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F U N C T I O N  A L G E B R A  O N  A  D I S K

K ieu  P h u o n g  Chi
D epartm ent, o f  M athem atics, V inh U niversity

A b s tra c t  In  this paper we prove the theorem, on approxim ation  o f  con tinous fu n c ­
tion  algebra on  a disk. T h is  result is an extension  o f the W erner *8 one

I. In t ro d u c t io n

Let D  be small closed disk in the complex plane, centered a t the origin and /  € 
C ( D ) .  By (2 , / ;  D] we denote the function algebra consisting of uniform lim its on I) of all 
polynomials in z  and / .

In 1964, J. Wermer [3] proved that if /  of class c [ and 7 p ( 0) 7*̂ 0 then [z) / ;  D\  =
(y Ẩ

d f
C ( D ) .  In 2001, P. J. fie Paepe [4] show that if /  of class , with /(0 )  =  0, -77-(0 ) =  0 and

c
f

—  (0) / 0  then [zm , / n ;D] =  C ( D )  with D  small enough and 771,71 are coprime natural 
&z

numbers. The proof of de Paepe does not work if (0) i= 0. In this paper, we give
d f

conditions such th a t  [zmy f n \D] =  C( D)  when 0  (0) ỷ  0* T he proofs are m aked by the 

line of [2], the basis tool is S tou t’s version of Kallin’s lemma.

II . T h e  m ain  re s u lt

T h e o re m . L et f  be a fu n c tio n  o f  class c l defined in a neighbourhood o f  Ớ, w ith  /(0 ) =  0,
A  e o  r
—  (0) =  1 and  — (0) =  b ^  0. Suppose 771,71 are coprime natural num bers w ith  m , 71 > 1
d z  ỡ z
and.

, .9 / 1 T I cos (Z7T[
\b\ > 2  1 +  max ———-----~ 7

V l< * , r < m ;  1</, 3 < n  1 —  C 0 s 2 7 r (

l +  |c o s ( 2 . ( f a :  +  ^ ) ) |  

+  # )
m

k—r I l—s 
m

(*)

fo r  k Ỷ  r  o r  I ^  s . Then  [zm, / n ; D] = C ( D )  i f  D  is a su ffic ien tly  sm a ll d isk  around 0.

L em m a  1. Let X  be a compact subset 0/ C 2, and let 7T : c 2 -> c 2 be defined  by n ( z , w )  =  
( z m , w n ). Let  7T~l ( X )  =  X u  u  ... u  Xfci u  ... u  X mn  w ith  X m n com pact, and X k i —

{( pk z , T lw)  : {zyw)  € x m n} fo r  I < k  < m , 1 < I < n, where p  =  exp ( —  J and  

r  =  e x p ( ^ i ) .  I f  P ( n ~ l ( X ) )  — C ( n ~ l ( X ) ) ,  then  P ( X )  =  C { X ) .

Proof. Let /  € C ( X ) .  Then /077 € C(7T_1(X )), so there is a polynomial Q  in two variables 
with /  o 7r ~  Q  on In particular, this is true on Xki ,  so

mn *f ( z m , w n ) ~ Q { p k z , r lw)  :=  Qk i ( z , w)  Oïl X ,
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I t  fo llow s t h a t

Now, if Q ( z , w )  =  Y ^ a p%qz pw q, the right hand side above equals ^ d p m  qnZprnuỉqn (all 
other terms drop out), so equals P ( z rn) w n )y where p  is polynomial in two variables. So
f ( z m, ™n ) -  P ( 2m, u; ) on x mn, th a t is, f ~ p  on X . So P(A*) =  C (X ).

L em m a 2. (S tout’s version of Eva Kallin’s lemma) [4]. Suppose that:
(1) X] and X ‘i  are com pact subsets o f  c n w ith P ( X i) =  C ( X i) and P ( X 2) =  C ( X 2); 
^  Y\ and V2 are polynom ia lly  convex subsets o f  c  such that 0 is boundary p o i n t  o f  

both Y\ and  Y2 , and  Y\ n  Y2 =  {0};
(3) p  is polynom ial such  tha t p ( X \ )  c  Y\ and p ( X 2) c  Y2 Ỉ
(4) p (0 )n ( X i U X 2) =  X, n x i -  

T hen  P ( X l u  x 2) =  C ( X i  u  x 2).

P roof o f  Theorem . The conditions on /  imply tha t f ( z )  =  z +  bz + h ( z ), with h(z)  of class 
c l and h( z )  =  o(|2;|).

First, we show that 2m and / n separate points near 0. Indeed, first we see that

p o in ts  u  a n d  V w i th  V ^  It e x p  for all 1 <  k  < 771 a re  s e p a r a t e d  by 2m . Now,

suppose that (f ( z ) ) n take the same value at uexp ự ~ ~ j  and u e x f o r  k  Ỷ  I and

u  Ỷ  0- Then, there is 1 <  r  <  n  such th a t f ị u e x =  exp f  ( u e x p
It. implies that

, . / .  x /  ( 2 m k \  ( 2iril 2 m r \ \
=  -  | „ |e x p ( i* > ) ^ x p ( ^ )  - * p (  m + n )  )

where u  =  |u| exp It follows that

in 2 M 2 ( l  +  0 )  <  -  3 )

If m, n  are coprime, t h e n -------- h is not integer with 1 < k  ^  I < m  and 1 <  r  <  71, so
rn n

/  k  — I r  \  
o o s 2 7 r ( ------------ h  - -  ) 7É 1 .  Therefore

V 771 71 /



Since h(z)  =  o(\z\) for every Ố >  0, there exists Ỗ >  0 such tha t |/i(*)| < e\z\ for all 
z  €  B(0,<5) := { z  € c  : \z\ < Ỗ}. So, for D  is small enough, we have

/  1 — cos2tt ( —  — \  n 2
|0|2 < 21 V m w/ I + 2Ê L

V l - c o s 2 7 r ( ^  +  ^ y  1 -  +  n)

It follows that
1 - c o i f f a i - ỉ )
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I6f  < 2
1 - c o s 2^ ( ! ^ i  +  s ) y  ’

because e is arbitrary. This contradicts to (*). So 2m and f n sej)arate points near 0. Now, 
let X  =  {(<2™, / n ) : z  € £)}. Furthermore, let 77 be as in Lemma 1, and

7r"1(X ) =  X n U . . .U X mn with X mn =  {(z ,  f ( z ) )  : z  €  D}.

By Wermer’s theorem P( Xk i )  =  C ( Xk i )  for 1 < fc < m, 1 <  / <  n . Next we consider
polynomial p(Zj tv)  =  z w  and put

Yki ■■= p{Xki )  =  {p kTl( z 2 + b\z\2 +  z h ( z ) )  : z  €  £>}.

W e show t h a t  Yki n  Yr& =  {0} for all 1 <  k , r  < m\  1 <  lyS < n  w i th  k  ^  T or I ^  s. 
Indeed, it is easy to see that 0 € Yki for all 1 <  k  < m  and 1 < I < 71. Suppose, there is
0 Ỷ  y  € Yki n  Yrs w ith k  Ỷ  r  or l Ỷ  s • Then, there are =  aex p (ia ) and Z2 =  cexp(tjS), 
where a, c are real numbers with ac Ỷ  0 such that

pkTl (ba2 4- a 2 e x p (2 ia )  4- a e x p ( i a ) / i ( a e x p ( i a ) ) )

=  prTs (bc2 +  c2 exp(2Í/Ỉ) 4- cexp(z/3)/i(cexp(i/3))).

It implies that

b(pr r 9c2 — pk Tla2) =  pkTla2exp (2 ia )  — pr T3c2e \p (2 ip )

+  aexp(2ia)h(aexp(2ia)) — cexp(2i/3)/i(cexp(2i/J)).

Put i4 =  cos2^(q — /3) +  7T ̂  --------f  -— and H =  cos27r^~~ +  By the

coprime ness of 771, n  we see that 4- —  is not integer for all 1 < A:, r  < m  and 1 < /, s < n
with Ả: ^  r  or l Ỷ  s ) so B  Ỷ  1- We obtain

2 / a4 +  c4 — 2a2c2i4 \  / q2ị/ì(aexp(2iq))|2 +  c2 |/i(cexp(2z/?))|2 \
1 1 -  Va4 + c 4 - 2 a 2c2 5 > 1 I  a 4 +  c4 -  2 a 2c2B  y

Since /i(z) =  o(|z |), for every e >  0, there exists D  is sufficiently small disk such that

a2|/i(aexp(2 ia)|2 4- c2|/i(cexp(2i/?)|2 4(a4 +  c4)e
a4 +  c4 — 2a?c*B ~  a4 4* c4 — 2a2c2 H ~

where M  =  4 if B  < 0 and M  =  if B  > 0. So, for D  small enough, we obtain

a 4 + c4 — 2a2c2i4 \I,i9 rt/ a  + c  -  za c / i \
'6| î 2( ^ t ^ 5 b ) +M£-
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We have

IM2 < 2 (
t 2 -  2A t  + 1 '
t2 -  2 h t  -t- r .

\  4- M  £ — ‘2^1 +
t 2 -  2 t i t  +  1

2 ( 8  -  i4)t
j  4- A/£, w here t

, we obtain  m ax ợ(í) =  —— ---- It
(0,Hhoo) 2(1 - « )

|fc|2 <  2(1 +  y ^ )  +  M e <  2(1 +  ^  +_ f  ) M e  <  2(1  +  -  Me.

Since £ is arbitrary, we conclude th a t

This inequality contradicts to  (*).
Furthermore, it is easy t o see that c  \  Yki is connected set if u  small enough, so 

Yfct is polynoưiially convex [Ca] and p~l (0) n  Xfci — (0,0) for 1 <  k  <  m  and I < I < n.  
Therefore p ~ x(0) n  (X/t/ u  X r s )  =  X*/ n  for all 1 <  /c,r <  m  and 1 <  z,s <  n  with 
Ả: Ỷ  r  or r  ~f~ s - Now apply S tou t’s version of Kallin’s lemma repeatedly, to obtain

By Lemma 1, it follows th a t P ( X )  =  C( X) ,  or equivalently [2m , / n ;D ] =  C(D) .  The
theorem  is proved.

A c k n o w le d m e n ts . The au tho r is indebted to  Dr. Nguyen Q uang Dieu for proposing the 
problem  and for his generous guidance. My thanks also go to  Dr. Dinh Iluy Hoang for 
many valuable discussions.
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