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A bstract. I n  this p aper we study cond ition s on the asym ptotic  equivalence of d if­

fe re n tia l equations in  Hilbert, spaces. Besides, we d iscu ss  the relatio n between p ro p ­

erties o f  solutions o f  d ifferential equations of t r ia n g u la r  fo r m  and those, o f truncated  

differential equations.

I. Introduction

Let us consider in a given separable Hilbert space / /  differential equations of the
form

where /  : I V  X H  -> H \ (] : /?+ X //  —> H  are operators such that f ( t , 0) = 0, ij(tyO) =  0, 
Vi € /? f which satisfy all conditions of global theorem on the existence and uniqueness 
of solutions (see e.g. 1. p. 187-189]). An interesting problem studied in the qualitative 
theory of solutions of ordinary differential equations is to find conditions such that (1) and 
(2) are asymptotically equivalent (see e.g. [3, 4, 5, 6, 8j).

Recall ([5|, (3, p. 159]) that (1) and (2) are said to be asym pto tically  equivalent if 
there exists a bijection between the set of solutions { x ( t ) }  of ( 1 ) and the one of {v ( 0 }
(2) such that

Let be a normalized orthogonal basis of the Hilbert space H  and let X =

is a projection on H . We denote H n =  Imp n .

Suppose that J  =  { n i,n 2, ... , r i j , ... } is a strictly increasing sequence of natural 
numbers (r i j  oo as j  *-> +oo). Together with systems (1), (2) we consider the following 
systems of differential equations.

( 1 .1 )

( 1 .2 )

lim \\x(t) -  (/(Oil =  0.Í-4(X'

53 x i€ i be an element of H . Then the operator p n : H  —Ï  H  defined as follows:

Tị

8



O n  t h e  a s y m p t o t i c  e q u i v a l e n c e  o f . . 9

^  = PmHt,rmx ),

( J  -  p m )x  -  0, m e ./,

(̂ j j  -  Pn,(j{t, p ,ny),  

( I  -  pm)y =  0, m € ./.
(4)

III this article, we study the asymt.ofcic equivalence of a class of differential equations i l l  

the Hilbert space H. We will establish conditions for which the st udy of the asymptotic 
equivalence of (1) and (1) is reduced to the one of (3) and (4). Then' are SOII1P results on 
the stability of this class of differential equations (see [2, 7Ị)

I I .  M ain R esults

We assume in this section the following conditions:

Definition 2.1. Differential equations (1) and (2) are said to be asym ptotically  equivalent 
by part with respect to the set J  (or, simply, J  - asym ptotically equivalent) if systems (3) 
and (4) are asymptotically equivalent for all m  £ J .

Using (5) we are going to prove the following.

Lemma 2.2. F o r  any solution x ( t )  =  x ( t 1tQỉ P mx o ) ĩ Xo € H  o f  equation (1) the following  
relation

For E P m H , the solut ion u ( t )  =  u(t.\to,£,o) of (7) is also a solution of the equat ion

f ( t , p mx) = p mf ( t , p mx),

•> ï  — p Ỉ' 7íĩ*e)ì

(V* 6 /?+, Vm € J, Vx € H ) .

(5)

(6 )

t-Qì Pm%o) tư) Pm ^o)

holds fo r  all t €: /? 4, 771. ç J ,  Xo G //.

Pvoof. For given rn e  J , lot us consider the differential equation

-T” =  /(*, Prntz); u € H ,  t e  /?f .
(it

(7)

(8)

By (5) and P m i 0  =  io we have

t.

■u{t) =  Pm£o + -Pm Ị  / ( r , p mu(r))rfr
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or
t

u ( t )  =  Pm{ç0 + J f { T , P m U { T ) ) d T ^

Consequently w<‘ can rewrite (8) as follows

Hence

to

u (t )  =  p n iu ( t ) ,  v t  € l V  . 

(8) as follows

t

u (t )  =  {o +  J  /(r ,u (r))d r.

This shows that u(t) =  u ( t , t o,£o) is a solution of (1), as well. Denoting by x ( t )  — 

x ( U t o ^ o )  the solution of equation (1) satisfying the condition x (t o )  =  £()< by uniquness of 
solution Wf' have:

Hence, for XQ €  //, any solution x ( t )  =  PmZo), ĩ ĩt  € J  of differential equation
(1) will satisfy the relation:

The Lemma is proved.
R e m a r k .  By Lemma 2.2, we can see that if thẻ conditions (5) and (G) are satisfied, thon 
all solutions of the equations (3), (4) are solutions of the equations (1), (2), respectively. 
Therefore, from the asymptotic equivalence of systems (1), (2), we can deduce their J  - 
asymptotic equivalence.

Now we consider the following linear differential equations

l { t )  =  u(t).

x { t , to, p mx o) =  p mx ( t ,  to, P mx o). (V* € R + ).

(9)

( 1 0 )

where v4 € £ (//) ,  B (i) € C ( H ) y  Vi € [0, oo) and

( 1 1 )
0

We assume that, for them conditions (5), (6) are satisfied, that is,

(A  — P rnA ) P mx  =  0, Vm G «/, Vx €  H  

[ B ( t )  — PrnD ( t ) ) P mx  =  0, Vra G J, Vj: €  / / .

(12)

(13)



Together with (!)). (10) w<‘ consider also tho sequences of truncated differential
reptations

' ỉ  =  A P m X ' (14)
( I - P„i ) x -  0, me J,

£ - H +  « ! » * . » .  (15)

(/ -  Pm)?/ = 0, 771 6 J.

We denote by the Cauchy operator of (14) satisfying x m (0)  =  E Vi and by
y,n(f) the Cauchy operator of (15) satisfying Km(£o) = E m i  where E , „ is the identity
operator in

Lemma 2.3. I f  rill solutions o f  equation (14 )  are b o u n d e d , then

1. T h e  C tw c h y  o p era to r x m(t) o f  (14 ) can he w ritten in the form

X m ( t )  =  ư m{t) +  Vm (t),

where Um (t) and Vm{i) : H m //m, so that there exist positive constants am, btn, 
cn, satisfying

l l t u o i l  R + , (16)

\\vm(t)\\ <cmy t e  /?; (17)

2. T h e  o p e ra to rs  F,n : H  —y I I  defined b y

O n  t h e  a s y m p t o t i c  e q u i v a l e n c e  o f . . .  11

no

FmZ =  f  Vm(t0 -  T ) B { T ) Y m(T)P,„ZdTt í  e H

to

are h o u n d e d  and m oreover the follow ing in e q u a lity  is  valid

Il Fm II < ttm <  1, vto > A  >  0.

Proof. By the assumption on the boundedness o f all solutions o f (14), we can see that 
X rn(t) is bounded uniformly in t for every fixed 771. Since d i m  I m P m <  oo. the conclusion
i. of the Lemma ran be proved by t he similar method of proof as in [3, p. 160-161]

Denoting by Y nl{t) the Cauchy operator of equation (15) satisfying Y m (to) =  E .  

Wr see that Y m (t.) satisfies the (filiations

t

y,n(t)  =  x m (t -  to) +  J  x m (t -  t ) D ( t ) Y m( r ) d r .

to
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Thus,
t

||Vm(t)|| < \ \ x m (t -  ío)|| +  I  \ \ x m (t -  t)II P ( r ) | |  \\Ym ( r ) \ \d r .

to

By (16), (17), we have

t

\\Ym (t)\\ <  a, +  a ,  I  ||B(r)|| ||ym(r)||dr,

to

where (II  =  2 rnax(am>cm). From the Gronwall-Bellman inequality and (11), it follows 
that

/  |ỊB(r)||đT 7 ||B(r)|ịdr
||Vm(í)|| < ( I \ e °  <  a ie °

Hence, there exists a number K m independent of to so that

\\Ym (t)\\ <  K mi V t e R * .  (18)

Moreover, for any Otm < 1, we can find a number A > 0 so that

4 - 0 0

/  | | B ( T ) | | d T < - ^ — , Vi() > A.
J Cm *  ̂771
to

This implies that

oo

||Fm|| < J  ||Vm( io - r ) | |  ||B (r)|| ||ym(r)||d r 
to

oo

< cm K m j  ||B (r)||d r < Qm < 1 , Vt0  >  A.
<0

Theorem 2.4. A ssu m e  that, for any m  6  J  the so lu t io n s  o f  ( \ A )  a re  bounded. Then

differential equation s (9) and (10)  are J  - asym totically  equivalent.
%

P ro o f  For each m 6 .7 we put

“  ( /  ■+■ F rn )^ ì  £  € H m .

By Lemma 2.3, the inequality ||Fm|| < 1 holds for to >  A. Therefore, the operator 
Q r n  • > //m is invertible.

Denoting r/o = Oî Co € / / m, 771 € */, we consider the solutions x ( t )  =  x ( t  totio)
of (14) and ỊỊ/(f) =  y{t,  to, 7]o) of (15). It is clear that

x (t )  =  x m(t -  t0)Co
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and /

//{/')• tu)no + J  x m(t -  T ) f í { T ) y { T ) d r .

*0
As was shown in Lemma 2.3. by the boundedness of all solutions of (14) we have

X ' J I  -  /()) u m(t ~ to) + v ;„ ( i -  /(,) 

v m(t -  r) x m(/ -  to)Vm(to -  r).

From the definition of Qtn, we havem u o n  O I  w e  n a v e

X

Ço = Qm% = 7/0 -r J  Vm (to -  r)jB (r)y m(T)7/0rfr. 

Í0

Ho 11 a

.r(/) — x ,n (/ — /0 )7/0 f  Arm(/ — / 0)

0 0

J  Vm (to -  T)B(r)Yn
to

x m(t -  t.0)Vo + ị  vm(t -  r ) B ( r ) y m(r)%dT.
to

Consequently,

ll?/ơ)-.r(0|| =

to
t

+ J  vm{t -  t ) B ( t ) y ( r ) d r

to

t

r ) ữ ( r ) y m(r)r/0í/r + f  X m{t -  t ) B { t ) ị j ( t ) ( ỉ t

to 
t

) B ( r ) Y m (t)riodT + J  u m {t -  t ) Ị 3 { t ) ị ị ( t ) < I t  {

to

nee 7/(0 =  y m(t)rç0 , we have

oc t

II//(/.) -  ./’(Oil =  -  J  vm(t -  r)B{T)y[t)dr  + J  u m(t. -  T)D{t ) ij(t ) ( I t  \
*0 to

t

+ Ị  v,n(t -  T)D{r)y(T)dr
to

z  -  -  I  v m ( t  -  t ) D [ t ) y ( r ) d r  +  J

t to

um(t -  r)jB (r)y (r)d r



Using (16), (17). (18) and taking into account. y (t )  =  Y m ^ r / o ,  we have

t o o

\\y(t) -  x{t)\\ < amK m \\r)o\\ J  e”6m(i”T)||B(r)||dr + cmK m \\riQ\\ Ị  \ \B (r)\ \d T

to t
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or
t oo

| |y ( t)  -  x(t)\\ <  M l  J  e - b^ - ^ \ \ B { T ) \ \ d r  +  M 2 J  \ \B (r ) \ \d t ,  Vf >  to,

ỀQ t

where M l  =  a m K m \\Tio\\, A/o =  cm K m \ịTỊo\\.

Thus, for every positive number e > 0, there exists a sufficiently large number t and 
t >  2/o such that the following inequalities are valid

t
2 o o

j  e - bm{t- T )\\D {T )\\d r  <  e ~ ^  J  \ \ B ( t )\\cIt  <  ~

to to
t o o

Ị  \ m r ) \ \ i r  <  J L . ,  J W r W r i ^ - .

I  t

Hence,

i  t 
\\y(t) -  x(t)\\  <  J  C- fc“ <‘ - T>||B(r)||dr + J  e- 6"<*-T> ||B (r)||d r) +

i

+ M 2 J ||B(T)ị|ưr < I  + I  + £ = £. 

t

This means that
lim ||y(it) -  x(í)|Ị =  0.

Í - 4 0 0

By the uniqueness of solutions of differential equations (14) and (15), the map Q m is 
bijective between two set of solutions of equations (14) and (15).

Lemma 2.5. I f  all so lu tio n s o f  the differential equations (9) are bo u n d ed , then

1. T h e re  ex ists  a p o s it iv e  n u m b e r  A =  A (or) such that

I l II <  oc < 1 , v < 0  > A, Vm € J;

2. {F ni} a n d  ị Q m }  are  convergent sequences o f  o pera to rs  as m  -» oo.

Proof. By the boundedness of all solutions of (9), there is a number 01 >  0 such that the 
Cauchy operator X(t) of (9) satisfies relation

\ \ x m < 0 u  Ví e  R + .



Denoting by Y(t.) the Cauchy operator of (10) satisfying Y ( t o )  — E  we SCO that 
Y ( t )  satisfies the rqiiHtion
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h -
Y(t) Xị t  -  to )  4- / X(t  -  T)B( t )Y{t ) ( Ị t

h)

Hcnc

t

ll>V)|| < |Ị-V(/ -  /o)j| -  I  ||X (Í - r ) | |  |ỊS(r)|| ||y(r)||rfr
/0

t

<01 +ih  J ||ỡ(r)|| \\Y(r\\dT.
Co

By t hí' Gronwatl - Bellman inequality and (11) there exists a number ỈÌ2 independent 
of t[) and m such that

\ \ Y \ m  < i h ,  V i€ / ? + .

( onsrqucntly,
\\xm{t)\\ < 0 1 , \\Yrn{t)\\ < 0 2 , Ví € / ỉ \  Vrn € ./.

Oil I hr oilier hand, for any 0 < (\ < 1 wo can find a number A — A (a) >  0 such that

'X'

[  \ \ I ' ỉ ự ) \ \ d T  <  —  <  +O C,  VỈ0 >  A.
./ Pi • P2
tu

Analogously, as in the proof of Lemma 2.3, we have

p'mll < f  | |K „ ( io - r ) | |  ||5 (r)|| \\Yn i( r ) \ \ d r

i(>
X

< 01 • fa  J ||j3 (r ) | | d r  <  a  <  1 , Vm € ./, V/ , 0  >  A.

*0

By (lefinrrion.

f m  =  [  V f n ( l . Q -  T ) B ( T ) Y m ( T ) P m £(tT.
Ji0

From (12) and (iii) wo ran show that for all m,m 4- /> 6 J,p  >  0,

X n + P(t -  to)P rnt =  x m (t -  t o )P m&  V£ € H  

Y m+ p{ t ) P mị  =  Y m ( t ) P m^  V£ 6 //.

Hence.
m+pf rn£ ~ ml ITÎ I V/7?.,77l 4~ p 6 «A p  ̂0.



We now prove the convergence of { F m}.  In fact, for Vm,m +  p  £ J , p  >  0, we have
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\\Fm+ p -  F rnII =  \\Fm+ pPm±p -  F m p m \\ 

=  ||Fm+p(Pm+p -  pm) + ( F m+P -  F m ) p mII 

=  ||Fm+p(Pm + 1  -  pm)||

<  ||Fm+p||||Pm+p- P m||.

By definition, limm-+oo-Pm =  I-  Hence, by the boundedness of F m the abovo yields that 
{F m} is a Cauchy sequence, so { F m }  is convergent. This implies the convergence of {Q m}.

Theorem  2.6. I f  nil so lu tio n s o f  the differential equation  (9) are b o u n d e d  then the equa­

tions (9) and  (10) are a s y m p to tica lly  equivalent.

Proof. By virtue of Lemma 2.5, we can put:

F =  lirn Fm and lim
r n  —i  no m  —* oo

Hence, Q  =  /  + F .  Since ||Fm|| <  a  <  I ,  V m  e  J , V/ - 0  >  A, we have

| | F | | < a < l ,  V/.Q > A.

Therefore, Q  : /■/ —» H  is an invertible operator. By the uniqueness of solutions of 
equations (9) and (10) we deduce that the map Q  is also bijectivo between two sets of 
solutions {#(/)} °f (9) and { y { t ) }  of (10). Let yo =  Q ~ l x 0  and x ( t )  = X ( t  -  io)^o, 
y{t)  =  Y ( t ) y 0 . Since

Jim  Ptntfo == Ĩ/0 ) Jim  Ọmỉ/ 0  =  Qs/O =  ^0 ,
m —>oo m —► oo

we can see that for any given £ > 0, there exists sufficiently large mi € .7 such t hat for all 
m > mi Wf* have for vt >  É0

lly(í;ío,ỉ/o) -  y(í;ío,Pmyo)ll <

||x(í;ío,ì/o) -  i(í;<o,Qt,,yo)ll <

By virtue of Theorem 2.4 and the boundedness of all solutions of (9), we deduce that 
differential equations (9) and (10) are J  - asymptotically equivalent. Consequently, then' 
e x i s t s  To € (toyOo)  s u c h  t h a t  f o r  V J  >  T o ,

||z(i;fo,Qm,yo) -  y(t-,t0y p m iy0)\\ < 

where to is choosen sufficiently large such that

ll^mll <  or <  1, Vm € ./.



Theroforo,
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IIy ( l:  /(,. //,)) - II <  ||y(jt; if), i/o) -  y(t- to, Pm, ?/o)|| +

+ to, Pin I i/o ) -  -í-ơ, í(), Qm, </())||

+ ||x(i; t o , Q mi i/o) — ; /(1 , .ỉ'() ) II
£ £ € 

s 3 + I + I =£! Vl - T,h

This implies that
lirn ||.r(i:i(), Xo) -  y (t;  to, y0)ll =  0 .

t  — * *x;

By virtue of tin* Lrmma 2.2 we get:
C o ro lla ry  2.7 Assume' that all solutions of the differential equation (9) arc* bounded. 
Then, the differential (‘quations (9) and (10) are asymptotically equivalent if and only if 
they are ./ - asymptotically equivalent.
C o ro lla ry  2.8 If all solutions of differential equations (14) are uniformly bounded for all 
ỈÌI £ ./. then differential equations (9) and (10) is asymptotically equivalent.
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VỀ s ự  TƯƠNG ĐUƠNG TIỆM  CẬN CỦ A C Á C  PHUƠNG TRÌNH 

VI PHÂN TU Y ẾN  TÍNH TRONG K H Ô N G  G IA N  HILBERT

Đảng Đình Chàu
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Đại học Khoa học Tự nhiên - ĐhlQG Hà Nội
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