ON THE ASYMPTOTIC EQUIVALENCE OF LINEAR DIFFERENTIAL EQUATIONS IN HILBERT SPACES
 Dang Dinh Chau
 Department of Mathematics, Mechanics and Informatics College of Science - VNU

Abstract

In this paper we study conditions on the asymptotic equivalence of differential equations in Hilbert spaces. Besides, we discuss the relation between properties of solutions of differential equations of triangular form and those of truncated differential equations.

I. Introduction

Let us consider in a given separable Hilbert space H differential equations of the form

$$
\begin{align*}
& \frac{d x}{d t}=f(t, x), \tag{1.1}\\
& \frac{d y}{d t}=g(t, y), \tag{1.2}
\end{align*}
$$

where $f: R^{+} \times H \rightarrow H ; g: R^{+} \times H \rightarrow H$ are operators such that $f(t, 0)=0, g(t, 0)=0$, $\forall t \in R^{+}$which satisfy all conditions of global theorem on the existence and uniqueness of solutions (see e.g. (1, p. 187-189]). An interesting problem studied in the qualitative theory of solutions of ordinary differential equations is to find conditions such that (1) and (2) are asymptotically equivalent (see e.g. $[3,4,5,6,8]$).

Recall ([5], [3, p. 159]) that (1) and (2) are said to be asymptotically equivalent if there exists a bijection between the set of solutions $\{x(t)\}$ of (1) and the one of $\{y(t)\}$ of (2) such that

$$
\lim _{t \rightarrow \infty}\|x(t)-y(t)\|=0
$$

Let $\left\{e_{i}\right\}_{1}^{\infty}$ be a normalized orthogonal basis of the Hilbert space H and let $x=$ $\sum_{i=1}^{\infty} x_{i} e_{i}$ be an element of H. Then the operator $P_{n}: H \rightarrow H$ defined as follows:

$$
P_{n} x=\sum_{i=1}^{n} x_{i} e_{i}
$$

is a projection on H. We denote $H_{n}=\operatorname{Im} P_{n}$.
Suppose that $J=\left\{n_{1}, n_{2}, \ldots, n_{j}, \ldots\right\}$ is a strictly increasing sequence of natural numbers $\left(n_{j} \rightarrow \infty\right.$ as $\left.j \rightarrow+\infty\right)$. Together with systems (1), (2) we consider the following systems of differential equations.

$$
\begin{align*}
& \left\{\begin{array}{l}
\frac{d x}{d t}=P_{m} f\left(t, P_{m} x\right) \\
\left(I-P_{m}\right) x=0, \quad m \in J
\end{array}\right. \tag{3}\\
& \left\{\begin{array}{l}
\frac{d y}{d t}=P_{m} g\left(t, P_{m} y\right) \\
\left(I-P_{m}\right) y=0, \quad m \in J
\end{array}\right. \tag{4}
\end{align*}
$$

In this article, we study the asymtotic equivalence of a class of differential equations in the Hilbert space H. We will establish conditions for which the study of the asymptotic equivalence of (1) and (1) is reduced to the one of (3) and (4). There are some results on the stability of this class of differential equations (see $[2,7]$)

II. Main Results

We assume in this section the following conditions:

$$
\begin{align*}
& f\left(t, P_{m} x\right) \equiv P_{m} f\left(t, P_{m} x\right) \tag{5}\\
& g\left(t, P_{m} x\right) \equiv P_{m} g\left(t, P_{m} x\right) \tag{6}\\
& \left(\forall t \in R^{+}, \forall m \in J, \forall x \in H\right)
\end{align*}
$$

Definition 2.1. Differential equations (1) and (2) are said to be asymptotically equivalent by part with respect to the set J (or, simply, J - asymptotically equivalent) if systems (3) and (4) are asymptotically equivalent for all $m \in J$.

Using (5) we are going to prove the following.
Lemma 2.2. For any solution $x(t)=x\left(t, t_{0}, P_{m} x_{0}\right), x_{0} \in H$ of equation (1) the following relation

$$
x\left(t, t_{0}, P_{m} x_{0}\right)=P_{m} x\left(t, t_{0}, P_{m} x_{0}\right)
$$

holds for all $t \in R^{+}, m \in J, x_{0} \in H$.
Proof. For given $m \in J$, let us consider the differential equation

$$
\begin{equation*}
\frac{d u}{d t}=f\left(t, P_{m} u\right) ; \quad u \in H, t \in R^{+} \tag{7}
\end{equation*}
$$

For $\xi_{0} \in P_{m} H$, the solution $u(t)=u\left(t ; t_{0}, \xi_{0}\right)$ of (7) is also a solution of the equation

$$
\begin{equation*}
u(t)=\xi_{0}+\int_{t_{0}}^{t} f\left(\tau, P_{m} u(\tau)\right) d \tau \tag{8}
\end{equation*}
$$

By (5) and $P_{m} \xi_{0}=\xi_{0}$ we have

$$
u(t)=P_{m} \xi_{0}+P_{m} \int_{t_{0}}^{t} f\left(\tau, P_{m} u(\tau)\right) d \tau
$$

or

$$
u(t)=P_{m}\left\{\xi_{0}+\int_{t_{0}}^{t} f\left(\tau, P_{m} u(\tau)\right) d \tau\right\}
$$

Hence

$$
u(t)=P_{m} u(t), \quad \forall t \in R^{+}
$$

Consequently we can rewrite (8) as follows

$$
u(t)=\xi_{0}+\int_{t_{0}}^{t} f(\tau, u(\tau)) d \tau
$$

This shows that $u(t)=u\left(t, t_{0}, \xi_{0}\right)$ is a solution of (1), as well. Denoting by $x(t)=$ $x\left(t, t_{0}, \xi_{0}\right)$ the solution of equation (1) satisfying the condition $x\left(t_{0}\right)=\xi_{0}$, by uniquness of solution we have:

$$
x(t)=u(t)
$$

Hence, for $x_{0} \in H$, any solution $x(t)=x\left(t, t_{0}, P_{m} x_{0}\right), m \in J$ of differential equation (1) will satisfy the relation:

$$
x\left(t, t_{0}, P_{m} x_{0}\right)=P_{m} x\left(t, t_{0}, P_{m} x_{0}\right), \quad\left(\forall t \in R^{+}\right)
$$

The Lemma is proved.
Remark. By Lemma 2.2, we can see that if the conditions (5) and (6) are satisfied, then all solutions of the equations (3), (4) are solutions of the equations (1), (2), respectively. Therefore, from the asymptotic equivalence of systems (1), (2), we can deduce their J asymptotic equivalence.

Now we consider the following linear differential equations

$$
\begin{align*}
& \frac{d x}{d t}=A x \tag{9}\\
& \frac{d y}{d t}=[A+B(t)] y \tag{10}
\end{align*}
$$

where $A \in \mathcal{L}(H), B(t) \in \mathcal{L}(H), \forall t \in[0, \infty)$ and

$$
\begin{equation*}
\int_{0}^{\infty}\|B(\tau)\| d \tau<\infty \tag{11}
\end{equation*}
$$

We assume that, for them conditions (5), (6) are satisfied, that is,

$$
\begin{align*}
\left(A-P_{m} A\right) P_{m} x=0, & \forall m \in J, \forall x \in H \tag{12}\\
\left(B(t)-P_{m} B(t)\right) P_{m} x=0, & \forall m \in J, \forall x \in H . \tag{13}
\end{align*}
$$

Together with (9). (10) we consider also the sequences of truncated differential equations

$$
\begin{align*}
& \left\{\begin{array}{l}
\frac{d x}{d t}=A P_{m 2} x \\
\left(I-P_{m}\right) x=0, \quad m \in J
\end{array}\right. \tag{14}\\
& \left\{\begin{array}{l}
\frac{d y}{d t}=[A+B(t)] P_{m} y \\
\left(I-P_{m}\right) y=0, \quad m \in J
\end{array}\right. \tag{15}
\end{align*}
$$

We denote by $X_{m}(t)$ the Cauchy operator of (14) satisfying $X_{m}(0)=E_{m}$ and by $Y_{m}(t)$ the Cauchy operator of (15) satisfying $Y_{m}\left(t_{0}\right)=E_{m}$, where E_{m} is the identity operator in H_{m}.

Lemma 2.3. If all solutions of equation (14) are bounded, then

1. The Cauchy operator $X_{m}(t)$ of (14) can be written in the form

$$
X_{m}(t)=U_{m}(t)+V_{m}(t)
$$

where $U_{m}(t)$ and $V_{m}(t): H_{m} \rightarrow H_{m}$, so that there exist positive constants a_{m}, b_{m}, c_{m} satisfying

$$
\begin{align*}
& \left\|U_{m}(t)\right\| \leq a_{m} e^{-b_{m} t}, \forall t \in R^{+} \tag{16}\\
& \left\|V_{m}(t)\right\| \leq c_{m}, \forall t \in R \tag{17}
\end{align*}
$$

2. The operators $F_{m}: H \rightarrow H$ defined by

$$
F_{m} \xi=\int_{t_{0}}^{\infty} V_{m}\left(t_{0}-\tau\right) B(\tau) Y_{m}(\tau) P_{m} \xi d \tau, \quad \xi \in H
$$

are bounded and moreover the following inequality is valid

$$
\left\|F_{m}\right\| \leq \alpha_{m}<1, \quad \forall t_{0} \geq \Delta>0
$$

Proof. By the assumption on the boundedness of all solutions of (14), we can see that $X_{m}(t)$ is bounded uniformly in t for every fixed m. Since $\operatorname{dim} \operatorname{Im} P_{m}<\infty$, the conclusion 1. of the Lemma can be proved by the similar method of proof as in [3, p. 160-161]

Denoting by $Y_{m}(t)$ the Cauchy operator of equation (15) satisfying $Y_{m}\left(t_{0}\right)=E$. We see that $Y_{m}(t)$ satisfies the equations

$$
Y_{m}(t)=X_{m}\left(t-t_{0}\right)+\int_{t_{0}}^{t} X_{m}(t-\tau) B(\tau) Y_{m}(\tau) d \tau
$$

Thus,

$$
\left\|Y_{m}(t)\right\| \leq\left\|X_{m}\left(t-t_{0}\right)\right\|+\int_{t_{0}}^{t}\left\|X_{m}(t-\tau)\right\|\|B(\tau)\|\left\|Y_{m}(\tau)\right\| d \tau
$$

By (16), (17), we have

$$
\left\|Y_{m}(t)\right\| \leq a_{1}+a_{1} \int_{t_{0}}^{t}\|B(\tau)\|\left\|Y_{m}(\tau)\right\| d \tau
$$

where $a_{1}=2 \max \left(a_{m}, c_{m}\right)$. From the Gronwall-Bellman inequality and (11), it follows that

$$
\left\|Y_{m}(t)\right\| \leq a_{1} e^{\int_{0}^{t}\|B(\tau)\| d \tau} \leq a_{1} e^{\int_{0}^{\infty}\|B(\tau)\| d \tau}
$$

Hence, there exists a number K_{m} independent of t_{0} so that

$$
\begin{equation*}
\left\|Y_{m}(t)\right\| \leq K_{m}, \quad \forall t \in R^{+} \tag{18}
\end{equation*}
$$

Moreover, for any $\alpha_{m}<1$, we can find a number $\Delta>0$ so that

$$
\int_{t_{0}}^{+\infty}\|B(\tau)\| d \tau \leq \frac{\alpha_{m}}{c_{m} \cdot K_{m}}, \quad \forall t_{0}>\Delta
$$

This implies that

$$
\begin{aligned}
\left\|F_{m}\right\| & \leq \int_{t_{0}}^{\infty}\left\|V_{m}\left(t_{0}-\tau\right)\right\|\|B(\tau)\|\left\|Y_{m}(\tau)\right\| d \tau \\
& \leq c_{m} K_{m} \int_{t_{0}}^{\infty}\|B(\tau)\| d \tau \leq \alpha_{m} \leq 1, \quad \forall t_{0}>\Delta
\end{aligned}
$$

Theorem 2.4. Assume that for any $m \in J$ the solutions of (14) are bounded. Then differential equations (9) and (10) are J - asymtotically equivalent.

Proof For each $m \in J$ we put

$$
Q_{m} x=\left(I+F_{m}\right) x, \quad x \in H_{m} .
$$

By Lemma 2.3, the inequality $\left\|F_{m}\right\|<1$ holds for $t_{0}>\Delta$. Therefore, the operator $Q_{m}: H_{m} \rightarrow H_{m}$ is invertible.

Denoting $\eta_{0}=Q_{m}^{-1} \xi_{0}, \xi_{0} \in H_{m}, m \in J$, we consider the solutions $x(t)=x\left(t, t_{0}, \xi_{0}\right)$ of (14) and $y(t)=y\left(t, t_{0}, \eta_{0}\right)$ of (15). It is clear that

$$
x(t)=X_{m}\left(t-t_{0}\right) \xi_{0}
$$

and

$$
y(t)=X_{m}\left(t-t_{0}\right) \eta_{0}+\int_{t_{0}}^{t} X_{m}(t-\tau) B(\tau) y(\tau) d \tau
$$

As was shown in Lemma 2.3, by the boundedness of all solutions of (14) we have

$$
\begin{aligned}
& X_{m}\left(t-t_{0}\right)=U_{m}\left(t-t_{0}\right)+V_{m}\left(t-t_{0}\right) \\
& V_{m}(t-\tau)=X_{m}\left(t-t_{0}\right) V_{m}\left(t_{0}-\tau\right)
\end{aligned}
$$

From the definition of Q_{m}, we have

$$
\xi_{0}=Q_{m} \eta_{0}=\eta_{0}+\int_{t_{0}}^{\infty} V_{m}\left(t_{0}-\tau\right) B(\tau) Y_{m}(\tau) \eta_{0} d \tau
$$

Hence

$$
\begin{aligned}
x(t) & =X_{m}\left(t-t_{0}\right) \eta_{0}+X_{m}\left(t-t_{0}\right) \int_{t_{0}}^{\infty} V_{m}\left(t_{0}-\tau\right) B(\tau) Y_{m}(\tau) \eta_{0} d \tau \\
& =X_{m}\left(t-t_{0}\right) \eta_{0}+\int_{t_{0}}^{\infty} V_{m}(t-\tau) B(\tau) Y_{m}(\tau) \eta_{0} d \tau .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
\|y(t)-x(t)\| & = \\
& =\left\|-\int_{t_{0}}^{\infty} V_{m}(t-\tau) B(\tau) Y_{m}(\tau) \eta_{0} d \tau+\int_{t_{0}}^{t} X_{m}(t-\tau) B(\tau) y(\tau) d \tau\right\| \\
& =\|-\int_{t_{0}}^{t} V_{m}(t-\tau) B(\tau) Y_{m}(t) \eta_{0} d \tau+\int_{t_{0}}^{t} U_{m}(t-\tau) B(\tau) y(\tau) d \tau+ \\
& +\int_{t_{0}}^{t} V_{m}(t-\tau) B(\tau) y(\tau) d \tau \|
\end{aligned}
$$

Since $y(t)=Y_{m}(t) \eta_{0}$, we have

$$
\begin{aligned}
\|y(t)-x(t)\|= & \|-\int_{t_{0}}^{\infty} V_{m}(t-\tau) B(\tau) y(t) d \tau+\int_{t_{0}}^{t} U_{m}(t-\tau) B(\tau) y(\tau) d \tau+ \\
& +\int_{t_{0}}^{t} V_{m}(t-\tau) B(\tau) y(\tau) d \tau \| \\
z= & \left\|-\int_{t}^{\infty} V_{m}(t-\tau) B(\tau) y(\tau) d \tau+\int_{t_{0}}^{t} U_{m}(t-\tau) B(\tau) y(\tau) d \tau\right\|
\end{aligned}
$$

Using (16), (17), (18) and taking into account $y(t)=Y_{m}(t) \eta_{0}$, we have

$$
\|y(t)-x(t)\| \leq a_{m} K_{m}\left\|\eta_{0}\right\| \int_{t_{0}}^{t} e^{-b_{m}(t-\tau)}\|B(\tau)\| d \tau+c_{m} K_{m}\left\|\eta_{0}\right\| \int_{t}^{\infty}\|B(\tau)\| d \tau
$$

or

$$
\|y(t)-x(t)\| \leq M_{1} \int_{t_{0}}^{t} e^{-b_{m}(t-\tau)}\|B(\tau)\| d \tau+M_{2} \int_{t}^{\infty}\|B(\tau)\| d t, \quad \forall t \geq t_{0}
$$

where $M_{1}=a_{m} K_{m}\left\|\eta_{0}\right\|, \quad M_{2}=c_{m} K_{m}\left\|\eta_{0}\right\|$.
Thus, for every positive number $\varepsilon>0$, there exists a sufficiently large number t and $t>2 t_{0}$ such that the following inequalities are valid

$$
\begin{aligned}
& \int_{t_{0}}^{\frac{t}{2}} e^{-b_{m}(t-\tau)}\|B(\tau)\| d \tau \leq e^{-\frac{b_{m} t}{2}} \int_{t_{0}}^{\infty}\|B(\tau)\| d \tau<\frac{\varepsilon}{3 M_{1}} \\
& \int_{\frac{t}{2}}^{t}\|B(\tau)\| d \tau<\frac{\varepsilon}{3 M_{1}}, \quad \int_{t}^{\infty}\|B(\tau)\| d \tau<\frac{\varepsilon}{3 M_{2}}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\|y(t)-x(t)\| \leq & M_{1}\left(\int_{t_{0}}^{\frac{t}{2}} e^{-b_{m}(t-\tau)}\|B(\tau)\| d \tau+\int_{\frac{t}{2}}^{t} e^{-b_{m}(t-\tau)}\|B(\tau)\| d \tau\right)+ \\
& +M_{2} \cdot \int_{t}^{\infty}\|B(\tau)\| d \tau<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon .
\end{aligned}
$$

This means that

$$
\lim _{t \rightarrow \infty}\|y(t)-x(t)\|=0
$$

By the uniqueness of solutions of differential equations (14) and (15), the map Q_{m} is bijective between two set of solutions of equations (14) and (15).

Lemma 2.5. If all solutions of the differential equations (9) are bounded, then

1. There exists a positive number $\Delta=\Delta(\alpha)$ such that

$$
\left\|F_{m}\right\| \leq \alpha<1, \quad \forall t_{0} \geq \Delta, \forall m \in J ;
$$

2. $\left\{F_{m}\right\}$ and $\left\{Q_{m}\right\}$ are convergent sequences of operators as $m \rightarrow \infty$.

Proof. By the boundedness of all solutions of (9), there is a number $\beta_{1}>0$ such that the Cauchy operator $X(t)$ of (9) satisfies relation

$$
\|X(t)\| \leq \beta_{1}, \quad \forall t \in R^{+}
$$

Denoting by $Y(t)$ the Cauchy operator of (10) satisfying $Y\left(t_{0}\right)=E$ we see that $Y(t)$ satisfies the equation

$$
Y(t)=X\left(t-t_{0}\right)+\int_{t_{0}}^{t} X(t-\tau) B(\tau) Y(\tau) d \tau
$$

Hence.

$$
\begin{aligned}
\|Y(t)\| & \leq\left\|X\left(t-t_{0}\right)\right\|+\int_{t_{0}}^{t}\|X(t-\tau)\|\|B(\tau)\|\|Y(\tau)\| d \tau \\
& \leq \beta_{1}+\beta_{1} \int_{i_{0}}^{t}\|B(\tau)\| \| Y(\tau \| d \tau
\end{aligned}
$$

By the Gronwall - Bellman inequality and (11) there exists a number β_{2} independent of t_{0} and m such that

$$
\|Y(t)\| \leq \beta_{2}, \quad \forall t \in R^{+} .
$$

Consequently,

$$
\left\|X_{m}(t)\right\| \leq \beta_{1}, \quad\left\|Y_{m}(t)\right\| \leq \beta_{2}, \quad \forall t \in R^{+}, \quad \forall m \in J .
$$

On the other hand, for any $0<\alpha<1$ we can find a number $\Delta=\Delta(\alpha)>0$ such that

$$
\int_{t_{0}}^{\infty}\|B(t)\| d \tau \leq \frac{\alpha}{\beta_{1} \cdot \beta_{2}}<+\infty, \quad \forall t_{0} \geq \Delta .
$$

Analogously, as in the proof of Lemma 2.3, we have

$$
\begin{aligned}
\left\|F_{m}\right\| & \leq \int_{t_{0}}^{\infty}\left\|V_{m}\left(t_{0}-\tau\right)\right\|\|B(\tau)\|\left\|Y_{m}(\tau)\right\| d \tau \\
& \leq \beta_{1} \cdot \beta_{2} \int_{t_{0}}^{\infty}\|B(\tau)\| d \tau \leq \alpha<1, \quad \forall m \in J, \quad \forall t_{0} \geq \Delta
\end{aligned}
$$

By defintion,

$$
F_{m}=\int_{t_{0}}^{+\infty} V_{m}\left(t_{0}-\tau\right) B(\tau) Y_{m}(\tau) P_{m} \xi d \tau
$$

From (12) and (13) we can show that for all $m, m+p \in J, p>0$,

$$
\begin{aligned}
X_{n+p}\left(t-t_{0}\right) P_{m} \xi & =X_{m}\left(t-t_{0}\right) P_{m} \xi, \quad \forall \xi \in H \\
Y_{m+p}(t) P_{m} \xi & =Y_{m}(t) P_{m} \xi, \quad \forall \xi \in H .
\end{aligned}
$$

Hence,

$$
F_{m+p} P_{m} \xi=F_{m} P_{m} \xi, \quad \forall m, m+p \in J, p>0
$$

We now prove the convergence of $\left\{F_{m}\right\}$. In fact, for $\forall m, m+p \in J, p>0$, we have

$$
\begin{aligned}
\left\|F_{m+p}-F_{m}\right\| & =\left\|F_{m+p} P_{m+p}-F_{m} P_{m}\right\| \\
& =\left\|F_{m+p}\left(P_{m+p}-P_{m}\right)+\left(F_{m+p}-F_{m}\right) P_{m}\right\| \\
& =\left\|F_{m+p}\left(P_{m+1}-P_{m}\right)\right\| \\
& \leq\left\|F_{m+p}\right\|\left\|P_{m+p}-P_{m}\right\| .
\end{aligned}
$$

By definition, $\lim _{m \rightarrow \infty} P_{m}=I$. Hence, by the boundedness of F_{m} the above yields that $\left\{F_{m}\right\}$ is a Cauchy sequence, so $\left\{F_{m}\right\}$ is convergent. This implies the convergence of $\left\{Q_{m}\right\}$.

Theorem 2.6. If all solutions of the differential equation (9) are bounded then the equations (9) and (10) are asymptotically equivalent.

Proof. By virtue of Lemma 2.5, we can put:

$$
F=\lim _{m \rightarrow \infty} F_{m} \quad \text { and } \quad Q=\lim _{m \rightarrow \infty} Q_{m}
$$

Hence, $Q=I+F$. Since $\left\|F_{m}\right\| \leq \alpha<1, \forall m \in J, \forall t_{0} \geq \Delta$, we have

$$
\|F\| \leq \alpha<1, \quad \forall t_{0} \geq \Delta
$$

Therefore, $Q: H \rightarrow H$ is an invertible operator. By the uniqueness of solutions of equations (9) and (10) we deduce that the map Q is also bijective between two sets of solutions $\{x(t)\}$ of (9) and $\{y(t)\}$ of (10). Let $y_{0}=Q^{-1} x_{0}$ and $x(t)=X\left(t-t_{0}\right) x_{0}$, $y(t)=Y(t) y_{0}$. Since

$$
\lim _{m \rightarrow \infty} P_{m} y_{0}=y_{0}, \quad \lim _{m \rightarrow \infty} Q_{m} y_{0}=Q y_{0}=x_{0}
$$

we can see that for any given $\varepsilon>0$, there exists sufficiently large $m_{1} \in J$ such that for all $m \geq m_{1}$ we have for $\forall t \geq t_{0}$

$$
\begin{aligned}
& \left\|y\left(t ; t_{0}, y_{0}\right)-y\left(t ; t_{0}, P_{m} y_{0}\right)\right\|<\frac{\varepsilon}{3} \\
& \left\|x\left(t ; t_{0}, y_{0}\right)-x\left(t ; t_{0}, Q_{m} y_{0}\right)\right\|<\frac{\varepsilon}{3}
\end{aligned}
$$

By virtue of Theorem 2.4 and the boundedness of all solutions of (9), we deduce that differential equations (9) and (10) are J - asymptotically equivalent. Consequently, there exists $\tau_{0} \in\left(t_{0}, \infty\right)$ such that for $\forall t \geq \tau_{0}$,

$$
\left\|x\left(t ; t_{0}, Q_{m_{1}} y_{0}\right)-y\left(t ; t_{0}, P_{m_{1}} y_{0}\right)\right\|<\frac{\varepsilon}{3}
$$

where t_{0} is choosen sufficiently large such that

$$
\left\|F_{m}\right\| \leq \alpha<1, \quad \forall m \in J
$$

Therefore.

$$
\begin{aligned}
\left\|y\left(t: t_{0}, y_{0}\right)-x\left(t: t_{0}, x_{0}\right)\right\| \leq & \left\|y\left(t ; t_{0}, y_{0}\right)-y\left(t ; t_{0}, P_{m_{1}} y_{0}\right)\right\|+ \\
& +\left\|y\left(t, t_{0}, P_{m_{1}} y_{0}\right)-x\left(t, t_{0}, Q_{m_{1}} y_{0}\right)\right\| \\
& +\left\|x\left(t ; t_{0}, Q_{m_{1}} y_{0}\right)-x\left(t ; t_{0}, x_{0}\right)\right\| \\
\leq & \frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon ; \quad \forall t \geq \tau_{0} .
\end{aligned}
$$

This implies that

$$
\lim _{t \rightarrow \infty}\left\|x\left(t ; t_{0}, x_{0}\right)-y\left(t ; t_{0}, y_{0}\right)\right\|=0
$$

By virtue of the Lemma 2.2 we get:
Corollary 2.7 Assume that all solutions of the differential equation (9) are bounded. Then, the differential equations (9) and (10) are asymptotically equivalent if and only if they are J - asymptotically equivalent.
Corollary 2.8 If all solutions of differential equations (14) are uniformly bounded for all $m \in J$, then differential equations (9) and (10) is asymptotically equivalent.

References

1. E. A. Barbashin, Introduction to the stability theory, Moscow, "Science" 1967 (in Russian)
2. Dang Dinh Chau, Studying the instability of the infinite systems of differential equations by general characteristic number, Scientific Bulletin (BECTNIK) of National University of Belasrus, Serie 1, Physics. Maths and Mechanics, 1(1983), p. 48-51 (in Russian).
3. B. P. Demidivitch, Lectures on the mathematical theory of stability, Moscow, "Science" 1967.
4. G. Eleutheriadis, M. Boudourides, On the problem of asymptotic equivalence of ordinary differential equations, Ital. J. Pure Appl. Math., 4(1998), p 61-72.
5. N. Levinson, The asymptotic behavior of systems of linear differential equations, Amer. J. Math., 63(1946), p. 1-6.
6. J. Miklo, Asymptotic relationship between solutions of two linear differential systems, Mathematica Bohemica, 123(1998), 163-175.
7. Vu Tuan, Dang Dinh Chau, On the Lyapunov stability of a class of differential equations in Hilbert spaces, Scientific Bulletin of Universities, Maths Serie. Vietnam, 1996.
8. Choi Kyu Sung, Hoe Goo Yoon, Jip Koo Nam, Asymptotic equivalence between two linear differential systems, Ann. Differ. Equations, 13(1997), 44-52.

VỀ SỰ TƯƠNG ĐƯƠNG TIỆM CẬN CỦA CÁC PHƯƠNG TRÌNH
 VI PHÂN TUYẾN TíNH TRONG KHÔNG GIAN HILBERT

Đặng Đình Châu

Khoa Toán Co Tin hoc

Dại học Khoa học Tư nhiên - DHQG Hà Nội

Trong bài báo này chúng tôi nghiên cứu sự tương đương tiệm cận của các phương trình vi phân trong không gian Hilbert. Đồng thời chúng tôi cunng đã chỉ ra mối liên hệ giữa tính tương đương tiệm cận của các phương trình vi phân dạng tựa tam giác trong không gian Hilbert và tính tương đương tiệm cận của các phương trình vi phân được cắt ngắn tương ứng.

