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Introduction

Let R be any ring and M = @, ;M1 be a direct sum of uniform right R- submodules
M;,2 € I. We are interested in the question, when this module M is extendible. If the
index set [ is finite, this question has been studied by Harmanci and Smith [6]. In deed,
Harmanci and Smith have shown that if M = &7, M,, then M is extendible if and only
if every direct summand of M with uniform dimension 2 is an extending module, where
each M, is uniform, [6, Theorem 3.

In the first part of this paper we give some conditions for M to be extendible,
where the index set I is not necessarily finite. We show that a module over an arbitrary
ring is extendible if it has (1 — ;) and every local direct summand is a direct summand.
Moreover, properties of extending modules have been obtained.

In the last part of the paper the results have been applied to characterize quasi-
Frobenius rings and rings whose projective right modules are extendible.

2. Preliminaries

Throughout this paper all rings R are associative rings with identity and all R-
modules are unitary right R- modules.

We consider the following conditions on a module M:

(Cy) Every submodule of M is essential in a direct summand of M.

(C2) Every submodule isomorphic to a direct summand of M is itself a direct
summand of M. .

(1 = C}) Every uniform submodule of M is essential in a diract summand of M.

A module M is called continuousif it satisfies conditions (C) and (C»), U-continuous
if it satisfies (C3) and (1 - C}).

A module M is said to be an extending module if it satisfies condition (C'}), and
M is said to have the extending property of uniform submodule if it satisfies condition
(L==0y).

A submodule N of a module M is closed in M, if it has no proper essential extensions

in M. It is easy to check that”M is an extending module if and only if every closed
submodule of M is a direct summand of M.
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A module M s said to have finite uniform dimension if M does not contain an
ifinite direct sum non-zero submodule.

A ring It s called Quasi - Frobenius (briefly QF) if R is right artinian and right
self - injective, Tt is know that a ring R 18 QF if every projective @ - module is injective
it every injective 17 - modnle is projective (See [4, Theorem 24.20]).

A ring R is called a erght H — ring |8, Theorem I, if it satisties one of the following
equivalent conditions:

1) Every injective R+ modnle is a lifting module.

2) R ois right artinian in which every non- small R- module contains a non-zero
injective submodule,

3) Ris right perfect and the family of all injective R- modules is closed under taking
small covers, Le for any exact sequence P Ly E = 0 where E is injective and kerf s small
in £, P is injective.

1) Every R- module is expressed as a direct sum of an injective module and a smali
modile.

Dually a ring R is called a right co— H ring [8. Theorem 11} if it satisfies one of
the following equivalent conditions:

1) Every projective R-module is an extending module.

2) R satisties ace on right annihilator ideals and every non-cosmall R-module con-
tains a non-zero projective direct summmnand.

3) The family of all projective R- modules is closed under taking essential extensions.

1) Every R- module is expressed as a direet sim of a projective module and a
singular module,

For a submoduale X of M, X €% M means that X in an essential submodule of M.
The injective hull of a modiule A will be denoted by E(M).

Let M = b, /M, be o direet s of modules M,, 2 € I and let J be a subset of I,
then we put M(J) = &, 4 M,.

3. Direct sums of uniform modules

Lemma 1. ([2, Proposition 2.2] or [6, Lemma 1). Let M be any module and K C L be
submaodules of M such that K is closed in L. and L is closed in M. Then K is a closed
submodnule of M.

The following result is obvious.
Lemma 2. Let M have (1 — ('y). Then every direct summand of M also has (1 — Cy).

Lemma 3. Let M - &, M, be a direct sum of uniform modules M,;,i € 1. Then any
non-zero sunimodule of M contains a uniform submodule.

Proof. Let A be a non-zero submodule of M. Then there exists a subset J of I which is
maximal with respect to AN M(J) = 0.
Consider & € I ~_J and let 11, be the projection

“;; 3 .‘\fk & .‘“]) ==y J‘Ik.
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Let Ay = AN(M;®M(J)). By the choice of J, Ay is non- zero. Since A,NM(J) = 0,
we have ‘
Ak = Ik (Ax) C M.

Therefore Ax is a uniform submodule of A.

Lemma 4. Let M be a module with (1 — C,) and X & U be a closed submodule of M,
where X is a direct summand of M and U is a uniform submodule of M. Then X & U is
a direct summand of M.

Proof. Let M = X @& M, for some submodule M; of M and I : M — M; be the projection.
Now let U be a uniform submodule of M with U N X = 0. Let V be a maximal essential
extension of I1(U) in M;. Since U = [I(U}, V is uniform. By Lemma 2, M, has (1 - ().
Consequently V is a direct summand of M;. Thus V is a direct summand of M. Moreover,
it is easy to check that

XeUcCcH (VM) CXeV.

Since V is uniform, we obtain X U C* X @ V. It follows that X @&V and so X U
is a direct summand of M. O

Corollary 5. Let M be a module with (1—C,). If M has finite uniform dimension, then
M is a finite direct sum of uniform submodules.

Proposition 6. Let M be a module with (1 — Cy) and A be a closed submodule of M.
If A has finite uniform dimension then A is a direct summand of M.

Proof. By Lemma 1, A has (1 — C,). Hence, by Corollary 5, A has a direct sum decom-
position

AIAl@"'@Ans

where each A, is uniform. By induction on n and by using Lemma 4, we can show that
A=(A1® - B A,_1)D A, is a direct summand of M.

Corollary 7. (see [7, Proposition 3]). Let M be a module with (1 — Cy), then every
closed submodule of the form ®]._, A, , with all A; uniform, is a direct summand of M.

Corollary 8. ([7, Proposition 6]). Let M = @, M, with all M, uniform. If M has

(1—Cy), then every non- zero closed submodule of M contains a uniform direct summand
of M.

Proof. Let A be a closed submodule of M. By Lemma 3, there exists a uniform closed
submodule V of A. By Lemma 1, V is closed in M. Since M has (1 = C,),V is a direct
summand of M (0.

It is clear that the extending modules have (1 — ), but the following example
shows that the converse is not true.
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Example 9. There exists o Z - wodule with (1 — Cy), such that it is not an extending

miodhitle.

Proof. Let F be an infivitely generated free abelian group. Then F = @&,¢,U;, where [ is
an infinite set and 7, > Z, for all ¢ € I. Since F has infinite rank, £ is not an extending
module (18, p.19 or (6, p.3)).

Now let A be a uniform closed submodule of F. Since F is a hereditary Z-module
and A is uniform we can show that A is a finitely generated Z - module. Then there exists
a finite direct sum X = U, & -+ 5 U, , where {1,--- ,n} C I, such that A C X. Since
X is an extending module by (8, p.19]. A is a direct summand of X, and hence also of F.
Thus F has (1 - Cy).

A family {M, : 1 € T} of submodules of a module M is called a local direet summund
of M if3 ., M, is divect and 3~ M, is a direct summand of M for every finite subset
Fofl

The following result gives a condition when a direct sum of uniform modules is
extendible. [

Theorem 10. Let M be an R-module such that M is a direct sum of uniform modules
M, 1 € I and asswme that every local direct summand of M is a direct summand. Then
M is an extending module if and only if M has (1 — Cy).

Proof. Let M be an extending module. Obviously, M has (1 — Cy).

P

direct summand of M is a direct summand. Let A be a closet submodule of M. By Corol-

Conversely, let M = 5“,{; ; M;. where each M, is uniform and assume that any local

lary 8, 4 contains a unifor direct summand X of M. Hence we can define a non-empty
set P of direct sums of aniform modules in M as follows: P = {@aecada 1 Aa €A A, is
uniform and @©,c1.4, 1s a local direct snmmand of M},

By Zorn's Lennua, we can find a maximal member @gepc Ag in P

Hence A’ Ererc A is a direct summand of M, i. e. M = A" @ M, for some
submodule M, of M. From this, A = A’ & B, where B = AN M,. By Lemma 1, B is
closed in M. If 3 # 0, B contains a uniform direct summand Bg of M. Then A" @ By is
member of P, a contradiction to the maximality of A’. Hence B =0,1. e. A= A" iga
direet summand of M. Thus M is an extending module. (]

Corollary 11. Let M be a module with finite uniform dimension.
a If M has (1 — '), then M is an extending module.
b If M is U - continuous, then M is continuous.

Theorem 12. Let M = @&, M, with all M; uniform and assume that this d-ecamposfr.ion
of M complements direct summands. Suppose further that for allt, j € 1,1 # j, M; cannot
he properly embedded in M, . Then the following statements are equivalent:

(i) M is an extending module.

(ii) M has (1 — Cy).

(iii) M(.J) is M{K) - injective, for any subsets J and K of I such that KNJ = ©.
Proof. (i) = () is trivial.

(ii) = (@ii). By (8. Proposition 1.5], it suffices to prove that for each k € K, M(J) is

M- injective. For this purpose, let U be a sunmodule of M and o be a homomorphism
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of U in M(J). We show that « is extended to one in Hom g (M, M(.J)). Since M(.J)& M,
has (1 — (), there is a direct summand X* of M such that

{r—alz):xe U} C° X"

Since as a direct summand of M, M (J)@& M, has a decomposition that complements
direct summands. We consider two cases:

a) M(J)&® M, = X* & M(J'), where J' is a subset of .J. Then M(J & M, =
X*eMU)CX*@®M(UJ)C M) M. Hence X* B M(J') = X* @& M(J). It follows
that J' = J. Therefore I1|5y, extends a, where I1 : X* @ M(.J) — M(J) is the projection.

b) M(J) & My = X* & M(J,) ® M, where J, is a subset of J. Let Il : X* &
‘M(Jy) @ My, — M. be the projection and let A = (X* & M(.J;)) N M(J).

If A # 0 and suppose that ANM,;— # 0 for each j # J, then by (3, Proposition 3.6],
A is essential in M(J). Then it is easy to check that X* & A is essential in My & M(J).
Hence M, N (X* @ M(J)) # 0, a contradiction. Consequently there exists j € J such that
M; N A =0. Hence M; Nkerll; = 0 and thus M, = II;(M;). By hypothesis we have

Hk-(f"[]) = j\fk_.
Therefore we have
XoMAheM=X" M) &M =X"& M)

where J, = J1 U {j}. Hence we may use a) to show that « is extended to one in
hm'nR(Mk,M(J)).

Now assume that A = 0. Then M(J;) = 0. It implies that M (.J) @ My = X ™ & M.
From this, it is easy to see that M (J) is uniform and

M(J)® M, =M; & M, = X* & M,

where J = {j} is a set of only one element. Hence we have I1,(M,) = M; and M, & M, =
X* @& M;. There fore IT s, extends a, where [T : X* @& M; — M, is the projection, proving
(ii).

(#12) = (i). Let A be a closed submodule of M, and .J be a subset of I which is
maximal with respect to AN M(J) = 0. Then it is easy to see that A @ M(.J) is essential
in M. Let K = I\ J and Ilg, 11, be the projections of M onto M(K) and M(J),
respectively. Then ITg |4 is a monomorphism. Let o = [ (Mg |a) i Mg (A) = M(J). Tt
is easy to check that A = {z + a(z) : x € [Ix(A)}. Since M(J) is M (K )-injective. there
exists an extension & : M(K) — M(J) of a. Put

A= {y+aly) -y € M(K)}.
Since A @ M (J) is essential in M, I (A) is essential in M (K). Hence A is essential in A’

and therefore A = A’. It follows that [T (A) = M(K). From this we have M = A& M(J).
Thus M is an extending module. O
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Proposition 13. Let M be a finite direct sum of uniform modules U,(1 < ¢ < n) such
that U, & U, is an extending module for all i,j € 1,2, ...,n. If M is U- continuous, then

M is a gquasi-injective modnle.

Proof. By Corollary 11 and 8, Corollary 1.19, Proposition 2.10].
4. Application

First we consider co- H rings.

Theorem 14. Let R he a right perfect ring with finite right uniform dimension. Then R
is a right co — H ring if and onlv if the projective cover of every semisimple R-module has
(L =),

Proof. Let R be a right co — H ring. By [9, Theorem 1], the projective cover of every
semisimple R-module has (1 — ;).
Conversely. let R is the projective cover of a semisimple R-module. Since R is right
perfect
Rp -eitR®---@Beplt,

where {e,}, is a set of orthogonal primitive idempotents of R. By (1, Theorem 27.11},
P = @,¢ 4P, for some index set I and each P, is isomorphic to some ¢; R in {e, R, ¢, R}.
Since each P, has finite uniform dimension, P; is an extending module by Corollary 11,
Consequently, cach P, is uniform. By [1, Theorem 28.14], P = @&, P has a decomposition
that complements direct summands. Then by [1, Theorem 27.12] and (8, Theorem 2.15)]
every local direct summand of P is direct summand. Now by Theorem 10, P is an
extending module and hence by [12, Proposition 2.10}, R is a right co-H ring.

Corollary 15. The following statements are equivalent for a given ring R:
(1) R is right co — H.
(ii) R is right perfect, right extending and every projective right R-module has (1 - Cy).
(iii) R is (right and left) perfect and every projective right R-module has (1 — ).

Proof. (1) = (it) and (2) = (i) are clear.

(21) = (#) by Theorem 14.

(i17) = (7). Since R is left perfect, each e; R contains a uniform submodule, where
{e,}, is a set of orthogonal primitive idempotents of R. Since each e; R has (1-C}),e; R
is uniform for all 1 < ¢ < n. Then every projective right R-module P has a direct sum
decomposition

P — @'IE[PL!

where each P; is uniforin. As in the proof of Theorem 14 we see that P is an extending
module. By [9, Theorem II], R is a right co-H ring.
For QF- rings we prove the following.
Theorem 16. For a ring R, the following statements are equivalent:
(i) R is QF.
(ii) R is right perfect, right continuous and the projective cover of every semisimple
R-module has (1 - Cy).
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(iii) R is right co — H and right continuous.
(iv) R is right co — H and right U-continuous.
(v) R is a right H-ring and right continuous.
(vi) R is a right H-ring and right U-continuous.

Proof. Since R is right continuous, Z(Rg) = J(R), by [11, Lemma 4.1]. Hence, by |9,
Theorem 4.3] we have (1) ¢ (iii) and (i) < (v).

(2) = (i1), (111) = (iv) and (v) = (vi) are clear.

(72) => (422). Since R is right perfect and right continuous, Rp has finite uniform
dimension. By Theorem 14, R is a right co — H ring.

(2v) = (i2i). By Corollary 15, R is right perfect. Hence R is right continuous, by
Corollary 11.

(vi) = (v). By 9, Theorem 2.11], R is right artinian. Hence, R is right continuous
by Corollary 11.
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TAP CHI KHOA HOC DHQGHN, Toan - Ly, T.XVIII, S8 2 - 2002

TINH CHAT MO RONG CUA TONG TRUC TIEP VO HAN
CUA CAC MODUN DEU
Ngo Si Tung
Khoa Toan, Dai hoc S pham Vinh

Bui Nhu Lac
Truiemg Cao dang S pham Nam Dinh

Cho M = @, M, trong d6 M, la cac médun con déu va I la tap vo han bat ky, céiu
hoi dat ra la khi nao M la ('S - modun.

Trong bai bdo nay ching t6i dua ra mot s6 diéu kién dé modun M la C'S thong qua
I6p (1 — Cy)-modun. Cac két qua thu duge la md réng mot s6 két qua cia A. Kamal -
J.Muller (7] va Phan Dan [10].



