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Abstract: A new generalized XAFS cumulant theory has been developed based on
the anharmonic thevmal mbration between absorbing and backscattering ators in a
small atomic cluster. By taking into account the contributions of their immediate
neighbors to thes vibration the atomie distribution or structure 1s considered and a
new structural parameter has been derived which has the value 3 for fee and 5/3 for
bee erystals. Numerical ealculations for several fec and bee erystals have been caried
out. The good ayreement between theoretical and erperimental values denotes the
advantages of present new procedure for determination of thermodynamic properties

and structure of the crystals.
I. Introduction

X-ray Absorption Fine Structure (XAFS) becomes a powerful structural analysis
technique in which the XAFS functions provide information on atomic number of eacl
shell, and their Fourier transform magnitudes provide information on radius of atomic
shell [1]. But as the temperature increases the uncertainties can appear in the information
on the shell radius [2.3] and on the atomic number of the shell [4]. Moreover, still no exact
method for determination of atomic distribution has been formulated. To interpret the
uncertainties in the inforniation on shell radius and to fit the XAFS spectra the cumulant
expansion approach |1 has been developed according to which the XAFS functions contain
the cumulants.  Thercfore, to calculate high-temperature XAFS spectra the cumulant
caleulation procedure is necessary. In the efforts for cumulant caleulation the anharmonic
correlated Einstein model 51 has corrected some limitations of the anharmonic single
particle potential [6], of the anharmonic single bond potential [7], and of the full lattice
dynamical calculation [8], but it was applied only for fee [5] or for bee erystals [9].

This work is onr development of a generalized model to overcome both the above
mentioned uncetainties in the shell radius and in the atomic number of the shell. Our
derivation is based on guantum statistical theory for the anharmonic vibration between
absorbing and backscattering atoms in a small cluster. The obtained expressions of cu-
mulants are valid for low and high temperatures as well as for different structures which
are determined by a new structural parameter. By extracting this parameter from the
measured cumulants one can define the structure of the crystal. Numerical calculations
have been carried out for several fee and bee crystals showing a good agreement between

our theoretical resnlts and the experimental values.
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11. Theory

In this model we consider anharmonic vibration between absorbing and backscat-
tering atoms with contributions of their immediate neighbors so that their interaction is
characterized by an effective anharmonic potential:

1 2
Ueff(r)gikeffx?”rkgird S T=r-"7p, (1)

where r is spontantaneous bond length between absorbing and backscattering atoms, rg
is its equilibrium value, k.y is effective spring constant, and k3 is cubic anharmonicity
parameter which gives an asymmetry in the pair distribution function.

In present formalism our derivation is based on quantum statistical theory with
quasi-harmonic approximation, according to which the Hamiltonian of the system contains
a harmonic term with respect to the equilibrium at a given temperature and an anharmonic
perturbation [5]. Using the definition (7] y = = — a as the deviation from the equilibrium
value of x at temperature T and a(T") =< r — ry > as the net thermal expansion we
express Eq. (1) in the formn:

1
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The atoms in cluster are distributed according to the structure like fee, bee, hep,
of the substance. Considering the contributions of the immediate neighbors in this

cluster to the vibration between absorber and backscatterer as well as the calculated value
ky = —=5Da>/4 we derived the effective spring constant:

15
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and the anharmonic perturbation:
oU(y) = Da? ((S + 2)ay — %(Iy"‘,) . (4)

where D is the dissociation energy, and 1/a corresponds to the width of the potential.
They are parameters of the Morse pair potential:

u(z) = D(e™2%% — 2e"**)  D(-1 + a’z? — 2% + .. ). (5)

In this generalization a new parameter is derived and given by:
N
Z (RoiRo;)’,  R=R/|R], (6)

where Rm is unit vector directed from absorber to backscatterer, and the sum j is over
all N immediate neighbors of the absorber excluding the backscatterer. Determining S
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one can obtain the structure of the substance. Therefore, S is defined as a new structural
parameter.

In this approach we consider the local vibration, that is why, it is appropriate to
nse a Einstein model [5.7]. From the above quantities we derived the correlated Einstein

D 15 b MsMsg |
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frequency:

T 2
and the correlated Einstein temperature:
1/2
ha | D 15 .
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where M4 is mass of absorber, Mg is mass of backscatterer, and kg is Boltzmmann’s
constant.

The cnmulants are derived by averaging the value of y [5,7,10]. Atomic vibration is
quantized as phonon and anharmonicity is the result of phonon interaction. Therefore, to
evaluate the matrix elements we express y in terms of creation and annihilation operators,

y = ogla+at); oo = Vh/2pwg. (9)

Using oscillator state |n > as eigenstate with eigenvalue F,, = nhwg (ignoring the

aand a’.i. e..

zero-point energy for convenience) and the method of density matrix [10] we derived the
second cumulant or Debye-Waller factor:
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which by using y from Eq. (9) to calculate the matrix elements is changed into:
hw e 1+ 2 : ‘
a2 : z = e %%/T, (10)
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Evaluating the traces in the density matrix method. the remaining odd moments
are given by:
1 ¢ --E,,,"A-HT . (,- E_,:,r'kuT ’
<YY" >= — Z - < nldU{y)n" ><n'ly™n > . (11)
En = bn'

n,m

Using 0U from Eq. (4) and y from Eq. (9) to calculate the matrix elements in Eq.

(11) with taking into account the selection rule, and by setting < y >=< x —a >= 0, we
derived the first cumulant or net thermal expansion:

15hwg 142
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(12)

and the third cumulant:
@y _ S(hwg)® 1410z + 22
C8(S +2)3D%23 (1-2)2
The net thermal expansion describes an asymmetry of the atomic interaction po-
tential due to anharmonicity. Using its expression (12) we derived the thermal expansion
coefficient:

(13)

15"3025 z
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In order to define the behaviors of the above obtained thermodynamic quantities
in temperature dependence we derived them in the low temperature (77 — 0) and high
temperature (7" — oo) limits. The results are presented in Table L.

Table I. The values of ¢'”,0°,6" @, at low-temperature (7 — 0)

.

and high-temperature (77 — « ) limits.

Value 7 -0 T >
at 15he g (1+22)/[8(S +2)° Da) 15k T /[4(S +2)° Da]
o’ hwg(1+22)/[2(S +2)Da’] kpT/[(S+2)D «a)
o S(haorg)’ (1+122)/[8(S +2)’ D’a’) 15(kgT) /{2(S+2)' D&’
a, 15kgz(Inz) (14 22)/[4(S +2)* Dar] 15k 5 [4(S +2)’ Do)

Note that our new structural parameter (6) is contained in the expressions of cor-
related Einstein frequency, correlated Einstein temperature, first, second. and third cn-
mulants, as well as in the expression of thermal expansion coefficient at all temperatures.
Therefore, we can measure one of these quantities and extract the structural parameter S
from the measured values to define the structure of the crystal.

III. Numerical results and discussions

Now we apply the above theory to numerical calculations for some fee and bee
crystals and the results are compared with experimental data. The parameters D and o
were obtained using experimental values for the energy of sublimation, the compressibility,
and the lattice constant [11]. Based on structure of the crystals we calculated the structural
parameter S according to Eq. (6). It has the value § = 3 for fcc and § = 5/3 =
1.67 for bee. In Table IT we present the value of structural parameter S extracted from
experimental values of correlated Einstein temperature 6g of Cu [12], of Debye-Waller
factor a2 of Al [14], of third cumulant o' of Cu [13], and of thermal expansion coefficient
ar of W [15]. For evaluation of the accuracy of our new structural parameter § we also
present the value:

AS = |S(calc.) — S(expt.)|/S(calc.). (15)

Table II. The values of our calculated structural parameter S for fee, bee and
those extracted from measured quantities Q like OE, 02, o(3), oT, as well as AS.

Sample | fee bee Cu(0y) Al(c?) Cu(c™) Wiety)
T(K) any | any Any 600 295 2000
Q o 237K([12] | 0.0287A[14] | 0.00013A°[13] | 6.4x10°K'[15]
S 3 | 167 | 303 0.287 3018 1.632
AS | ooz | 002 0.006 0.020
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In The table 11 the gquantities Q are the measured values of Einstein temperature of
Cu(Cu(fg)). of Debve-Waller factor of Al(Al(a22)). of third cumulant of C'u(Cu(a'®?)).
and of thermal expansion coefficient of W(W (az)). The results show a high accuracy of
our new procedure for structural determination. Namely, the difference of our theoretical
structural parameter S for fee with those extracted from the measured Einstein tempera-
ture g of C'u [121 is only 1.2% and with those extracted from the measured Debye-Waller
factor o of Al at 600K [14) only 2.5% or with those extracted from the measured third
cumulant ' of Cu at 205K [13] only 0.6%. The difference of our theoretical structural
parameter S for bee with those extracted from the measured thermal expansion coefficient
of W at 2000K [15] is only 2%.

Figure 1 shows the temperature dependence of our caleulated first enmulant or net
thermal expansion of Ag in comparison with experimental values [13]. Figure 2 illustrates
the temperature dependence of our calculated second cumulant or Debye-Waller factor of
Al compared with the experimental results [14] as well as of Cu in comparison with the
measured data [16. Fignre 3 demonstrates the temperature dependence of our calculated
third cumulant of C'u in comparison with an experimental value [13]. All these Figures
show that the first. second and third cumulants contain zero-point contributions as quan-
tum effects, and our caleulated results agree well with those measured in the experiment.
Figure 4 illustrates the temperature dependence of our calculated thermal expansion co-
efficient of bee erystal W oin comparison with the experimental values [15]. Our results
agree with those measured in the experiment [15] and reflect the fundamental theory of
thermal expansion [10], .., the thermal expansion coefficient has the form of specific heat,
which approaches the constant value at high temperature as the Dulong-Petit rule and
approaches the zero at low temperatures according to the 7% rule.
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Fig. 1. Temperature dependence of our Fig. 2. Temperature dependence of our

calculated net thermal expansion calculated Debye-Waller factor o (A% of
ealculated Debye-Waller factor " (3) Al and Cu in comparison with their
of Ag 1n comparison with experimental experimental values [14,16].

values [13].
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Fig. 3. Temperature dependence of our Fig. 4. Temperature dependence of our
calculated third cumulant of Cu o¥ (4%  calculated thermal expansion coefficient
in comparison with experimental value ay (K-1) of W in comparison with
[13]. experimental values [15].

IV. Conclusions

In this work a generalized theory on XAFS cumulants has been developed based
on the quantum statistical theory and the anharmonic vibration between absorbing and
backscattering atoms in a small cluster. The obtained expressions are valid for low and
high temperatures and for different structures separated by a new structural parameter.

Our new structural parameter S is contained in the ‘exprpssion:r: of all thermody-
namic quantities and cumulants, that is why one can extract this parameter from the mea-
sured values like correlated Einstein frequency, correlated Einstein temperature, thermal
expansion quantities and cumulants to define the structure of the erystals. For example,
the substance has the fee structure, if S = 3, or bee structure if S = 5/3 = 1,67, ... This
theory is a further improvement of our model described in [17]. Discovery of the atomic
number and radius of atomic shell from the XAFS spectra leads to opening the structural
analysis XAFS technique, therefore, our discovery of the above new structural parameter
may give some contribution to this direction. .

Our derived expressions of cumulants contain zero-point contributions at low tem-
perature as the quantum effects (see Figures) and approach the classical behaviours, i. e..
oM 0% ~ T, and 0'® ~ T? (see Table I and Figures) at high temperatures.

Our derived thermal expansion coefficient has the form of specific heat, thus reflect-
ing the fundamental theory, i. e., it approaches the constant value as Dulong-Petit rule at
high temperature and approaches the zero as the T2 rule at low temperatures (see Table
I and Figure 4).

The good agreement between our theoretical results and the experimental values
denotes the advantages of present procedure in the determination of thermodynamic gquan-
tities and structure of the substances.
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TAP CHi KHOA HOC DHQGHN, Todn - Ly, T XVIII, S8 2 - 2002

LY THUYET TONG QUAT VE XAFS CUMULANT
VA MOT PHUONG PHAP MOI VE XAC DPINH CAU TRUC

Nguyén Van Hung
Khoa Ly, Dai hoc Khoa hoc Twe nhiéen - DHQG Ha Néi

Bai nay xay dung mot Iy thuyét tong quat méi vé XAFS cumulant dua trén dao dong
phi diéu hoa gilra nguyén tr hap thu va nguyén tr tan xa trong mot nhém nguyén wr. Qua
X€1 cac dong gop cua cac nguyén tr lan can vao dao dong trén, su phan bo cua cic nguyén
tr da duge tinh dén va mot tham s6 cau tric mdi da duge xay dung. NO ¢6 gid tri bang
3 doi vai cdu trice fee va 5/3 dot vai bee. Cac tinh s6 duoge thuce hién déi vai mot so tinh
thé fee va bee. Cac két qua thu dudge triing 16t véi cdc s6 liéu thue nghiém. Diéu dé khang
dinh cdc vu diém cua phuong phép trén trong tinh cdc tham s6 nhiét dong va xdc dinh cau
tric bang ky thuat XAFS (Cau tric tinh &€ cla hap thu tia X).



