EXTENDING PROPERTY OF INFINITE DIRECT SUMS OF UNIFORM MODULES

Ngo Si Tung

Department of Mathematics, Vinh University Bui Nhu Lac Department of Mathematics, Nam Dinh College of Pedagogy

Introduction

Let R be any ring and $M = \bigoplus_{i \in I} M_i$ be a direct sum of uniform right R-submodules $M_i, i \in I$. We are interested in the question, when this module M is extendible. If the index set I is finite, this question has been studied by Harmanci and Smith [6]. In deed, Harmanci and Smith have shown that if $M = \bigoplus_{i=1}^{n} M_i$, then M is extendible if and only if every direct summand of M with uniform dimension 2 is an extending module, where each M_i is uniform, [6, Theorem 3].

In the first part of this paper we give some conditions for M to be extendible, where the index set I is not necessarily finite. We show that a module over an arbitrary ring is extendible if it has $(1 - C_1)$ and every local direct summand is a direct summand. Moreover, properties of extending modules have been obtained.

In the last part of the paper the results have been applied to characterize quasi-Frobenius rings and rings whose projective right modules are extendible.

2. Preliminaries

Throughout this paper all rings R are associative rings with identity and all R-modules are unitary right R-modules.

We consider the following conditions on a module M:

 (C_1) Every submodule of M is essential in a direct summand of M.

 (C_2) Every submodule isomorphic to a direct summand of M is itself a direct summand of M.

 $(1 - C_1)$ Every uniform submodule of M is essential in a direct summand of M.

A module M is called *continuous* if it satisfies conditions (C_1) and (C_2) , U-continuous if it satisfies (C_2) and $(1 - C_1)$.

A module M is said to be an extending module if it satisfies condition (C_1) , and M is said to have the extending property of uniform submodule if it satisfies condition $(1 - C_1)$.

A submodule N of a module M is closed in M, if it has no proper essential extensions in M. It is easy to check that M is an extending module if and only if every closed submodule of M is a direct summand of M.

Extending property of infinite direct sums of uniform modules

A ring R is called Quasi - Frobenius (briefly QF) if R is right artinian and right self - injective. It is know that a ring R is QF if every projective R - module is injective if every injective R - module is projective (See [4, Theorem 24.20]).

A ring R is called a right H - ring [8, Theorem I], if it satisfies one of the following equivalent conditions:

1) Every injective *R*- module is a lifting module.

2) R is right artinian in which every non- small R- module contains a non-zero injective submodule.

3) R is right perfect and the family of all injective R- modules is closed under taking small covers, i.e for any exact sequence $P \xrightarrow{f} E \to 0$ where E is injective and kerf is small in P, P is injective.

 Every R- module is expressed as a direct sum of an injective module and a small module.

Dually a ring R is called a right co - H ring [8, Theorem II] if it satisfies one of the following equivalent conditions:

1) Every projective *R*-module is an extending module.

2) R satisfies ace on right annihilator ideals and every non-cosmall R-module contains a non-zero projective direct summand.

3) The family of all projective R- modules is closed under taking essential extensions.

4) Every R- module is expressed as a direct sum of a projective module and a singular module.

For a submodule X of $M, X \subseteq^{c} M$ means that X in an essential submodule of M. The injective hull of a module M will be denoted by E(M).

Let $M = \bigoplus_{i \in I} M_i$ be a direct sum of modules $M_i, i \in I$ and let J be a subset of I, then we put $M(J) := \bigoplus_{j \in J} M_j$.

3. Direct sums of uniform modules

Lemma 1. ([2, Proposition 2.2] or [6, Lemma 1). Let M be any module and $K \subseteq L$ be submodules of M such that K is closed in L and L is closed in M. Then K is a closed submodule of M.

The following result is obvious.

Lemma 2. Let M have $(1 - C_1)$. Then every direct summand of M also has $(1 - C_1)$.

Lemma 3. Let $M = \bigoplus_{i \in I} M_i$ be a direct sum of uniform modules $M_i, i \in I$. Then any non-zero summodule of M contains a uniform submodule.

Proof. Let A be a non-zero submodule of M. Then there exists a subset J of I which is maximal with respect to $A \cap M(J) = 0$.

Consider $k \in I \setminus J$ and let Π_k be the projection

$$\Pi_k: M_k \oplus M(J) \to M_k.$$

Let $A_k = A \cap (M_k \oplus M(J))$. By the choice of J, A_k is non-zero. Since $A_k \cap M(J) = 0$, we have

$$A_k \cong \Pi_k(A_k) \subseteq M_k.$$

Therefore A_k is a uniform submodule of A.

Lemma 4. Let M be a module with $(1 - C_1)$ and $X \oplus U$ be a closed submodule of M, where X is a direct summand of M and U is a uniform submodule of M. Then $X \oplus U$ is a direct summand of M.

Proof. Let $M = X \oplus M_1$ for some submodule M_1 of M and $\Pi : M \to M_1$ be the projection. Now let U be a uniform submodule of M with $U \cap X = 0$. Let V be a maximal essential extension of $\Pi(U)$ in M_1 . Since $U \cong \Pi(U), V$ is uniform. By Lemma 2, M_1 has $(1 - C_1)$. Consequently V is a direct summand of M_1 . Thus V is a direct summand of M. Moreover, it is easy to check that

$$X \oplus U \subseteq \Pi^{-1}(V) \subseteq X \oplus V.$$

Since V is uniform, we obtain $X \oplus U \subseteq^e X \oplus V$. It follows that $X \oplus V$ and so $X \oplus U$ is a direct summand of M. \Box

Corollary 5. Let M be a module with $(1 - C_1)$. If M has finite uniform dimension, then M is a finite direct sum of uniform submodules.

Proposition 6. Let M be a module with $(1 - C_1)$ and A be a closed submodule of M. If A has finite uniform dimension then A is a direct summand of M.

Proof. By Lemma 1, A has $(1 - C_1)$. Hence, by Corollary 5, A has a direct sum decomposition

$$A = A_1 \oplus \cdots \oplus A_n,$$

where each A_i is uniform. By induction on n and by using Lemma 4, we can show that $A = (A_1 \oplus \cdots \oplus A_{n-1}) \oplus A_n$ is a direct summand of M.

Corollary 7. (see [7, Proposition 3]). Let M be a module with $(1 - C_1)$, then every closed submodule of the form $\bigoplus_{i=1}^{n} A_i$, with all A_i uniform, is a direct summand of M.

Corollary 8. ([7, Proposition 6]). Let $M = \bigoplus_{i \in I} M_i$ with all M_i uniform. If M has $(1 - C_1)$, then every non-zero closed submodule of M contains a uniform direct summand of M.

Proof. Let A be a closed submodule of M. By Lemma 3, there exists a uniform closed submodule V of A. By Lemma 1, V is closed in M. Since M has $(1 - C_1)$, V is a direct summand of $M \square$.

It is clear that the extending modules have $(1 - C_1)$, but the following example shows that the converse is not true. **Example 9.** There exists a Z - module with $(1 - C_1)$, such that it is not an extending module.

Proof. Let F be an infinitely generated free abelian group. Then $F = \bigoplus_{i \in I} U_i$, where I is an infinite set and $U_i \cong Z$, for all $i \in I$. Since F has infinite rank, F is not an extending module ([8, p.19] or [6, p.3]).

Now let A be a uniform closed submodule of F. Since F is a hereditary Z-module and A is uniform we can show that A is a finitely generated Z - module. Then there exists a finite direct sum $X := U_1 \oplus \cdots \oplus U_n$, where $\{1, \dots, n\} \subset I$, such that $A \subseteq X$. Since X is an extending module by [8, p.19], A is a direct summand of X, and hence also of F. Thus F has $(1 - C_1)$.

A family $\{M_i : i \in I\}$ of submodules of a module M is called a *local direct summand* of M, if $\sum_{i \in I} M_i$ is direct and $\sum_{i \in F} M_i$ is a direct summand of M for every finite subset F of I.

The following result gives a condition when a direct sum of uniform modules is extendible. $\hfill \square$

Theorem 10. Let M be an R-module such that M is a direct sum of uniform modules $M_i, i \in I$ and assume that every local direct summand of M is a direct summand. Then M is an extending module if and only if M has $(1 - C_1)$.

Proof. Let M be an extending module. Obviously, M has $(1 - C_1)$.

Conversely, let $M = \sum_{i \in I} M_i$, where each M_i is uniform and assume that any local direct summand of M is a direct summand. Let A be a closet submodule of M. By Corollary 8, A contains a uniform direct summand X of M. Hence we can define a non-empty set \mathcal{P} of direct sums of uniform modules in M as follows: $\mathcal{P} = \{\bigoplus_{\alpha \in \Lambda} A_\alpha : A_\alpha \subseteq A, A_\alpha \text{ is uniform and } \bigoplus_{\alpha \in \Lambda} A_\alpha \text{ is a local direct summand of } M\}$.

By Zorn's Lemma, we can find a maximal member $\bigoplus_{k \in K} A_k$ in \mathcal{P} .

Hence $A' = \bigoplus_{k \in K} A_k$ is a direct summand of M, i. e. $M = A' \oplus M_1$ for some submodule M_1 of M. From this, $A = A' \oplus B$, where $B = A \cap M_1$. By Lemma 1, B is closed in M. If $B \neq 0, B$ contains a uniform direct summand B_β of M. Then $A' \oplus B_\beta$ is member of \mathcal{P} , a contradiction to the maximality of A'. Hence B = 0, i. e. A = A' is a direct summand of M. Thus M is an extending module. \Box

Corollary 11. Let M be a module with finite uniform dimension.

a If M has $(1 - C_1)$, then M is an extending module.

b If M is U - continuous, then M is continuous.

Theorem 12. Let $M = \bigoplus_{i \in I} M_i$ with all M_i uniform and assume that this decomposition of M complements direct summands. Suppose further that for all $i, j \in I, i \neq j, M_i$ cannot be properly embedded in M_j . Then the following statements are equivalent:

- (i) M is an extending module.
- (ii) *M* has $(1 C_1)$.

(iii) M(J) is M(K) - injective, for any subsets J and K of I such that $K \cap J = \emptyset$.

Proof. $(i) \Rightarrow (ii)$ is trivial.

 $(ii) \Rightarrow (iii)$. By [8, Proposition 1.5], it suffices to prove that for each $k \in K, M(J)$ is M_{k-} injective. For this purpose, let U be a sunmodule of M_k and α be a homomorphism

of U in M(J). We show that α is extended to one in $\operatorname{Hom}_R(M_k, M(J))$. Since $M(J) \oplus M_k$ has $(1 - C_1)$, there is a direct summand X^* of M such that

$$\{x - \alpha(x) : x \in U\} \subseteq^e X^*.$$

Since as a direct summand of $M, M(J) \oplus M_k$ has a decomposition that complements direct summands. We consider two cases:

a) $M(J) \oplus M_k = X^* \oplus M(J')$, where J' is a subset of J. Then $M(J) \oplus M_k = X^* \oplus M(J) \subseteq X^* \oplus M(J) \subseteq M(J) \oplus M_k$. Hence $X^* \oplus M(J') = X^* \oplus M(J)$. It follows that J' = J. Therefore $\Pi|_{M_k}$ extends α , where $\Pi : X^* \oplus M(J) \to M(J)$ is the projection.

b) $M(J) \oplus M_k = X^* \oplus M(J_1) \oplus M_k$, where J_1 is a subset of J. Let $\Pi_k : X^* \oplus M(J_1) \oplus M_k \to M_k$ be the projection and let $A = (X^* \oplus M(J_1)) \cap M(J)$.

If $A \neq 0$ and suppose that $A \cap M_j - \neq 0$ for each $j \neq J$, then by [3, Proposition 3.6], A is essential in M(J). Then it is easy to check that $X^* \oplus A$ is essential in $M_k \oplus M(J)$. Hence $M_k \cap (X^* \oplus M(J)) \neq 0$, a contradiction. Consequently there exists $j \in J$ such that $M_j \cap A = 0$. Hence $M_j \cap \ker \Pi_k = 0$ and thus $M_j \cong \Pi_k(M_j)$. By hypothesis we have

$$\Pi_k(M_j) = M_k.$$

Therefore we have

 $X^* \oplus M(J_1) \oplus M_k = X^* \oplus M(J_1) \oplus M_i = X^* \oplus M(J_1)$

where $J_2 = J1 \cup \{j\}$. Hence we may use a) to show that α is extended to one in $\hom_R(M_k, M(J))$.

Now assume that A = 0. Then $M(J_1) = 0$. It implies that $M(J) \oplus M_k = X^* \oplus M_k$. From this, it is easy to see that M(J) is uniform and

$$M(J) \oplus M_k = M_j \oplus M_k = X^* \oplus M_k,$$

where $J = \{j\}$ is a set of only one element. Hence we have $\Pi_k(M_j) = M_k$ and $M_j \oplus M_k = X^* \oplus M_j$. There fore $\Pi|_{M_k}$ extends α , where $\Pi : X^* \oplus M_j \to M_j$ is the projection, proving (iii).

 $(iii) \Rightarrow (i)$. Let A be a closed submodule of M, and J be a subset of I which is maximal with respect to $A \cap M(J) = 0$. Then it is easy to see that $A \oplus M(J)$ is essential in M. Let $K = I, \searrow J$ and Π_K, Π_J be the projections of M onto M(K) and M(J), respectively. Then $\Pi_K|_A$ is a monomorphism. Let $\alpha = \Pi_J(\Pi_K|_A)^{-1} : \Pi_K(A) \to M(J)$. It is easy to check that $A = \{x + \alpha(x) : x \in \Pi_K(A)\}$. Since M(J) is M(K)-injective, there exists an extension $\hat{\alpha} : M(K) \to M(J)$ of α . Put

$$A' = \{ y + \hat{\alpha}(y) : y \in M(K) \}.$$

Since $A \oplus M(J)$ is essential in $M, \Pi_K(A)$ is essential in M(K). Hence A is essential in A' and therefore A = A'. It follows that $\Pi_K(A) = M(K)$. From this we have $M = A \oplus M(J)$. Thus M is an extending module. \Box

Proposition 13. Let M be a finite direct sum of uniform modules $U_i(1 \le i \le n)$ such that $U_i \oplus U_j$ is an extending module for all $i, j \in 1, 2, ..., n$. If M is U- continuous, then M is a quasi-injective module.

Proof. By Corollary 11 and [8, Corollary 1.19, Proposition 2.10].

4. Application

First we consider co-H rings.

Theorem 14. Let R be a right perfect ring with finite right uniform dimension. Then R is a right co - H ring if and only if the projective cover of every semisimple R-module has $(1 - C_1)$.

Proof. Let R be a right co - H ring. By [9, Theorem II], the projective cover of every semisimple R-module has $(1 - C_1)$.

Conversely, let R is the projective cover of a semisimple R-module. Since R is right perfect

$$R_R - e_1 R \oplus \cdots \oplus e_n R,$$

where $\{e_i\}_{i=1}^n$ is a set of orthogonal primitive idempotents of R. By [1, Theorem 27.11], $P = \bigoplus_{i \in I} P_i$, for some index set I and each P_i is isomorphic to some $e_i R$ in $\{e_1 R, \cdot, e_n R\}$. Since each P_i has finite uniform dimension, P_i is an extending module by Corollary 11. Consequently, each P_i is uniform. By [1, Theorem 28.14], $P = \bigoplus_{i \in I} P_i$ has a decomposition that complements direct summands. Then by [1, Theorem 27.12] and [8, Theorem 2.15] every local direct summand of P is direct summand. Now by Theorem 10, P is an extending module and hence by [12, Proposition 2.10], R is a right co-H ring.

Corollary 15. The following statements are equivalent for a given ring R:

- (i) R is right co H.
- (ii) R is right perfect, right extending and every projective right R-module has $(1-C_1)$.
- (iii) R is (right and left) perfect and every projective right R-module has $(1 C_1)$.

Proof. $(i) \Rightarrow (ii)$ and $(i) \Rightarrow (ii)$ are clear.

 $(ii) \Rightarrow (i)$ by Theorem 14.

 $(iii) \Rightarrow (i)$. Since R is left perfect, each $e_i R$ contains a uniform submodule, where $\{e_i\}_{i=1}^n$ is a set of orthogonal primitive idempotents of R. Since each $e_i R$ has $(1-C_1), e_i R$ is uniform for all $1 \le i \le n$. Then every projective right R-module P has a direct sum decomposition

$$P = \bigoplus_{i \in I} P_i,$$

where each P_i is uniform. As in the proof of Theorem 14 we see that P is an extending module. By [9, Theorem II], R is a right co-H ring.

For QF- rings we prove the following.

Theorem 16. For a ring R, the following statements are equivalent:

- (i) R is QF.
- (ii) R is right perfect, right continuous and the projective cover of every semisimple R-module has $(1 C_1)$.

- (iii) R is right co H and right continuous.
- (iv) R is right co H and right U-continuous.
- (v) R is a right H-ring and right continuous.
- (vi) R is a right H-ring and right U-continuous.

Proof. Since R is right continuous, $Z(R_R) = J(R)$, by [11, Lemma 4.1]. Hence, by [9, Theorem 4.3] we have $(i) \leftrightarrow (iii)$ and $(i) \leftrightarrow (v)$.

 $(i) \Rightarrow (ii), (iii) \Rightarrow (iv) \text{ and } (v) \Rightarrow (vi) \text{ are clear.}$

 $(ii) \Rightarrow (iii)$. Since R is right perfect and right continuous, R_R has finite uniform dimension. By Theorem 14, R is a right co - H ring.

 $(iv) \Rightarrow (iii)$. By Corollary 15, R is right perfect. Hence R is right continuous, by Corollary 11.

 $(vi) \Rightarrow (v)$. By [9, Theorem 2.11], R is right artinian. Hence, R is right continuous by Corollary 11.

Acknowledgment: We would like to thank Professor Dinh Van Huynh very much for calling our attention to the study of extending modules and for many helpful discussions.

References

- F.W. Anderson and K.R.Fuller, Rings and Categories of Modules, Springer Verlag, 1974.
- A.W. Chatters and C.R. Hajarnavis, Rings in which every complement right ideal is a direct summand, Quat. J. Math. Oxford (2) 28(1977), 61 - 80.
- Ng. V. Dung D. V. Huynh P. F. Smith and R. Wisbauer, *Extending Modules*, Pitman London, 1994.
- 4. C. G. Faith, Algebra II Ring Theory, New York, Springer Verlag, 1976.
- M. Harada, On modules with extending property, Osaka J. Math., 19(1982), 203 -215.
- A. Harmanci and P. F. Smith, Finite direct sums of CS modules, Houston J. Math., 19(1993), 523 - 532.
- M. A. Kamal and B. J. Miiller, The structure of extending modules over noetherian rings, Osaka J. Math., 25(1988), 539 - 551.
- H. Mohamed and J. Muller, Continuous and Discrete Modules, London Math. Soc. Lecture Note series 147, Cambridge Univ. Press, Cambridge, 1990.
- K. Oshiro, Lifting modules, extending modules and their applications to QF-rings, Hokaido Math. J., 13(1984), 310 - 338.
- Phan Dan, Right perfect rings with the extending property on finitely generated free modules, Osaka. J. Math., 26(1989), 265 - 273.
- Y. Utumi, On continuous rings and self injective rings, Trans. Amer. Math. Soc. 118(1965), 158 - 173.
- N. Vanaja and Vandana M. Purav, Characterizations of generalized uniserial rings, Communications in Algebra, 20 (8) (1992), 2253 - 2270.

TẠP CHÍ KHOA HỌC ĐHQGHN, Toán - Lý, T.XVIII, Số 2 - 2002

TÍNH CHẤT MỞ RỘNG CỦA TỔNG TRỰC TIẾP VÔ HẠN CỦA CÁC MÔĐUN ĐỀU

Ngô Sĩ Tùng

Khoa Toán, Đại học Sư phạm Vinh

Bùi Như Lạc

Trường Cao đẳng Sư phạm Nam Định

Cho $M = \bigoplus_{i \in I} M_i$, trong đó M_i là các môđun con đều và I là tập vô hạn bất kỳ, câu hỏi đặt ra là khi nào M là CS - môđun.

Trong bài báo này chúng tôi đưa ra một số điều kiện để môđun M là CS thông qua lớp $(1 - C_1)$ -môđun. Các kết quả thu được là mở rộng một số kết quả của A. Kamal - J.Müller [7] và Phan Dan [10].