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A NEW METHOD FOR SEPARATION OF RANDOM NOISE
FROM CAPACITANCE SIGNAL IN DLTS MEASUREMENT

Hoang Nam Nhat, Pham Quoc Trieu
Department of Physics, College of Science - VNU

Abstract. We introduce a new statistical method for separation of random noise
from capacitance signal in DLTS measurement. For the interference of a white
random noise £ with capacitance signals C(t) of general exponential form Cye™ ",
we show that noise £ and emission factor € are statistically different and can be well
separated each from other. Theoretical formalism for reconstruction of nose-free
capacitance signals based on determination of emission factor is presented. The
method has been tested for various signal-to-noise ratios from 1000 down to 10.
Simulation and examples are given.

Abbreviations

T temperature

t time

C',(t) normalized capacitance at certain fixed T

L(t) Ln(C,,) e.g. natural logarithm of normalized capacitance at fixed T
p(€) density probability of random variable §

P(¢) cumulative probability of random variable £

¢, emission factor of a deep center 2

E, activation energy of a deep center 1

w; ratio E,/k between E; and Boltzmann constant k for a deep center ¢
Definition of terms

1. We will work with a so-called normalized capacitance C,, at certain temperature
T defined as Cyn(t) = Cy' x [C(t) — C1], where Cy is C(t) at t = 0 and C) is C(t) at
t = o00. For 0 < t < 00,y (t) always specifies relation 0 < C,(t) < 1 | this means that
Ln(C,) has definite and negative value within this range. Taking Ln on Ln/C,) is not
possible but Ln|—Ln(C,)] has definite values.

2. The average value of a variable x defined on the probability distribution p(§) of
a random variable £ wili be denoted by < x >¢ . Practically we will consider the average
values of X = Exp(—FE/kT) and Ln(X) according to probability distribution of emission
factor p(e). Generally, the small p — s denotes density function where the capital P — s
means cumulative probability.

3. A random noise with uniform probability distribution in whole range of frequen-
cies is called white random noise. White random noise in restricted area of frequencies
will be called white gaussian noise if possessing Gaussian distribution.
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I. Introduction

The ocenrrence of noise always disturbs the signals and lowers the quality of mea-
sureinent or even makes it impossible. In a fine-tuned measurement system like DLTS the
occurrence of noise is extremely eritical for many important cases. Doolittle & Rohatgi
have tested the functionality of varions techniques when noise interferes and there have
observed that all technignes failed except for lock-in [1]. In gencral there are two kinds of
noise resonrce: i) equipment precision threshold ability which produces noise in form of
either temperature or freguency micro-fluctnation and ii) white random noise which pro-
duces constant additive ontputs to the signal at all temnperatures and frequencies. While
the first kind of noise always disturbs signal exponentially, i.e. the measure of disturbance
grows exponentially with increased time or temperature variable, the white random noise
is statistically independent to the signal. In this paper we will focus on this kind of noise.
There are many techuigues how to filter the random noise. probably the most popular
one is lock-in. In general these techniques may be considered as the correlation averaging
techniques which rely on the correlation between input and output and/or the averaging
of signal over preset time period (2], They major disadvantage is that the smooth local
structure of signal within the preset time is usually removed together with the averaging
process so no information is then available for examination of close-spaced states. Obvi-
onsly, the peak structure of any correlation integral of signal is more widened and more
smoothened than of the signal itself. Thus when the close-spaced deep levels oceur (and
their DLTS finger prints overlap) the correlation averaging techniques usnally lead to the
average value, not to the real ones. In this paper we discuss a new method for recovering
signal from noise while preserving the signal original structure. The method is based on
the differences in statistical behaviors of signal and noise and is able to separate them in
heavy noisy environment due to their characteristic signatures. The mathematical concept
is discussed in section I and in section I we introduce the full automated computer-based
procedure for reconstructing emission factor and thus the capacitance signal. The applica-
bility of this procednre 1= illustrated by simulation for sample with two preset close-spaced
deep levels and then tested in measurement with SiAu sample.

II. Statistical theory of interference of random white noise and exponential
signal

a) Statistics of emission factor p(e) in absence of noise

At each time 1 and fixed temperature T, the average value of emission factor € is
given by: < ¢ >= )" pi(e)e, where p;(€) is a statistical weight for emission factor i. To
determine the density probability function p(e) we perform the calculation for all measured
i

{Lni(,',,(l)'l’!tj}t = g =< ED . (a.1)

With respect to this distribution C,, reads:

Cn =Expl- <e>t] = Exp{—th,(e)fJ = ILExp[—tp:(e)e].
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Denote C; = Exp[—tpi(¢)e;] we have the emission law for the close-spaced deep centers:
Cn = Hzci (d'l)
C; may be refereed to as the partial capacitance of deep center 7 in statistical distribution
ple).
b) Statistics of activation energy p(F) in absence of noise

Define X; = Exp(—FE;/kT) with E; is activation energy of deep center .. We have
Ln(X,) = —E;/kT. Giving any probability distribution p(n), the averages < Ln(X) >,
and — < E >, /kT must be identical. To determine the density probability function p(n)
we perform the calculation for all measured ¢ (with respect to that € = pT?Exp(—E/kT’)
where p is a constant):

{n = Ln[-t"'T"2LnC,(t)]}: = {Ln(p) — E/kT}:. (b.1)

As seen, p(n) does not reveal < E >, directly but < Ln(p) — E/KT >, In case Ln(p)
holds fixed we may suppose that:

< Ln(p) — E/kT >,= Ln(p)- < E/kT >,= Ln(p)— < E >, [kT. (b.2)

As consequence p(E) = p(n). However, statistics (b.1) always produces < Ln(p) -
E/kT >, not < E >, in general,

c) Relation between p(e) and p(E)

Suppose that (h.2) holds e.g. p(F) = p(n). In term of < E >, the average
< LnX >, reads:

< InX >,=— < E>, [kT = =) pi(E)E./kT. (c.1)

Emission factor becomes < € >, = pT?Exp(< LnX >,). While in term of < X >, <
e >= Y pe)e; = pT? Y. pi(e) X, = pT? < X >, . Comparing these two relations leads
to:

In< X >g=<ILnX >,. (c.2)

We use this relation to check how much p(e) and p(FE) differ each from other. If they
differ too much then the relation (b.2) may not hold for the case under investigation. The
physical meaning of (b.2) is that the noise effecting activation energy does not influence
Jevel concentration and capture cross-section, that is to say, E and Ln(p) are statistically
independent.

d) Statistics of emission factor p(¢) in occurrence of white random noise

With existence of a random white noise, capacitance signal has the form:

Cn = Noise+Exp[— < € > . (d.1)
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Re-write O, to:
', = Exp[— < ¢ > t](1 + Noise/Exp|— < ¢ > t})
and put:
Noise = kExp{— < € > t|Exp[-£t], (d.2)
where s is constant and £ is a random variable. We have (', as:

(', = Expl— < ¢ > t}{1 + kExp{-£t]).

Denote C, = Expl— < ¢ > 1], C¢ = (1 + kExp[=£t]) and Cg,, = (Ce = 1)/k :

-

Cp = CeCp orC + 1 = C(1 + kCep). (.3)
This means that the capacitance transient in —
occurrence of noise follows relation (a.2) for z h
close-spaced deep centers, e.g. random noise ooy
behaves as if it is a deep center. This would %
not be true if £ does not have density prob-
ability similar to U,, . Fortunately. for ar-
bitrary positive noise level Noise] equation
(d.2) always has solution £ = Ln(Noise/x) /1
~ < ¢ >. If [Noise! is a random noise with o
uniform density, than € has density proba- OO OACO00 0000
bility of Ln(Noise/x) "'~ < ¢ > which is tfa.u.]
practically the same as ('), . (See Fig.1) Fig. 1. Density probability p() of £=Ln
Clearly, for all measured t the statistics p(e): (Noise/K) V' - <g>
{Ln(Cn) Y'Yy = {— <> +ech, (d.4)

where ¢ = {Ln(1 + sExp{—£t]) '/} will re-
veal average value of {— < ¢ > +¢.} which

differs generally from (a.1). Fig.2 shows p(e)

for 3 different T. As seen, while at the middle Middle T

p.(s) [au]

£

T the real ¢ peak is high and proportional to
the noise peak ec . at the high 7" the real e
peak is much smaller than the noise peak €.

The side-effect of e¢ is that it widdens
the width of a delta-like (a.1) peak with the
amount proportional to < ¢ >. One may :
expect that if < € > and €, are absolutely ad- ¢ fau]
ditive than the distribution spectrum of (d.4)
will contain only one smooth Gaussian peak.

Fig.2. Spectrum {Ln(C)"", at
various temperature T. Noise=2%
However Fig.3 shows two different areas, one of C,, unit.

corresponds to < € > and the other to €.

This separation is true with two exceptions, the first occurs at low T when C, is practically
equal 1 and the second occurs at high T when €, is near 0. In both cases, noise becomes
so dominating that spectrum {Ln(C, )"/}, contains only values of {e¢}:.
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e) Temperature dependence of signal-
noise separation in {Ln(C, ) "'}, spec-
trum

There exists a threshold temperature
T...: where < € > is small enough and can not
be distinguished from €. Let o2 and n'f be
variance of < € > and < € >, the criteria for
threshold temperature 7., is that at T
the displacement < € > — < € > becomes
proportional to (07 — ¢7)/2. This relation
is used to filter-off the noise where no signal
structure is seen:.

(<e>— < &>

() [a_-U-]

€ [a.u]

Fig. 3. The exitstence of two different
area for <¢> and ¢; at noise level 5%,
10% and 20% of C,_ unit

-

= 5
s — o}

III. Simulation and measurement

{e.1)

[N

a) Procedure for the reconstruction of noise-free capacitance signal

Data in the capacitance transient measurement are usually collected at preset tem-

perature T° when the emission factor € can be considered as constant. To obtain the

statistical characteristics of € we should measure C,(t) as dense as possible. However

the number of several hundreds data is adequate and 1000 recorded data provide quite

satisfied results on simulation.

At the first step a logic circuit should be
available to transform C, (t) into Ln|C, () 1/!]
and then into Ln[—t"'T2LnC,(t)]. This is
easy with computer. The statistics ple) is ob-
tained after recording all Ln|C}, (t) /] and sim-
ilarly p(n) by all Ln|—t"1T"2LnC,(t)]. Two
statistics are then checked against each other
using relation (c.2) to see if p(E) can be set
equal to p(n). If p(E) = p(n) holds we have
a simple case of one noise-free center, other-
wise overlapped centers occur and noise should
be filtered. A numeric calculation of deriva-
tion [dp(e)/de] should provide peak value €.y
of p(e). As noted before, we have two ditfer-
ent cases: i) at the extremely low and high end
T there is only one e; peak. This noise-driven

exponentially-distributed peak should be removed

Calt)

Fig. 4. (a) Un-filtered signal C,(t);
(b) C,.(t). reconstructed by ¢,
(c) C, (1), obtained using lock-in;
(d) C,(t); reconstructed by &.
Noise = 2% of C, unit
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since it does not correspond to signals and contains no information about emission factor;
i} at the middle range T there are two peak values, one corresponds to emission factor
e and the second refers 10 e.. They can be distinguished easily since p(e) is a delta-like
Ganssian symmetrical distribution while p(eg) is a wide-spread asymmetrical exponential
one. Some statistical tests exist to help to automate the selection process.

Normally when measurement is kept in

a reasonable T range. the first case should not

occur and we should only observe the change

Bl )
B~ i
—

)

in peak height for ¢, and ¢z when T varies.
With 7T increased peak ¢,,.« also grows and

height ratio €/e¢ reaches maximum at certain

E R
R

T. The height ratio ¢ /e is proportional to
signal-to-noise ratio at preset T, If T' grows
further, noise-driven ¢ becomes higher and
may grow faster than ;... At extreme T
noise may even dominate over signal. This is

due to the fact that at extreme high 7' the | - ;
C'.(t) is practically zeroed and we measure T [K]

only noise. On simulation we have observed

that the signal is still separable from noise : ) _ )

e l Fig. 5. DLTS finger-prints obtained from
(a) C,(t); and (b) C,(t);. The first

discovers the real center and the second

shows the false ones. Noise=2% of C
stead of real value e, Once €., 18 col- unit

at noise level 10-times higher than the sig-
nal. By averaging techrique one would ob-

tain false average at (e,axt+ < € >)/2 in-

lected for each T, the noise-free capacitance
curve (7, (t) can be reconstructed. Fig.4 com-
pares C (1) reconstructed by €, and the
capacitance signal obtained by lock-in. Fig.5

L
shows DLTS finger-prints obtained using €', (t), g #
and C,(t)¢. Clearly, noise participates as a @ &
set of emission centers. L ? ‘i
Q ..{0 '1
. - . p 'l
b) Simulation for sample with two «,QG',i ’ '

close-spaced deep levels

The above procedure has been tested
on simulation for a sample with two preset
close-spaced deep levels at 0.30 eV and 0.38

eV. Capture-cross sections have been set at .’—r——Mq—-c«q-—-,

1.0 x 107 ¥em? and 2.0 x 107 %em?, respec-

tively. Both level concentrations were 0.1 x Hist

107 e >, Constant random noise at 2%,

3% and 5% of signal maximum was added to Fig. 6. DLTS spectra obtained using (a)
output. Then the output was filtered-off a) lock-in filtered signal and (b) p(e) filtered

using lock-in and b) using p(e) statistics. signal
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Level analysis was carried out using the classical Lang’s DLTS scheme [3] for two cases:
a) filtered by lock-in; b) filtered by p(¢). Fig.6 shows the resulting DLTS spectia for these
cases at noise 2%. As seen p(e)-filtered signal reveals the two preset close-spaced levels
while the lock-in filtered signal sees only their average at 0.34 eV. As noise increases the
spectrum of un-filtered signal becomes unstable and failed to provide meaningful result.

¢) Measurement with SiAu sample

The measurement was carried on SiAu & o - )
i ] ; = O Un-filtered signal
sample. This sample has been investigated 5 o X5} filtered signal &
s R .6}
by Fourier DLTS [4] on BIO-RAD’s DLTS aef %ﬁ
equipment at Center for Materials Science, { S
Faculty of Physics, Hanoi University of Sci- .4t o lrj;’
. . ]
ence and 3 different levels were shown. The o dp
. . ' . 1 el (e J
re-examination of the widdening of p(¢) peak " S 3o =
- i .2t - . .
has reveal the interference of a constant white : %o . ‘;:.
. . . L]
random noise at 1.2% of maximal signal. Af- s l
L]
ter filtering off noise the reconstructed noise- 8.8 *ee '
free data was used for Fourier calculation and e B ]
. Ty 5 108 260 388
the resulting bl coefficient is plotted in Fig.7. 11K]
As seen there are at least 2 more levels. All Fig. 7. Temperature dependence of
of them are close-spaced to the existing ones fourier coeficient bl for (a) unfiltered
and did not appear in the original Fourier signal and (b) p(¢) filtered signal

calculation using un-filtered signal.
IV. Conclusion

The method is efficient to recover signals from noise in heavy noisy environment
when signal-to-noise ratio drops below 10. Unlike averaging techniques, which take av-
erages of signals and noise over certain time period and usually remove the local smooth
structure of signals within this period, the present method is able to separate signals di-
rectly from noise due to the difference in their statistical behaviours. The method can
reveal the real values of signals while reserving the signal original smooth structure, which
is significantly important for obtaining the information about the existence of close-spaced
deep levels. Some moderm method like Laplace DLTS [5, 6] is extremely sensible for noise
so the reconstructed noise-free data would be helpful to reduce instability of such methods.
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TAP CHI KHOA HOC DHQGHN, Toan - Ly, T.XVIII, S& 2 - 2002

MOT PHUONG PHAP MOI TACH NHIEU
TU TIN HIEU PHO QUA BO TAM SAU
Hoang Nam Nhat, Pham Quoc Triéu
Khoa Ly, Pai hoc Khoa hoc Tie nhién - DHQG Ha Noi

Bai bdo nay gidi thicu mot phuong phéap thong ké dé tach nhiéu ngdu nhién tir tin
hiéu dién dung trong phép do phé qua dé cac tam sau (DLTS). Dé tach biét nhiéu ngiu
nhién £ véi tin hiéu dién dung ¢(¢) dang ham mi Cge ™', cdc tac gia da chi ra nhiéu £ va
hé s6 phét xa ¢ la c6 thé tach biét. Phuong phéap nay da dugc thir cho cac ty s6 tin hiéu
trén tap khac nhau tr 1000 dén 10. Su mo phong va céc vi du da duge chi ra.



