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Abstract: A theoretical approach to the optical bistability (OB) effect in single-

mode Fabry-Perot lasers containing saturable absorber (LSA) is presented on the

busts of the rate equations with allowance for spontaneous emission and spatial hole-
burning. Special attention is paid to the case of dominant inhomogeneous broadening

i both Lorventzian and Gaussian models. The influence of the main LSA param-

cters on OB occurrence conditions as well as on OB curves’ characteristics are

investigated in detaal,

Made to operate in two stable low and high output levels corresponding to the
unsaturated and strongly saturated states of the intracavity absorber, a laser containing
saturable absorber (LSA) may exhibit a hysteresis cycle of photon density versus laser
pumping power (see [1-4). for instance). This bistable operation results from the combined
effect of the saturable absorber and the feedback provided by the optical cavity itself. The
OB features are therefore dependent not only on the LSA parameters but on the cavity
seometry of LSA as well. Recently, in [5-7] has been performed a systematic analysis for
OB of dominant inhomogeneonsly broadened ring LSA. This paper is devoted to investigate
the OB hehavior of Fabry - Perot LSA when the inhomogeneous atomic linewidth greatly
exceeds the homogeneous one. Both Lorentzian and Gaussian laser pumping rate profiles
are taken into account in the rate equations with allowance for spontaneous emission and
spatial hole burning.

Our LSA model consists of a planar-mirror Fabry - Perot resonator of length L.
directed along the r-axis, containing the amplification and absorption cells with the same
length 1 at the coordinates a, and .y, respectively. Both amplifier and absorber are
considered as ensembles of two-level atoms whose atomic line-widths are assumed to be
of Lorentzian homogeneously broadened with the same half-width I'. The inhomogeneous
gain profile of half-width e centered at Qg is composed of a continuous distribution of
homogencous packets at frequencies w,. We consider the case where the cavity can sustain
only one mode of photon number n, with circular frequency Q; = am;ec/L (m; integer,
e velocity of light) at a detuning A; = {Q; — Qp|. For simplicity, we assume the cavity
losses y, in this mode to be constant. In the rate equation approximation, such a system
obeys the following equations:

dn - ! h
TH_]. = —x;n; + 2hB(n; + I)Zg(w,, - Qj)[N,'m - N.«’lbL (1.a)
H
1‘\'h
‘——d;‘—“ = Ry — [hBg(w, — Q5)n; + ‘7,,]N":u, (1.b)



2 Phung Quoc Bao, Dinh Van Hoang

(I: .
(“"'l’ = R,p — |hBg(w,, — )n; + ‘y,,]N:b (1.¢)

with h=3/4.
Here B is the Einstein coefficient and g(w,, — ;) can be generally represented by a
function of the form:
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Ny, = Nyui — Ny are effective population differences in both media with:
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(here ¢ stands for a or b).

Nya(r,t) and (e, t) are the densities of population differences between the atomice
upper and lower levels in both media. v, and 7, denote the relaxation rates of the upper
levels in the amplifying and absorbing atoms, respectively.

In the Lorentzian model. the laser pumping rate R
Ry can be expressed as follows:

ua With the pumping rate constant

€

R, = Ro—= 4)
- € + 4(w, — )2 (4
As for the Gaussian model. it can be written as:
4w, — )% In2 ) ; —_— .
R.. = GRpexp {— e 2”) with ¢ = vV«7ln2. (5)
€

The absorber-pumping rate R, is assumed to be constant.

The calculations in detail show that this rate equation approximation is easily justi-
fied in the case of steady-state operation near threshold when the photon munber in Fabry
- Perot LSA is not larger than 4.10'! .

Setting the time derivatives in Eqs.(1) equal to zero and evaluating the s over p
by the transformation given below [5]:
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we obtain the Lorentzian steady-state equation:
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and the Gaussian one;
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where Q, = —n, - )" mode intensity with 3 = 7,
¥
B Ry ,
gy = —— - laser pumping rate;
T X
¢ b ’ " e
£ = — - saturation coefhicient;
-)H
o = = - ratio of homogencous to inhomogeneons broadening;
(4
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7, = ——— - absorber pumping rate:
T X
3, —L _ detaining scaled to the inhomogeneous half-width.
€

W(z) - the error funetion of complex argument z - which is defined by [8]:

2y g : . . 2 42 _
W(z) = exp(-z7)erfe(—iz) with erfe(—iz) =1+ 7— e~V dt. (9)
T Jo
Slightly above the laser threshold. Egs. (7) and (8) can be approximated by a cubic
equation of the form:
0@} + Q7 + a2Q; + a3 = 0, (10)

where:

ag =h3[(1 + 2aa)(1 — 4()5.',2) + 81)5‘?]
ay =2h{|(1 + aa)(1 + &) + abaf(l - 46(53') + 8b6§(1 + &)} + ...

i %g{n,,!(l + 2ac)(1 — 4!)53) + 8653] — Gay}
ay = (A€ + aery)[(1 + ac)(1 — 4{)5?) + 8b53] — afGay
B \ a4 it o
a n?{n,,i(l ta)(1 — 4b67) + 8b37] — £Gag}
with @ = b = 1 for the Lorentzian pumping profile and a = 0.95,6 = —0.80 for the
Gaussian pumping profile.

The numerical analysis of Eq.(10) shows that at a given §,, for a appropriate control
parameter set (£ a,0,), the OB may occur in a certain range of laser pumping rate og
confined between oy, and ogy;. By definition, the OB curve’s characteristics are OB
onset value oq,,. OB width (the difference oga; — opm) and OB height (the LSA photon
intensity at ogay).

In resonance (9, = 0), for given values of (£a), no OB action is observed until
the absorber pumping rate reaches a minimum value ap,,. Increasing oy, the typical full-
shaped OB curve is shifted towards the higher laser pumping rates, at the same time it’s
size get larger. Just as o, goes beyond a critical value g, a portion of the OB lower branch
becomes negative, thus physically meaningless, and hence the OB curve is partly truncated
away. Further increasing oy, the truncated OB curve is always displaced towards higher
oo. the OB height grows continnously, but the effective OB width remains constant. The
resonant OB phase diagram divides the (€, ) parameter plan into three domains (from
left to right): mono-stable, bistable, and truncated bistable (Fig.1).
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Fig.1.Lorentzian OB phase diagram in resonance (4, = 0, solid lines,
in non-resonance (4; = 0.294, dotted lines)

In non-resonance (4, # 0), for given values of (£, a), there exist also the two critical
absorber pumping rates oy, and op,. However, the more the LSA is detuned, the smaller
the possible full-shaped OB parameter region a5 — 04,,. Moreover, as o), increases past
ou, the effective OB width diminishes quickly and vanishes at a certain value o444,
The OB action is off. The larger the detuning 4;, the more rapidly the effective OB
decreases. The non-reasonable OB phases diagram divides now the (€, «v) parameter plan
into four domains: monostable, bistable, truncated bistable and OB-off (Fig.1). Nearly
the same size in resonance, the Lorentzian OB parameter domains reduce more quickly
than the Gaussian ones by increasing the detuning é,. The OB width variations for a set
of values (£, @) in both resonant and non-resonant Gaussian LSA are depicted in Fig.2.
The Gaussian OB width is always smaller than the Lorentzian one of the same parameter
set.

100 150
ABSORBER PUMPING RATE

Fig.2.Lorentzian (solid lines) and Gaussian (dotted lines) OB width variations
for £ = 0.25,« = 0.016 at various detuning values
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To perform the linear stability analysis of the steady-state solutions n,, / "’j(,s and
.“\",’1'1,5 for an appropriate set of parameter values, we start with Egs.(1) and let:
) P ,—al, rh i rh o ) h . h ,— Al
”}“) = ”4/* f "¢ 3 "\;111(’) A,m.\' % ”L'U( Nph(f) o tbs + ’IHM : (]l)

Linearizing the obtained equations with respect to the assumedly real Huctuations
1)« Mpear s Mpebe W artive at a system of linear homogeneous algebraic equations. In order
that there exists a nontrivial solution, the associated determinant should vanish:

det(A + AI) =0 (12)
where T is the unity matrix and A- a matrix with the following elements:

aB(n;, + 1)

b
‘ : ' arl rh
an = —x, + 2B Y glwp Q)N — Nl e s @iz = —apy = 2 T2,
== -

ag = —BGN" . as = -Bgn . - ax;p =0

peast
R -
ayy = —BgN ), az =0; asy = - Bgn;s — &y,
here § is the average value within the frequency range of 2I" centered at ;. And this
furnishes an cquation for A:

. -, . R
A = A% + by X = by =10, (13)
by = arpamayy — ay1a22a33 — ay202103)
by = ayaaz2 + ayasy + azaaaz + aj2a3; — ajaan)

by = —(ay1 + az + asy).

According to the expanded Routh - Hurwitz theorem, all the real parts of the roots
A, of Eq.(13) are positive, that implies the corresponding steady-state solutions are stable,
provided that by > 0,byby — by > 0 and by > 0.

The stability of the resonant hysteresis curves is numerically checked with x, =
107271, B = 107% " and v = 108! [5]. Some results are displayed in Fig.3. The
point and plus (or @« for Gaussian curves) marks represent unstable and stable solutions.
respectively. The whole middle branch is always unstable, whereas the lower and upper
branches steadily exhibit the stability for every set of parameter values. This is not the
case in resonant ring LSA where there may exist an instability section on the OB upper
branch just after the turning point [7].

For given (£, a, ) in the bistable phase domain, the stability analysis of the non-
resonant steady-state solutions shows that there exists a certain detuning at which a
section of the OB upper branch, just after the turning point, becomes unstable. The more
the LSA is detuned. the more the instability section extends towards higher pumping rates
(Fig. 4). The critical detuning for (£ = 0.25,a = 0.16, 0, = 40) is about 0.075 and 0.148
in Lorentzian and Gaussian LSA| respectively. For the same set (€, @) as before, we fix at
4, = 0.176 and carry out the stability analysis of the truncated OB curves with various
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op. By increasing o,. the OB curves are more and more truncated but still remain the

same stability properties as in resonance (Fig. 5).
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Fig.3.Stability of resonant Lorentzian (+) and Gaussian (x) OB curves
for oy = 40 at various sets of ({/a)
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Fig.4.Stability of non-resonant Lorentzian (+) and Gaussian (x) OB curves
for € =0.25, ¢ = 0.016, 03, = 40 at various detuning values
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Fig.5.Stability of non-resonant truncated Lorentzian (+) and Gaussian (x) OB curves
for £ =0.25,a = 0.016 at various absorber pumping values
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We have presented a theoretical approach to OB behavior of single-mode Fabry -
Perot LSA with dominant Lorentzian/Gaussian inhomogeneous broadening in both res-
onance and nou-resonance cases. The control parameters conditions for OB occurrence
bhecome more strict as soon as LSA 1s detuned. Once OB occurred, one can enlarge the OB
curve's shape by choosing, small € and large «, a5, At high values of g, OB curves may
Lave a truncated form. The linear stability analysis in resonant LSA has shown two of
three steady state solutions are always stable and no instability on the OB upper branch
is observed. This gives rise to a full hysteresis loop of the photon density versus the laser
pumping rate. When the LSA is detuned by an amount large enough, there appears an
upper-branch instability section, which shightly reduces the calculated hysteresis loop. It
is worth noticing that in comparison with the Lorentzian model, the Gaussian LSA may
have a larger OB parameter region. a smaller OB onset value and higher control efficiency.
Furthermore, Gaussian hysteresis curves are more stable against accidental changes of the
LSA detuning. From the practical viewpoint, a Gaussian resonant LSA may be the most
favorable to OB operation as far as the used approximation holds.
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MOT CACH TIEP CAN LY THUYET VE HOAT PONG PON MODE
LUONG ON DINH CUA LASER FABRY - PEROT
CHUA CHAT HAP THU BAO HOA

Phung Quoc Bao, Pinh Van Hoang
Khoa Var Iy, Dai hoe Khoa hoc Tw nhién - DHQG Ha Néi

Bii bao trinh bay mot cich tiép can ly thuyét hiéu tng ludng 6n dinh quang hoc (OB)
trong laser Fabry - Perot don mode, chita chdt hap thu bao hoa (LSA) dua trén gan ding
phuong trinh té¢ do ¢6 tinh dén buc xa tr phdt va su tao hoc khong gian. Cac truong hop
md rong khong dong nhat dang Lorentz va dang Gauss duge dac biét cha y. Anh hudng
cua cac tham s6 LSA lén diéu kién xudt hién ciing nhu lén dac trung ctia dudng cong ludng
on dinh duoc nghién cttu chi tiét.



