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A bstract: A theoretical approach to the optical b istability ( O B )  effect in  single-  

mod ( Fabry- Perot lasers co n ta in in g  saturable absorber (LS A ) is  presented on the 
basis o f  the rate equations until allowance f o r  spontaneous e m is s io n  and spatial hole- 

bu rn ing . Special attention IS paid  to the case o f  dom in an t in h om ogcncous broadening  

in hoth L o trn iz ia n  and G a u ss ia n  models. The influence o f  the m a in  LS A  p a ra m ­

eters on O B  occM Tcncr c o n d it io n s  as well as on o n  c u r v e s '  ch a ra cterist ics  are  

invrstiyatf'd  in  detail.

M;ul<‘ to operate in two stable low and high output levels corresponding to the 
unsaturaĩod and strongly saturated states of the intracavity absorber, a laser containing 
saturablo nbsoilxT (LSA) mav exhibit a hysteresis cycle of photon density versus laser 
pumping power (see [1-4 . for instance). This bistable operation results from the* combined 
effect of th<* saturable absorber and the feedback provided by the optical cavity itself. The 
OB iratun'S ai'(‘ therefore (lepriiilrnt not only on the LSA parameters but on the cavity 
geometry of LSA as well. Recently, in [5-7] has been performed a systematic analysis for 
( )B of dominant inlioinogencouslv broadened ring LSA. This paper is devoted to investigate 
thf‘ OB hrhfivinr of Fabry - Perot LSA when the  inhomogcueous atomic linowidth greatly 
cxcrrds I hr homogeneous one. Both Lorentzian and Gaussian laser pumping rate profiles 
are takon into account in tilt* rate  (‘quations with allowance for spontaneous omission and 
spatial liolr hurtling.

Our LSA model consists of a pianar-mirror Fabry - Perot resonator of length L.  

(lin 'd t‘(i iiloiit» the ./-axis, containing tho amplification and absorption cells with the same 
length I fit th<* coordinates ./•„ and Xfo, n'spectively. Both amplifier arid absorber are 
consi< l<T(‘(l ns ensembles of Iwo-lrvrl atoms whose atomic linevw'idths aro assumed to he 
<)t Lorrntziiui honiogrnrously broadened with the same h a l f - w i d t h  r. The inhomogeneous 
gain profile' of half-width f centered at fîo is composed of a continuous distribution of 
homogeneous packets at frequencies . We consider the case where the cavity can sustain 
only our mode» of photon number 77, with circular frequency i i j  =  njii jC/L (nij integer, 
r  velocity of light.) at a detuning A j  — Ii l j  — Í2()|. For simplicity, we assume the cavity 
losses Xj in this mock' to hr constant. In the rate equation approximation, such a system 
obeys the following equations:

+  2hB(nj  +  1 ) J i / K  -  n , ) [ N ' ; a -  A ft], (l.a)

^  = R,ta -  \hBg{ư t ấ  -  Q j ) r i j  +  l a ) N ^ ( l b )
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< * K i
dt

- =  ỉĩ,,b -  \ h B g { u tl -  ũ 3) n 3 + 7fc]^b (1 G)

with ì i ~ 3/4.
Here I ỉ  is the Einstein coefficient and <j( — í ì j )  can ho. generally roprcsíMitrd hy ỉì 

function of thí* form:

s ' " '  -  =  P  Ị I K  -  (2)

Njlị — Nfti — N fii j  are effective population differences in both media with:

N
[ X'+2  
/  n

J*i-±
r, f)f/:r and A' d.r (3)

(here / stands for a or 6).
U fia iX jt)  and Tiv b(x, t)  are the densities of population differences between the atomic 

upper and lowor levels ill both media. 7 a and denote the relaxation rates of I hr upper 
levels in the amplifying and absorbing atoms, respectively.

In the Lorentzian model, the laser pumping rate R ^ a with the pumping rale* constant 
R q can be expressed as follows:

ĩỉụu — Rị) 2  . .

€2 -f 4(u>,4 -

As for the Gaussian model, it can be written as:

p , 4(0/̂  -  «o)a In 2= c? /?0 exp

(4)

with G' = V 7T In 2 (5)

The absorber-pumping rate R fli, is assumed to be constant.
The calculations in detail show that, this rate equation approximation is easily justi­

fied in the case of steady-state operation near threshold when the photon number in Fahi v 
- Perot LSA is not larger than 4.1011 .

Sorting the time derivatives in Eqs.(l) equal to zero and evaluat ing the sum OVCT // 
by the transformation .givon below

wo obtain the Lorentzian steady-state equation:

:ives in Eqs.(l) equal 
plow [5]:

£ ' < “■ > 4  Í Í

' j f n  «/•iti'.jf im i '

ỉ { ư ) d u> ((i)

c> -  ( Q + Ĩ )  \ ....... .......... g  --    _
V 1 ) y i  T hQAi + < » /T T 3 j+ i s ỵ i  - a ự m f j )I i ự n  i ,Q , / ị

=  0

and the Gaussian one:

(7)

Q j  ~  4 ( q .1 +
B

7
Gn0ReW{2Sj y/ng + ta y/( 1 + fiQj ) In 2) 

V/71 4- h Q j

<?b

s V l +
0.

(8)
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V V ỈH TC  Q j  i f  I '  I n i o í  Ị ỉ ‘ i n t e n s i t y  w i t h  7  —  7 a  :

Z j I S „ ...In { ) ------ - Uisrr pumping Mtr:
7 Vj

£ -  —  - sat unit io:i coefficient;
>

a — - inlio of homogeneous to ill homogeneous broadening;

ÍT/, — ------- —  - a b s o r b e r  p u m p i n g  r a t (>;

1 \ ./

(5. —- - detaining scaled to the inhomogeneous half-width.
f

U‘(,:) - the rrror iunction of complex argument z - which is defined by [8]:

W( z )  < * X | > (  z~)tjr f c ( —i z)  w i t h  er fc . (—iz )  =  1  H— 7= s  I  c" r (it.  ( 9 )
V  ̂ Vo

Slightly above tin* la.KiT threshold. Eqs. (7) and (8) can be approximated bv a cubic 
equat ion of t Ilf* form:

(loQ'j + n ỵQ 2j  +  n o Q j  +  a.i =  u, ( 10)

whore:

i/o //“[( 1 I 2 mv)(l — 4bS j) 4-8bỗ2ị]

(L\ ' 2 h { \ (  I mv)( 1 -f- £) 4- tt£a](l -  4òổj) *f 8ÒỔ̂ (1 4* £)} +  ...

••• + - y  W K  I + 2 aor)(l -  4bỗ?) +  Sbỗj} -  G ơ 0 } 

a2 (4£ + ri-rr/,)[( 1 +  ci(x)(l — 4 W j) +  86(5 ]̂ -  a£Gơo

íỉ;ị --<> — {<7/4(1 ỉ a a )(l — Abỗ2: )  -1- 8 bỗ'*] — £ G ơq}
1

with a I) - 1 for the L o m it/ ian  pumping profile and a  £3 0.95,6 % -0 .8 0  for the 
Gaussian pumping profile.

The nun»(*ri< al analysis of Eq.(10) shows that at a given Sj, for a appropriate control 
parameter set (£ ,o \ƠỊ,). the* OB may occur in a certain range of laser pumping rate Ơ0  

confined between ơ()Jìt and ƠQXỊ. By definition, the OB curve’s characteristics are ÜB 
onset value Ơ0mt OB width (the difference ƠQM — % n )  and OB height (the LSA photon 
intensity ai Ơ()A/).

Ill resonance' (Sj 0), for given values of (£<*), 1 1 0  OB action is observed until 
the absorber pumping ratr miches a minimum value (Tbm• Increasing ơ I,, the typical full- 
shaped OB curve is shifted towards the higher laser pumping rates, a t  the same time i t ’s 
size get larger. Just as ƠỊ, goes beyond a critical value ơbtĩ a portion of the OB lower branch 
becomes negative, thus physically meaningless, and hence the OB curve is partly truncated 
away. Further increasing ơf,, tho truncated OB curve is always displaced towards higher 
<70, the OB height grows continuously, hut the effective OB width remains constant. The 
resonant OB phiiso diagram divides the (£ ,a )  param eter plan into three domains (from 
left to right): mono-Stabl(\ bistable, and truncated bistable (Fig.l).

T h e o r e t i c a l  a p p r o a c h  t o  s i n g l e - m o d e  o p e r a t i o n  o f . . .  3
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Fig.  i.Lorentzian OB phase diagram in resonance (ỗj — 0, solid lines, 
in non-resonance (ỎJ =  0.294, dotted lines)

In non-resonance (ỎJ Ỷ  0), for given values of there exist also the two critical
absorber pumping rates ơỊ)rn and ơbt- However, the more the LSA is detuned, the smaller 
the possible full-shaped OB parameter region ơbt -  ơf)Tn. Moreover, as ƠỊ, increases past 
ơbt, the effective OB width diminishes quickly and vanishes at a certain value ơ b o Ị / • 

The OB action is off. The larger the detuning the more rapidly the effective OB 
decreases. The non-reasonable OB phases diagram divides now the (£,cv) parameter plan 
into four domains: monostable, bistable, truncated bistable and OB-off (F ig .l) . NVarly 
the same size in resonance, the Lorentzian OB parameter domains reduce more quickly 
than the Gaussian ones by increasing the detuning 6 j .  The OB width variations for a set 
of values (£,<*) in both resonant and non-resonant Gaussian LSA are depicted in Fig/2. 
The Gaussian OB width is always smaller than the Lorentzian one of the same parameter 
set.

F ig . 2 .Lorentzian (solid lines) and Gaussian (dotted lines) OB width variations 
for £ =  0.25, a =  0.016 at various detuning values
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To perform the linrar stability analysis of thế' steady-state solutions 'HisyNỊĩas ail<l 
N hihft for an Hpprc>Ị>riaK<*t of parairx'trr values, we s tart with Eqs.(l)  and l(‘t:

n , ụ )  -  I u N ' ; j t )  =  NỊ'lliS +  ,ìụưe ~ Xi N f; b(t) =  A%s +  . (11)

Linearizing the obtained equations with respect to the assumedly real fluctuations 
Vj ' fifta 1 7hih' w<‘ arrive' at a system of linear homogeneous algebraic equations. In order 
that there exists i\ nontrivial solution, the associated determinant should vanish:

(let(.4 f  X I )  =  0 (12)

where / is the unity matrix and A - a matrix with the following elements:

«11 “  -  \ j  1 2 h D  Y  -  i l j ) { N * a -  1\ % )  1s ; a 12 =  —Û13 =  ----- — y----- |.s

« 2 1  -  - B j i 7 V /'fJ.s ; « 2 2  -  —  B g r i j f t  -  7 ; « 2 3  -  0

«31 =  - M y t h s '  «32 =  0: rt-tt - - B g r i j s  - £ 7 ,

hrre 7/ is the average value within the frequency range of 2 r centered at fij. And this 
furnishes ail equation for À:

A* -  6 2 A2  + M  -  fc(, =  0, (13)

fro — «12^21 ttflH “  ^11^22^33 — ^12^21^31

ỏl — Qịọíìo2 + ^22^33 ^12^31 — Û 12^91

1)2 —  — ( o \ \  4- r; 22 +  <*33 ) •

According to the expanded Roulh - Hurwitz theorem, all the real parts of the roots 
A, of Eq.( 13) are positive, that, implies Ỉ he corresponding steady-state solutions are stable, 
provided that />0 > (),/>] 6.2 — b o > 0  and f>2 >  0 .

The stability of the resonant hysteresis curves is numerically chocked with XJ — 

10’ 2s ~ \ B  =  10 Vs 1 and 7  l()8.s“ 1 [5]. Some results are displayed in Fig.3. The
point and plus (or ./• for Gaussian curves) marks represent, unstable and stable solutions, 
respectively. The whole middle branch is always unstable, whereas the lower and upper 
branches steadily exhibit. the stability for every set of parameter values. This is not the 
case in resonant ring LSA where* there may exist an instability section on the OB upper 
branch just after the turning point [7].

For given Ị,) in th(‘ bistable phase domain, the stability analysis of the noil-
resonant steady-state solutions shows that there exists a certain detuning at which a 
section of the OB uppor branch, just after the turning point, becomes unstable. The more 
the LSA is det.mi(*cl. the more the instability section extends towards higher pumping rates 
(Fig. 4). The critical detuning for (£ =  0.25,a =  0.16,ơfe = 40) is about 0.075 and 0.148 
in Lorentzian and Gaussian LSA, respectively. For t he same set (£,<*) as before, we fix at 
Sj =  0.176 and carry out the stability analysis of the truncated OB curves with various
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ơ h. By increasing ơị,. the OB curves are more and more truncated hi It still remain the 
same stability properties as ill resonance (Fig. 5).
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Fifl. 5. St ability of resonant Lorentzian ( + ) and Gaussian (x) OB curves 
for <76 =  40 at various sets of (i/tt)

F i g . 4 -Stability of non-resonant. Lorentzian ( + ) and Gaussian (x) OB curves 
for £ =  0.25, a  = 0.016, CĨỊ, — 40 at various detuning values
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F i g . 5 .Stability of non-resonant truncated Lorentzian (+ ) and Gaussian (x) OB c urves 
for £ =  0.25,0: =  0.016 at various absorber pumping values
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We have presmird a theoretical approach to OB behavior of single-mode Fabrv - 
IVrot LSA with dominant Lorontzian/Gaussian in homogeneous broadening in both res­
onance and uon-rcsíniainv cases. Th<‘ control parameters conditions for OB occurrence 

more strict as soon as LSA is (let lined. Oner OB occurred, one can onlargr the OB 
curvr’s shcipr l>y ( lioosinji small £ and largo At high values of (7ị,. OB curves may
havo ri tnincnW'd lunn. The linear stability analysis ill resonant LSA has shown two of 
thi’CM* stoady stale solutions arc always stable and no instability on the OB upper branch 
is observed. This five's rise to a full hysteresis loop of the photon density versus the lasOr 
pumping rate*. When til»' LSA is (iotunrd by an amount large enough, there appears an 
u|>p<T-brandi instability soction, which slightly reduces the calculated hysteresis loop. Il 
is worth noticing (hat ill comparison with the Lorentzian model, the Gaussian LSA may 
havr a larger OB parameter region, a .smaller OB onset value and higher control efficiency. 
Furthermore, Gaussian hysteresis curves are more stable against accidental changes of the 
LSA detuning. From the practical viewpoint, a Gaussian resonant LSA may be the most 
favorable to OB operation as far as the used approximation holds.
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M ỘT C Á C H  TỈỂP CẬN LÝ TH U Y ẾT VỀ H OẠT Đ Ộ N G  Đ Ơ N  M ODE
LUỒNG ỔN ĐỊNH CỦA LASER FABRY - PEROT 

CHỨA CHẤT HẤP TH Ụ BẢO HOÀ

Phùng Q uốc Bảo, Đinh Vân Hoàng

Khoa Vậĩ  ly. D ạ i  học Khoa học T ự  nliiên - Đ H Q G  H à  N ộ i

Bài báo trình bày một cách tiếp cận lý thuyết hiệu ứng lưỡng ổn định quang học (OB)
trong laser Fabry - Perot đơn mode, chứa chất hấp thụ bâo hoà (LSA) dựa trẽn gần đúng
phương trình tốc độ có tính đến bức xạ tự phát và sự tạo hốc không gian. Các trường hợp 
mờ rộng không đồng nhất dạng Lorentz và dạng Cỉauss được đặc biệt chú ý. Anh hường 
của các tham số LSA lên điẽù kiện xuất hiện cũng như lên đặc trưng cùa đường cong lưỡng 
ổn định được nghiên cứu chi tiết.


