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Abstract. In this paper we study conditions on the asymptotic equivalence of dif-
ferential equations in Hilbert spaces. Besides, we discuss the relation between prop-
erties of solutions of differential equations of triangular form and those of truncated
differential equations.

I. Introduction

Let us consider in a given separable Hilbert space H differential equations of the
form

dx

— = f(t,x .
T, f(t,x), (L.1)
dy 4 y) (1.2
— ] "
T, g({t,y), (1.2)

where f: RY x H — H; g: RY x H — H are operators such that f(¢,0) = 0, g(t,0) = 0,
¥Vt € R which satisfy all conditions of global theorem on the existence and unigqueness
of solutions (see e.g. 1, p. 187-189]). An interesting problem studied in the qualitative
theory of solutions of ordinary differential equations is to find conditions such that (1) and
(2) are asymptotically equivalent (see e.g. (3, 4, 5, 6, 8]).

Recall ([5], [3, p.159]) that (1) and (2) are said to be asymptotically cquivalent if
there exists a bijection between the set of solutions {z(t)} of (1) and the one of {y(t)} of
(2) such that

li x(t) — y(t)|| =0.
Jim fl(t) = y(t)l]
Let {cf’l}:L be a normalized orthogonal basis of the Hilbert space H and let r =

x
Y x;e; be an element of H. Then the operator P, : H — H defined as follows:
=1

n
Phx = Z;r:,c,

=]

1s a projection on H. We denote H,, = ImP, ..

Suppose that J = {ni,na,...,n;,...} is a strictly increasing sequence of natural
numbers (n; — oo as j — +00). Together with systems (1), (2) we consider the following
systems of differential equations.
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dx

e m t‘ Pm-f N ‘
g = Fmi(t Pn) (3)
(I - Pylr=0, meJ,

dy

E . Pm!](", Rlly)a (4)

(1 - I:,m)y = 0, m € .J.

In this article, we study the asymtotic equivalence of a class of differential equations in
the Hilbert space H. We will establish conditions for which the study of the asymptotic
equivalence of (1) and (1) is reduced to the one of (3) and (4). There are some results on
the stability of this class of differential equations (see (2, 7])

II. Main Results

We assume in this section the following conditions:
FR, Paz) = Prft, Pz, (5]

)
9(t, Pnx) = Pyg(t, Phz), (6)
(Vt € R, Ym € J, Yz € H).

Definition 2.1. Differential equations (1) and (2) are said to be asymptotically equivalent
by part with respect to the set J (or, simply, J - asymptotically equivalent) if systems (3)
and (4) are asymptotically equivalent for all m € J.

Using (5) we are going to prove the following.

Lemma 2.2. For any solution x(t) = z(t, ty, Pmxq), 2o € H of equation (1) the following
relation
'T(f» tU; Pmr()) —~ PmI(tu t(): PmIO)

holds for allt € R*, me J, xg € H.
Proof. For given m € J, let us consider the differential equation

du

e = f(t,Pnu); u€ H, te R'. (7)

For §y € P,, H, the solution u(t) = u(t; tg, &) of (7) is also a solution of the equation
(s
u(t) = & + /f('r, Ppu(7))dr. (8)
to
By (5) and P& = &y we have

u(t) - Pm&O + P [ f(T, Pmu(r))dr
to
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or

u(t) = P,,,{§0 + /f(T, Pmu(T))dT}.

Hence

u(t) = Pnu(t), Vte R*.

Consequently we can rewrite (8) as follows

u(t) = & +/f(r, u(r))dr.

This shows that u(t) = u(t,to,&) is a solution of (1), as well. Denoting by r(t) =
x(t, to, &) the solution of equation (1) satisfying the condition z(ty) = £p, by uniquness of
solution we have:

z(t) = u(t).

Hence, for zy € H, any solution z(t) = z(t, to, Pmxo), m € J of differential equation
(1) will satisfy the relation:

z(t, to, Pmzo) = Pmz(t,to, Pmxo), (Vt€ R™).

The Lemina is proved.

Remark. By Lemma 2.2, we can see that if thé conditions (5) and (6) are satisfied. then
all solutions of the equations (3), (4) are solutions of the equations (1), (2), respectively.
Therefore, from the asymptotic equivalence of systems (1), (2), we can deduce their J -
asymptotic equivalence.

Now we consider the following linear differential equations

dx -
dy
5= = [A + B(t)]y, (10)

where A € L(H), B(t) € L(H), ¥Vt € [0,00) and

/"B(T)“d‘r < 00. (11)
0

We assume that, for them conditions (5), (6) are satisfied, that is,

(A—- PphLA)Pnhz=0, VmeJ VzeH (12)
(B(t) = PnB(t))Pmz =0, VYmeJ, Vre H. (13)
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Together with (9). (10) we consider also the sequences of truncated differential

cquations

dr

';'j'{ = APm(Z‘-, (]4)
(I - Px=0, melJd,

dy T .

ﬁf_ = {ATB(f)EPm.U, (15)

(I - Prl)y=0, meJ

We denote by X, (1) the Cauchy operator of (14) satisfying X,,(0) = E,, and by
Y (t) the Cauchy operator of (15) satisfying Y;,(to) = E,,, where E,, is the identity
operator in H,,.

Lemma 2.3. If all solutions of equation (14) are bounded, then
1. The Canchy operator X,,,(t) of (14) can be written in the form

Xm(t) = Um(t) + Vm(t)s

where U, (t) and V,,,(t) : H,,, = H,,, so that there exist positive constants a,,, b,,,
¢y Satisfying

U ()] € ame™ ™, Vt € RY, (16)
Vi ()] < em,Vt € R; (17)

2. The operators F,,, : H — H defined by

>

F, £ - f Viu(to = T)B(T)Y,n (r)Pobdr, €€ H

to

are bounded and moreover the following inequality is valid
|Fnll € am <1, Vig > A >0.

Proof. By the assumption on the boundedness of all solutions of (14), we can see that
X, (t) is bounded uniformly in t for every fixed m. Since dim I'mP,, < oo, the conclusion
1. of the Lemma can be proved by the similar method of proof as in [3, p. 160-161]

Denoting by Y,,.(f) the Cauchy operator of equation (15) satisfying Y,,(tg) = E.
We see that Y, (f) satisfies the equations

t
Yiult) = Xt — o) + /Xm(t - 7)B(7)Y(7)dr.

to



12 Dang Dinh Chau

Thus,

Y&l < 1 Xm(t  to)]] + f 1 Xom(t = )| B [ Yo (7)1

By (16), (17), we have

Ym(®I < a1 + / 1B 1Y (7)ldr,

where a; = 2max(am,,cm). From the Gronwall-Bellman inequality and (11), it follows
that

t oo
JUB(7)|ldr JIB(r)ldr
Ym(t)| < aye < aped :
Hence, there exists a number K, independent of ¢ so that

IYm(®)Il < Km, Vte RY. (18)

Moreover, for any «a,, < 1, we can find a number A > 0 so that

+0o0
Om
B(r)|ldr < ———, Vtp > A.
[ 1Bl < 22— vt
to
This implies that

1l < / Vin(to = ) 1B [Yon ()7

tp

< ch,,,/HB(r)HdT Soam <1, Vig>A.

to

Theorem 2.4. Assume that for any m € J the solutions of (14) are bounded. Then
differential equations (9) and (10) are J - asymtotically equivalent.

Prbof For each m € J we put
me = (I i Fm)zr € Hp.

By Lemma 2.3, the inequality ||F,,|| < 1 holds for to > A. Therefore, the operator
Q.. : H,, —» H,, is invertible.

Denoting 1y = Q;,,} €0, &0 € Hyn, m € J, we consider the solutions z(t) = z(f ty, &)
of (14) and y(t) = y(t,to,me) of (15). It is clear that

z(t) = Xm(t — to)éo
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and

5
yit) X, =ty + /Xm(i - T)f.)’(T)y(T)dT.

As was shown in Lemma 2.3, by the boundedness of all solutions of (14) we have

'X'm(/ o f‘(}) (fm(r i t(!) -+ "’,,,(f = 1())
Vin(t = 7) = X, (t = to)Vyu(to - 7).

From the definition of (2,,,, we have

€o = Qm')n =1Tnp T /Vm('fu = T)B(T)y’y;:(T)T](JdT-
to

Hence

-1'”) = JX,,,U = ’U)"U t 4\’”1(1 . f())‘/\an(t() )B(T) m )‘TIU({T
to

== )&m - ty) Ty + /‘m f = T)B T)Ym( )’}'OdT-

Consequently,

ly(t) — x(t)]| =

x t

to to

X t

to to
t

+ /vm(r - r)B(T)y(T)d’r”.

to
Since y(t) = Y, (t)nn. we have

™

t
ly(@®) = 2()]| = || = [ Vit = )B(r)y(t)dr + [ Upn(t -
y H / T)B(r)y(t)dr '[ T
] Vinlt = 7) B(r)y(r)d|

= |l = [ Vit = 7)B(r)y(r)dr + [ Un(t - 7)B
- / ) B(r)y T+t{ B

t

= - f"::;” = T)B(T)Y;n(T)UOdT F /‘Y!ll(t —Tl)B(T)!/(T)dT“

= || — /V,,,(f — 7)B(1)Ym (t)nedr + /U,,,(t —7)B(7)y(7)dr+

(T)y(r)dr+

1 (T.)d'Tll.
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Using (16), (17), (18) and taking into account y(t) = Y. (t)ng, we have

t o0
ly(t) = ()] < amKmllnoll ./C"b"‘“—”IIB(T)lldT + em Km0l / |B()|dr
to t

or
t

ly(t) — z(8)]| < My / e~ =T B(7) |ldr + M, f |B(m)\dt, ¥t > to,
to t

where M; = an Knl|lmll, M2 = e Knllnoll-

~ Thus, for every positive number £ > 0, there exists a sufficiently large number t and
t > 2ty such that the following inequalities are valid

3

~om(t=T) )| B(7)||dT < '3‘?‘/ B(r)||d g
/e 1B(ldr < e [IBmlar < 5o

/HB )ldr < /||B 7)||dr < JJM

Hence,
3 ’
ly(t) — z(t)]| < M, (fa-"m““f>||3(r)ndr - e*"m"“f)||3(r)q|dr) +
to *
E £ €
An- B il - - = F.
+Mg/|| ('r)||al'r<3+3+3 3

This means that
Jlim ly(t) = 2(t)] =0

By the uniqueness of solutions of differential equations (14) and (15), the map @Q,, is
bijective between two set of solutions of equations (14) and (15).

Lemma 2.5. If all solutions of the differential equations (9) are bounded, then
1. There exists a positive number A = A(a) such that

|Full a<l, Vip2 A, YmeJ;

2. {F,.} and {Q,} are convergent sequences of operators as m — o0.

Proof. By the boundedness of all solutions of (9), there is a number 3; > 0 such that the
Cauchy operator X (t) of (9) satisfies relation

X < B, VteR".
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Denoting by Y (#) the Cauchy operator of (10) satistying Y (#g) = E we see that

Y (t) satisfies the equation

t
Yit) = X(t —ty) + /\(r_ T)B{T)Y (7)dT.

to

Hence,

1Y (1] < IX (¢ = to)] /IX (t =) B Y ()]

< B+ i / B Y (rlldr.
fo

By the Gronwall - Bellman inequality and (11) there exists a number 3, independent

of ty and m such that
V(O < 32, VteRT.

C'onsequently,
I X)) <81, 1Y) €82, Vi€ RY, Vine J

On the other hand, for any 0 < o < 1 we can find a number A = A(a) > 0 such that

o
/HB dr < 3 < +o00, Vip > A.
,L 1 G 3
Analogously. as 1n the proof of Lemma 2.3, we have

IEon i /N‘ mlto = DB Y ()|l d7

<o /HB( Wdr <a <1, ¥YmeJ, Yig > A.

to
By definmion,

+ 2
FJH = f Vm“() - T)B(T)}/:rl(T)I):st(IT-
te

]

From (12) and (13) we can show that for all m,m +p € J,p > 0,

X, Hﬂp f())ng - m(t - tU)Pﬂlév v£ € H
},m-y-p( m£ Kn( ) 'm{w vf € H

Hence,
FoiypPmb = Fn P, VYmm+pe J,p>0.
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We now prove the convergence of {F,,,}. In fact, for Vm,m +p € J,p > 0, we have

”P‘m+p m“ = ” m4-p m+p - 'Fm m ”
= ”Fm-t»p Pm+~p R Prn + (F171+p = Fm)Pmll

rn+p( m+1 = m)”

S ”F‘ﬂl-f-p” HPnH-p - Pm“-

By definition, lim,, .~ Pm = I. Hence, by the boundedness of F,, the above yields that
{F,.} is a Cauchy sequence, so {F}, } is convergent. This implies the convergence of {Q,,, }.

Theorem 2.6. If all solutions of the differential equation (9) are bounded then the equa-
tions (9) and (10) are asymptotically equivalent.

Proof. By virtue of Lemma 2.5, we can put:

F= lim F,, and Q= lim Q.

7P DO m—»o0

Hence, Q = I + F. Since ||[Fn|| <a < 1,Vm € J, Vtyp > A, we have
IFll <a<1, Vig2A.

Therefom,‘Q . H — H is an invertible operator. By the uniqueness of solutions of
equations (9) and (10) we deduce that the map @ is also bijective between two sets of
solutions {z(t)} of (9) and {y(t)} of (10). Let yo = Q 'z and z(t) = X(t — ty)xo,
y(t) = Y (t)yo. Since

im Pnyo = yo, lim Qmyo = Qyo = Zo,
n— o m-—oQ

we can see that for any given € > 0, there exists sufficiently large mn, € .J such that for all
m > m, we have for Vt > t,

£

ly(t:to, yo) = y(t; to, Pmyo)li < 3,
, €

[l z(t; to, yo) — x(t:to, Qmyo)|| < 3

By virtue of Theorem 2.4 and the boundedness of all solutions of (9), we deduce that
differential equations (9) and (10) are J - asymptotically equivalent. Consequently, there

exists 79 € (ty,00) such that for ¥t > 7,

; E
llz(t; to, @m, yo) — y(ti to, Pmyyo) || < 3

where tq is choosen sufficiently large such that

[Fmll <a<1, YmeJ
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Therefore.

/

Ny(t:to,wo) — rlt:to, xo)| < |ly(tsto, yo) — U(f;iu.fﬂnlug I
+ ”U(t t(] PHHI/“) i I(f ,(]1(2Hl|‘/() ”
(£

1 ||1 % (:,Qm.‘!lﬁ) — x(t; to, x0) ||
f~§+§+_§~*€; VYt > 7.

This implies that
Jim [|l(t:to, z0) — y(t:ta, yo)|| = 0.

By virtue of the Lemma 2.2 we get:
Corollary 2.7 Assume that all solutions of the differential equation (9) are bounded.
Then. the differential equations (9) and (10) are asymptotically equivalent if and only if
they are J - asymptotically equivalent.
Corollary 2.8 If all solutions of differential equations (14) are uniformly bounded for all
m € .J. then differential equations (9) and (10) is asymptotically equivalent.

References

1. E. A Barbashin, Introduction to the stability theory, Moscow, “Science™ 1967 (in
Russian)

2. Dang Dinh Chau, Studying the instability of the infinite systems of differential equa-
tions by general characteristic number, Scientific Bulletin (BECTNIK) of National
Unwversity of Belasrus, Serie 1, Physics. Maths and Mechanics, 1(1983), p. 48-51
(in Russian).

3. B. P. Demidivitch, Lectures on the mathematical theory of stability, Moscow, “Sci-
ence” 1967.

4. G. Eleutheriadis, M. Boudourides, On the problem of asymptotic equivalence of
ordinary differential equations, Ital. J. Pure Appl. Math., 4(1998), p 61-72.

5. N. Levinson., The asymptotic behavior of systems of linear differential equations,
Amer. J. Math., 63(1946). p. 1-6.

6. J. Miklo, Asymptotic relationship between solutions of two linear differential sys-

tems, Mathematica Bohemica, 123(1998), 163-175.

Vu Tuan, Dang Dinh Chau, On the Lyapunov stability of a class of differential equa-

tions in Hilbert spaces, Seientific Bulletin of Universities, Maths Serie. Vietnam,

1996.

8. Choi Kyu Sung, Hoe Goo Yoon, Jip Koo Nam, Asymptotic equivalence between
two linear differential systems, Ann. Differ. Equations, 13(1997), 44-52.

=1



18 Dang Dinh Chau

TAP CHi KHOA HOC DHQGHN, Toan - Ly, T.XVIII, S& 2 - 2002

VE SU TUONG DUONG TIEM CAN CUA CAC PHUONG TRINH
VI PHAN TUYEN TINH TRONG KHONG GIAN HILBERT

Pang Pinh Chau

Khoa Toan Co Tin hoc
Pai hoc Khoa hoc Ty nhién - PHQG Ha Néi

Trong bai bdo nay chiing t6i nghién ctru su tuong duong tiém can cua cic phuong
trinh vi phan trong khong gian Hilbert. Dong thai chiing t6i ciing da chi ra mai lién hé gitra
tinh tuong duong tiém can cua cac phuong trinh vi phan dang tua tam giac trong khong gian
Hilbert va tinh tuong duong tiém can cua cac phuong trinh vi phan duoc cit ngan tuong
tmg.



