| = max{3/4,1/2 + |s/(s + 1)|} which
doesn't attain its maximum on C*. Further, lim; . [|G(s)|| = 3/2, i.e.. de = 2/3. 1If we
choose u = ((t a i)/l\/?“’+_1 , it is clear that ||ul| = 1 and ||G(s)u|| = [|G(s)|| when Rs
is large. Thus, with y* = (1 0), we have

~ | .f"l.,'_ v AQ 2/30 . vk Yy
A= |G(s)|| "wy = converges to (2/3 0) as s — 2.

It is easy to verify det(sA — B — A) = —8/3 for all s, Le., (A, —(B + A)) =0 and
the equation AX'(t) — (B + A)X(t) = 0 i.e., the system

-

5
—z| + 2y - 381+ 220 =0

4
22 — 4ah + 8 = 0
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has a nnique solution oy = 0:.r2 = 0 which is asymptotically stable.
4. The equality of real and complex stability radiis of DAEs

In this section. we are concerned with a special case where the complex stability
radius is equal to real stability radius. For DAEs. this is a difficult guestion becanse nnder
the action of the pencil of matrices { A, B}. the positive cone R is no longer invariant even
hoth A and B are positive. We are able to solve problem under a very strict hypothesis.
Suppose that 4. B« R0

A matrix H = (a, ) ¢ R™*™ is said to be positive if av;; = 0 for any /.. Denote
the absolute of the matrix M = (m,;) by [M| = (|m,;]) and of the vector » by |r] =

(Lo, ). We detine a partial order relation in R™*"" hy
MINsesM-NLO

Let ji( A B) be the abscissa spectrum of the pencil {A. B}. ie.. p(A. B) := max{RA: A €
a(A.B)}.
We consider the equation

AX(t) - BX(t) =0, (4.1)

where A. B are constant matrices in R"*™_ the pencil {A, B} is regular. If ind(A. B) > 1
then there is nothing to say because de- = dp = 0. So we suppose that ind(A. B) = | and
the following conditions are satisfied:

i) A =0 (4.2)
i) There exists a sequence (t,,): t,, > 0; t,, = x such that ({,A - B) I > () for all
". (4.3)

iii) The equation (4.1) is asymptotically stable.
We remark that the above conditions ensure a positive system on ODEs case.
Let us choose the monotonous norm in R, That is, if 2| < |y| then ||| < [yl

Lemma 4.1. Let the system (4.1) satisfies above conditions, then for all A such that
RA > j1(A, B). we have |(AA — B) 'z| < (RAA — B) '|z| for any « € R™.

Proof. Let us take an t, ¢, € R such that t > (A, B).and t, —t > p(A, B). Suppose
that A = t+iw, we have to prove that |[(t + iw)A — B]~ ].rl < (tA - B)"ll;z.‘l forall 2z € R™.
By simple calculation we have

(t+iw)A — B) ' = (tnA - B)' [ - (t, — t — iw)A(t,A - B)™"]
Putting G(t,) = (t,A - B) '. we obtain
[(t +iw)A = B)] ™! = G(tu)lI = (tn — t — iw)AG(t,)]
= G(t,,)i(t,, —t —iw)" (AG(t,))". (4.3)

n={)

The above series absolutely converges if we can prove that ||(t,, — t — iw)r(AG(t, )l < 1
where (M) denotes the spectrum radius of M.
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First. it is easy to see that limy, o (t, — [tn — 1 — iw|) = t. Therefore, for ¢ =
t — u{A.B) >0 we have t, — |t, —t —iw| >t — ¢ = pu(A, B) for t, sufficiently large. i.e..
t, - pulA.B) > |t, —t—iw|. On the other hand. by hypotheses i) and ii), AG(t,,) is positive
matrix. then by Perron-Frobenius theorem : r(AG(t,,)) = u(AG(t,)) € o(AG(1,)). This
means that det{r(AG(t,))] — AG(t,)] = 0. Hence.

det[r(AG(t,))I — AG(t,)] = 0 < det|(t, A - B) — A/r(AG(t,))] =0
& det|(t, — 1/r(AG(t,)))A — B] = 0.

Thus. t,, - ———'————) € o(A, B). Therefore, > t, — u(A, B). which implies |t,, —

AG(1,)
i —iw|r(AG(t,)) < 1. Hence, by (4.3)

1
,.(AC('I‘I ))

[((t + iw)A - B) l;r| £ Gt Z [tn — t — w)|" (AG(t,))" ||

n==A)

= Gt )T = |t ~ t — iWw|(AG(ty)) x| = [(tn = [t — t — iw])A - B]™ Y.
et #,, — x we obtain
[(t + iw)A - B] 'z| < (tA - B) '|z].

Lenuna L1 is proved. ¢

Lemma 4.2. G(t) = (tA - B) 1> 0 for any t > u(A, B). Moreover, G(t) is decreasing
on (pu(A, B),~x).

Proof. Let ty > u(A, B). By using Lemma 4.2 we see that |G(tg)| < G(Rty) = G(ty)
then G(ty) > 0.

The decreasing of G(t) on (u(A, B).oc) follows from the first part of the lemma and
the fact that for s.t > u(A, B) one has G(s) — G(t) = (t — s)G(s)AG(t). O

Because the function G(s) is analytic on half plane C* then it only attains maximum
al s = ~x or s € iR. Furthermore, monotonous norm is chosen then by Lemma 4.1 G(s)
attains the maximum on [0.oc). On the other hand, by Lemma 4.2, it follows that G(s)
has its maxinuum at t = 0. i.e., |[G(0)|] = max{||G()\)] : RA > 0} = |B~ |

From Perron - Frobenius theorem. there exists u > 0, |Jul| = 1 such that |G(0)u]| =
|G(0)]. By using once more Haln-Banach theorem for positive system there exists positive
linear functional y* satisfying ¢* (G(0)u) = ||G(0)u|| = |G(0)| and [y*| = 1. Let A =
NGO luy‘ > (). Following the way as above we can prove that A is “bad” matrix and
IAll = d¢-. Therefore,

Theorem 4.3. Suppose that the system (4.1) satisfies hypotheses i): ii) and iii) and a
monotonous norm in R™ is chosen, then the complex stability radius d¢ and the real
stability radius d g are equal and dr = (|| B~1)|| 1.

As is mentioned above, assuming the positivity of G(t,) for a sequence (,) is
strong and it is difficult to verify. We know give a sufficient condition to ensure the
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above hypotheses. Tt s said that the system (2.1) is positive if for any @y € R = {y =
(1 2ot ) g = OV = 1,200}, the solution X, with Xy = x. if it exists. satisfies
the condition X, > 0 for all t > 0. Let () be a projection on KerA then it is known that
(2.1) is equivalent to

X'-BX=0 0X=0. (1.1)
where. Q = QA - BQ) 'B:P=1-Qand B = P(A- BQ)™'B. We note that Q«lnu.
not depend on the choice of the projection @ and P(A BQ) = P( A - BQ)" ! which
inplies that B is inde ‘pencdent of the choice of Q. So it is scen that (2.1) is positive if and
only it P > 0 and B is a P— Metlez matrix, i.e.. all entrics of B are positive except for
entries h,_, \\nh pi; > 0. where P = (p:,). Indeed, from (4.4). the general solution of (2.1)
5 Xy = t‘Xp(f[}lﬁ.\'u. Thus. the positivity condition implies that P >0 (with t =0). On
the other hand. for 7 is small we have

0<exp(tB)P =P+ Z(} =P+tB+oft), a t—-x

which follows that if p,, = 0 then bu = (). Conversely. if B is a P— Metlez matrix then in

noting that Pisa projection which commute with B then for an « such that aP + B >0
we have

cxp(fﬁ)f’ = exp( - atP + t(ﬁ + u-ls))ﬁ = exp(matﬁ) exp(t(1§ + nﬁ))f’
5 (-xp(--ut)oxp(t(f? + w.ﬁ))f’ >0

\\t now suppose that tlw system (2.1) is positive. In adding conditions that P(A-
BQ)™' > 0and Q( BQ > () we can prove that G(t) = (tA-B)"! > 0 forany ¢t > 0
and ¢ l:u'g(». To verify this attestation we have only to remark that

-

(A-BQ) '(tA-B)=tP-(A-BQ)"'B=1tP+Q -
= (P +Q/0[tI - (P +tQ)B) = (P + Q/t)(t] - B)

-~

Thus.

II

G(t) = [(A - BQ) (tA- B)] (A-BQ)™' = [(P+Q/t)t] - B)] '(A - BQ)
(t1 - By "P(A - BQ) ' +t(tI — B)'Q(A - BQ) !

=(t- B)"'P(A- BQ) '+ Q(A - BQ)™ . (4.5)

Since B is a P~ Metlez then there is a toy such that (t — é) LP >0 for any t > ty.
Thus. under the hypotheses P(A - B(@)"l >0 and Q(A - B’@)‘l > 0. the relation (4.5)
tells that G(t) > 0 for t > ¢.

However. it is easy to give an example where the system is positive but the resolvent
(tA — B) ' is not positive. So far we do not know if the positive condition ensures the
equality of d¢- and dg. An answer of this problem is welcome.
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We consider the case where G(s) attains maximum at s = oc. From the relation
(4.5) we see that

lm [G(s) = lim | (G(0)] = 1Q(A - BQ) ™| = max |G(s)]].

sE("T s

where Q: B are given as in (4.4). Let (¢,) be a sequence in (0,oc) such that lim,, ,.t, =
~. For any n we choose u,, € R™ and y, with (y7)7 € R™ such that |ju,| = 1. lly}|| =
1: |Gt uall = IG(t )] and y* (G(t, ) un) = |G(t )unll asin §3. Let A, = ||G(t,)|  tu,-y:.
[t is clear that t,, is an eigenvalue of the pencil {A, B + A,} with the corresponding
cigenvector &, = (t,A — B) 'u,. This means that A, € Vg. It is easy to see that
lit, o~ 1AL = 1im, L |Gt 7! =dc. ie., de = dg. Thus,

Theorem 4.4. If the resolvent G(s) has not maximum value on the right-hand half of
complex plan then d¢ = Dp.

Example 1. Compute the stability radius of the system AX'(t) — BX(t) = 0 with

1 O 0 2 1 0
A=10 1 0 B = i =1 1
0 0 0 0 0 -1

It is seen that ind (4, B) = 1; 0(A, B) = {-3/2 - V/5/2; -3/2 4+ V/5/2} and

/1L 00 (-2 1 0
P={010}): B={1 -1 0
00 0 0 0 1

Thus B is 13- Metlez. Moreover,

- R 000 ~ ~ 1 00
QA-BQ)'=[0 1 0]>0, PA-BQ)'=(0 1 1]>0
0 0 1 0 0 1

Then G(s) > 0 for any t > 0 and it attains the maximum at sy = 0 with

1
@) = 1| 1 ; and ||G(0)] = 5.
0

(a3 SN
— b

Therefore, dp = de = 1/5 = ||A]| where

0 1/5 0
A=10 1/5 0
0 1/5 0
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TAP CHi KHOA HOC DHQGHN, Toan - Ly, t.XVIIL, n"1 - 2002

BAN KINH ON BINH POl VOI CAC PHUONG TRINH VI PHAN PAI SO
Nguyen Hitu Du
Khoa Toan Co Tin hoc, DH Khoa hoc T nhién, PHQGHN
bao Thi Lién
Khoa Toan, Dai hgc S pham Thar Nguyén

Trong bai bio nay ching t6i dé cap dén viéc tinh ban kinh 6n dinh cho hé duogc

mo ta boi phuong trinh vi phian dai s6 ¢6 dang AX'(t) + BX(t) = 0, trong d6 a,b la cic
ma tran hang s6. Mot cong thic ban kinh on dinh phic di duge dua ra va sy khac biét
gitta cdc truong hop phuong trinh vi phan thuong va phuong trinh vi phin dai s6 ciing
duge chi ra. Chiing toi ciing nghién cttu trudng hop dac biét ma ¢ do bdn kinh 6n dinh
thuc va va phitc bang nhau



