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FUNCTION ALGEBRA ON A DISK

Kieu Phuong Chi
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Abstract In this paper we prove the theorem on approrimation of conlinous func-
tion algebra on a disk. This result is an extension of the Werner’s one

I. Introduction

Let D be small closed disk in the complex plane, centered at the origin and f €

C(D). By |z, f; D] we denote the function algebra consisting of uniform limits on D of all
polynomials in z and f.

In 1964, J. Wermer [3] proved that if f of class C' and %(0) %0 then [z, f; D] =

C(D). In 2001, P.J. de Paepe [4] show that if f of class C*!, with f(0) = 0, of (0) = 0 and

0z
Q—'-f- 0 0 then [z™, f™, D| = C(D) with D small enough and m,n are coprime natural
9%
z
)
numbers. The proof of de Paepe does not work if f,—'f(()) # 0. In this paper. we give

oz

‘)
conditions such that [z™, f*; D] = C(D) when ;ﬁ (0) # 0. The proofs are maked by the
line of (2], the basis tool is Stout’s version of Kallin's lemma.

II. The main result

Theorem. Let f be a function of class C' defined in a neighbourhood of 0, with f(0) = 0,
of

g—{-(O) =1 and —(0) = b # 0. Suppose m,n are coprime natural numbers with m,n > 1

Jz

and

|b|2>2(1+ max 1+|COS(27T(ET:I—T+L§£))1)
1<k, r<m; 1<l s<n 1 — cos QW("-C?;—E 4 =2

n

(*)

for k#r orl# s. Then [z™, f™; D] = C(D) if D is a sufficiently small disk around 0.

Lemma 1. Let X be a compact subset of C%, and let 7 : C* — C? be defined by n(z,w) =

(z™,w"). Let =Y (X) = X11U..U Xk U...U Xpnn with X;mn compact, av:cd _XH =

2
{(p"z,'r'w) : (z,w) € Xpun} for 1 < k <m, 1 <1 < n, where p = exp(-zf) and

T = exp (2%) If P(n=}(X)) = C(n~}(X)), then P(X) = C(X).

Proof. Let f € C(X). Then fom € C(n~'(X)), so there is a polynomial @ in two variables
with fom ~ Q on 7~ }(X). In particular, this is true on Xy, so

™ uw™) ~ Q(p"z,'rlw) =Qx(2,9) on Xy
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It follows that

Qll(z:w) “fedei o an(z> w)

mn

f(@™ w") ~

on Xisn.

Now, if Q(z,w) = ) apqzPw?, the right hand side above equals ) apm gnz?"w? (all
other terms drop out), so equals P(2™,w™), where P is polynomial in two variables. So
f(z™, w™) ~ P(z™,w") on Xn, that is, f ~ P on X. So P(X) = C(X).
Lemma 2. (Stout’s version of Eva Kallin’s lemma) [4]. Suppose that:
(1) X, and Xy are compact subsets of C™ with P(X,) = C(X,) and P(X3) = C(X3);
(2) Y, and Y, are polynomially convex subsets of C such that 0 is boundary point of
both Y; and Ya, and Y1 NY, = {0};
(3) p is polynomial such that p(X,) C Yy and p(X3) C Ya;
(4) p~H(0) N (X1 U X2) = X1 N X
Then P(X, U X3) = C(X, U X3).

Proof of Theorem. The conditions on f imply that f(2) = 24 bZ+ h(z), with h(z) of class
C! and h(z) = o(|z|).
First, we show that z™ and j ™ separate points near 0. Indeed, first we see that

L)
points v and v with v # uexp (—-———) for all 1 < k < m are separated by z™. Now,
m

suppose that (f(z))" take the same value at uexp

/'_'\

z—f-n——) and u.exp(z"") for k # | and

u # 0. Then, there is 1 < 7 < n such that f(uexp(2 k)) = exp (2”’)f(uoxp (2“')).

[t implies that

) —2mik —-2mil  2mir
b|u|exp(—up)(cxp( = )——exp( + ))

m n

~ |ulexp(ip) (PXp(2 lk) - exp(?ﬂ_il B 27”"”))

m n

h<uexp<2“’“>>+exp<21">h<m<?-§)>»
).

It follows that

where u = |u|exp (up

—1 : k—1 \
|b|2 lulz(l—w%?ﬂ’( o +7L))52|ulz(1—c052w(—~—£|)

m n/
+ 4(',1(110,(1)(%%&)% + ih(uexp(z‘:;zl))J )

k-1 .
+—T-isnotintegerwnt.h1§k#l§mandlgr5n,so

. m n
N Z) # 1. Therefore

m 1L

If m,n are coprime, then

cos 27 (

B < 2(l — cos 277(‘7"' ﬁ)) N 4(1h(uexp(2"‘k))! - .h(uexp(z—-—"ﬁ)ﬂ )

1 — cos 27(" '+§) |u|2(1-cos27r(1°;’1—’+-:;))

m
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Since h(z) = of|z]) for every € > 0, there exists § > 0 such that |h(z)| < £|z| for all
z € B(0,68) := {z € C : |z] £ 4}. So, for D is small enough, we have

1 — cos 2m ( =t 1) 2
lb|252( (5 - )+ ce

1—(:05271*(’c ‘+n) 1 - cos2m (5t + L)

It follows that

b2 < 2(1 —(10327(5-"'7' - %))’

” k—1 r
1 - (,05277(‘-’;- 4 ;)

because ¢ is arbitrary. This contradicts to (). So 2™ and f™ separate points near 0. Now,
let X ={(z™, f"):2 € D}. Furthermore, let 7 be as in Lemma 1, and

T HX)=XnU...UXmn with Xpm = {(2, f(2)) : z € D}.

By Wermer's theorem P(Xy) = C(Xx) for 1 < k <m, 1 <1 < n . Next we consider
polynomial p(z,w) = zw and put

Yir := p(Xit) = {0*7'(2% + blz|® + zh(2)) : z € D}.

We show that YiuNY,, = {0} forall 1 < k,r <m; 1 <l,s <nwithk#rorl#s.
Indeed, it is easy to see that 0 € Y forall 1 €k <m and 1 <1 < n. Suppose, there is
0#y € YuNYy with k # r or I # s. Then, there are z; = aexp(ia) and z; = cexp(ij3),
where a, ¢ are real numbers with ac # 0 such that

*r!(ba® + a® exp(2ia) + aexp(ia)h(aexp(ia)))
= p'1* (be? + c* exp(2iB) + cexp(iB)h(cexp(if))).
It implies that

b(p" T c? — p*1la?) = pFrlalexp(Ria) — p"T*clexp(2i3)
+ aexp(2ia)h(aexp(2ia)) — cexp(2i8)h(cexp(2:3)).

B k—r l—s _ o - -
Put A = cos2((a — B) +7r( — + e )) and B = cosZw(—T—,; + T) By the
coprimeness of m, n we see that "%"+"T’ isnot integer foralll <k, <mandl <[,s<n
with k #r or l # s, so B # 1. We obtain

4 4 25 2 W2 g o2 :3)]2
PP fooate e 2a°c*A a*|h(aexp(2ia))|® + ¢* |h(cexp(2i8))|
1o "2(a.“ +c"—2a2028) +4( at + ¢t — 2a%c?*B )

Since h(z) = o|z]), for every € > 0, there exists D is sufficiently small disk such that

a?|h(aexp(2ia)|? + c?|h(cexp(2i3)|? » 4(a* + e

<M
a* + c* — 2a%c?B ~ at + ¢t —2a%c?B &

where M =4if B<0and M = T'—LB if B > 0. So, for D small enough, we obtain

(a4 + et —2a2c2A

2 ¢
Ibl* < 2 at + ¢4 — 2a%c?B

)+M5.
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We have
, t2 —2At + 1 2(B - A)t a?
12<2(,———) Me = -—_—--_) re L= — > 0.
|b]* < 7 9B+ 1" + Me 2(1+t2—28t+1 + Mg, where t C2>0
Considering the real function g(t) I S we obtain max g(t) B It
: o Te: > = - , We = :
* N = Z oBt+1 Gtes)” 7 B —B)
implies that
, B - A| |A| + | B| 1+ |B]
b2<2(1 | ) M <2(1 —————) <2( )+ .
|b]* < +l~B + Me < +1—B Me < 1+1—B Me
Since £ is arbitrary, we conclude that
: 1+ |B|
b2 < 2( )
bl <2(1+ [_ B

This inequality contradicts to (x).

Furthermore, it is easy to see that €\ Yy is connected set if D small enough, so
Yyt is polynomially convex [Ga] and p~'(0) N Xy = (0,0) for 1 <k <mand1 <! < n.
Therefore p~1(0) N (X U Xrs) = Xpu N Xyg forall 1 < k,r <m and 1 <Us < n with
k # 7 orr+# s. Now apply Stout’s version of Kallin’s lemma repeatedly, to obtain

P(n=1(X)) = C(n~}(X))

By Lemma 1, it follows that P(X) = C(X), or equivalently [z™, f*; D] = C(D). The

theorem is proved.
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