ON FD-CAP SETS IN CONVEX GROWTH HYPERSPACES OF CONVEX N-CELLS

Ta Khac Cu

Department of Mathematics, Vinh University

Abstract If X is a convex n-cell, $n \ge 2$, then every non-trivial convex growth polyhedron hyperspace G is an fd-cap set in the closure \overline{G} of G in CC(X).

1. Introduction

Let X be a compact convex set lying in a Banach space. We write CC(X) for the hyperspace of all non-empty convex sets in X topologized by Hausdorff metric:

$$d(A,B) = \max\left\{\max_{a \in A} \min_{b \in B} \|a - b\|, \max_{b \in B} \min_{a \in A} \|a - b\|\right\}$$

for $A, B \in CC(X)$.

By P(X) we denote the family of all convex polyhedrons in X. A family $G \subset CC(X)$ (resp. $G \subset P(X)$) is a convex growth hyperspace (resp. convex growth polyhedron hyperspace) provided it satisfies the condition: If $A \subset G$ and $B \in CC(X)$ (resp. $B \in P(X)$) such that $A \subset B$, then $B \subset G$.

2. The results

Proposition 2.1. If G is a convex growth polyhedron hyperspace then closure \overline{G} of G in CC(X) is a closed convex growth hyperspace.

Curtis [2] has shown that if G is a non-trivial closed convex growth hyperspace of convex n-cell, $n \ge 2$, then G is homeomorphic to the Hilbebrt cub Q iff $G \setminus \{X\}$ is contractible. In this note we prove the following theorem strengthening the theorem of Curtis.

Theorem 2.2. If X is a convex n-cell, $n \ge 2$, then every non-trivial convex growth polyhedron hyperspace G is an fd-cap set in the closure \overline{G} of G in CC(X).

Here we say that a subset M of a metric space X is an fd-cap set in X iff M is a countable union of finite dimensional compact z-sets and the following condition hold

(Cap.) There is an increasing sequence of finite dimensional compact z-sets $\{M_n\}$ with $\bigcup_{n \in \mathbb{N}} M_n$ is dense in M such that given a finite dimensional compact set $K \subset X, \forall \varepsilon > 0, n \in \mathbb{N}$, there is an embedding $h: K \to M_m$ for some m > n such that $h|_{K \cap M_n} = id$ and $d(h(x), x) < \varepsilon$ for each $x \in K$.

Definition 2.3. We say that M is a cap-set in X iff M is a countable union of compact z-sets and the above condition is satisfied for every finite dimensional compact set $K \subset X$.

Combining the theorem with the result of Curtis [2] we obtain the following fact.

Corollary 2.4. Let G be a non-trivial convex growth polyhedron hyperspace of a convex n-cell X, $n \geq 2$ and let \overline{G} denote the closure of G in CC(X). If $\overline{G} \setminus \{X\}$ is contractible, then $(\overline{G}, G) \cong (Q, Q^f)$, where $Q^f = \{x = (x_i) \in Q : x_i = 0 \text{ for almost } i\}$.

3. Proof of the theorem

For each $n \in N$, put

$$G_n = \{A \in G : \forall A \le n\}$$

$$F_n = \{A \in G : A \subset IntX \text{ and } \forall A \le n\},\$$

where $\forall A$ denotes the number of vertices of A. Obviously, G_n, F_n are z-sets in \overline{G} for each $n \in N$ and $G \supset F \stackrel{df}{=} \bigcup F_n, \ G = \bigcup G_n$ and $\overline{G} = \overline{F}(=CC(X))$.

$$n \in N$$
 $n \in N$

The proof of the theorem is divided into two steps.

Step 1. Given $\varepsilon > 0$, $n \in N$ and a finite dimensional compact set $K \subset \overline{G}$, there is a map $g: K \to F_p$, for some p > n such that

$$g|_{K\cap F_n} = id$$
 and $d[g(x), x] < \varepsilon/2$

for $x \in K$.

Proof. Take an m > n such that F_m is an $\frac{1}{4}\epsilon$ - net for K. Let $\{U_j, C_j\}_{j \in J}$ be a Dugundji system for $K \setminus F_m$ (see [1]) and let $U = \{U_j\}_{j \in J}$, $k = \dim K$.

By N(U) we denote the nerve of U and let $N_0(U)$ be the 0-skeleton of N(U). Since dim K = k, we may assume that every simplex σ of N(U) has at most k + 1 vertices. We define

$$f: N_0(U) \to F_m$$

by the formula $f(U_j) = a_j$ for every $j \in J$, and extend f over the 1-skeleton $N_1(U)$ of N(U) as follows:

Let C be edge of N(U) with endpoints U_i, U_j and midpoint C^* . We define f on $C = [U, C^*] \cup [C^*, U_j]$ by the formula

$$f[(1-t)U_i + tC^*] = \operatorname{Conv}\{a_i, (1-t)a_i + ta_j\},\$$

$$f[(1-t)U_i + tC^*] = \operatorname{Conv}\{a_i, (1-t)a_i + ta_i\},\$$

for $t \in [0, 1]$. It is easy to see that $f(x) \in F_{2m^2}$ for each $x \in C = [U_i, U_j]$. We now extend f over N(U).

Let C denote the hyperspace of subcontinua of the 1-skeleton of N(U). Take a map $\varphi: N(U) \to C$ such that $\varphi(x) = \{x\}$ for each $x \in N_1(U)$, and if σ is the carrier of point x, then $\varphi(x) \subset \sigma^{(1)}$.

We define $f: N(U) \to F$ by the formula

$$f(x) = \operatorname{Conv} \{ f(p) : p \in \varphi(x) \}$$
 for $x \in N(U)$.

It is easy to see that f is continuous (i.e. f/σ is continuous for every simplex σ of N(U)) and $f(x) \in F_{2km^2}$ for every $x \in K$.

Let $p = 2km^2$, we define $g: K \to F_p$ by the formula

$$g(x) = \begin{cases} x & \text{if } x \in K \cap F_m \\ f\left[\sum_{i \in J} \lambda_i(x) U_j\right] & \text{if } x \in K \setminus F_m, \end{cases}$$

where $\{\lambda_j\}_{j\in J}$ is a locally finite partition of unity inscribed into $U = \{U_j\}_{j\in J}$. Since m > n, we have

$$g|_{K\cap F_n} = id.$$

For each $x \in K \setminus F_m$, let

$$E(x) = \{ j \in J, \lambda_j(x) > 0 \}.$$

Then $\operatorname{card} E(x) \leq k+1$ and

$$d[g(x), x] = d \left[f \left(\sum_{j \in E(x)} \lambda_j(x) U_j \right), x \right] \le \\ \le d \left[\text{Conv} \left\{ a_j : j \in E(x) \right\}, x \right] \le \\ \le \sup \left\{ d(a_j, x) : j \in E(x) \right\} \le 2d(F_m, x).$$

This shows that g is continuous.

Since F_m is an $\frac{1}{4}\varepsilon$ – net for K, we infer that $d(g(x), x) < \frac{\varepsilon}{2}$ for $x \in K$. Step 2. There is an embedding $h: K \to F_m$ for some m > p > n such that

$$h|_{K\cap F_n} = g|_{K\cap F_n} = \mathrm{id}$$

and

$$d(h(x),g(x)) \le \frac{1}{2}\varepsilon$$

for each $x \in K$.

Proof. Without loss of generality we may assume that $X \subset \mathbb{R}^2$. Let us put

$$\widetilde{K} = \bigcup \{g(x) : x \in K\} \subset \text{IntX}.$$

Since \widetilde{K} is compact, $\operatorname{dist}(\widetilde{K}, \partial X) > 0$, where ∂X denotes the boundary of X.

Let h be an embedding of K into I^K . For some $k \in N$, let h_i , i = 1, ..., k be the it's coordinate functions h.

For each $x \in K$, put

$$S(x) = \text{Conv}\left\{e^{\frac{2\pi \hat{x_j}i}{3p(k+1)}}, \ j = 0, \dots, 3p(k+1) - 1\right\}$$
(1)

$$i^{2} = -1$$

$$\widehat{x_{j}} = \begin{cases} j & \text{if } j = r(k+1) \text{ for } r = 0, \dots, 3p(k+1) - 1 \\ j + \frac{1}{2}h_{q}(x) & \text{if } j = r(k+1) + q \text{ for } r = 0, \dots, 3p(k+1) - 1, \\ q = 1, \dots, k. \end{cases}$$
(2)

We define $h: K \to F$ by the formula

$$h(x) = g(x) + \delta d(x, B)S(x) \quad \text{for each } x \in K,$$
(4)

where

 $B = F_n \cap K$

and

$$\delta = \frac{1}{2} \min \left\{ \varepsilon, \operatorname{dist}(\widetilde{K}, \partial X) \right\}.$$

It is easy to see that

 $h(K) \subset F_n$

for m = 3p(k+1), $h|_B = g|_B = \text{id}$ and $d[h(x), g(x)] \leq \frac{\varepsilon}{2}$ for each $x \in K$. Let us show that h is an embedding. Given $x, y \in K$ with $x \neq y$.

Consider three case.

Case 1. $x, y \in B = K \cap F_n$. Then we have

$$h(x) = g(x) = x \neq y = g(y) = h(y).$$

Case 2. $x \in B$ and $y \in K \setminus B$. Then we have

$$ee h(x) = ee g(x) \leq p < 3p(k+1) = ee h(y).$$

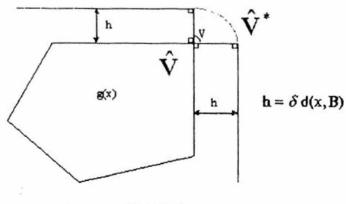
Thus $h(x) \neq h(y)$.

Case 3. $x, y \in K \setminus B$. Let V be a vertex of g(x) such that

$$\widehat{V} \le \frac{(\vee g(x) - 2)2\pi}{\vee g(x)},$$

where \widehat{V} denotes the angle of g(x) at V.

Let $\widehat{V^*}$ denote the angle pictured as in figure 1.



On FD-cap sets in vonvex growth hyperspaces ...

Then we have

$$\widehat{V^*} = 2\pi - \widehat{V} \ge \frac{4\pi}{Vg(x)} \ge \frac{4\pi}{p}.$$

In this case h(x) has at least

$$\frac{4\pi}{p} \cdot \frac{3p(k+1)}{2\pi} = 6(k+1) \text{ vertices of the form}$$

$$\left\{ V + \delta d(x,B) \cdot e^{\frac{2\pi \widehat{x}_j i}{3p(k+1)}}, \ j = q, \dots, q + 6(k+1) \right\}.$$
(5)

Consider two cases.

Case 3a. V is a vertex of g(y). Since $x \neq y$, from (1), (2), (3), (4) follows that there are at least nine points of the form (5), which are not vertices of h(y). This shows that $h(x) \neq h(y)$.

Case 3b. V is not a vertex of g(y), whence h(y) has at most two vertices of the form (5), thus $h(x) \neq h(y)$.

Thus h is one-to-one. Since K is compact, it follows that f is an embedding.

This completes the proof of the theorem.

References

- C. Bessaga and A. Petezynski, Selected topics in infinite dimensional topology, Warszawa 1975.
- D. W. Curtis, Growth hyperspaces of peano continua, Trans. Amer. Math. Soc. (1978).
- Nguyen To Nhu and Ta Khac Cu, Probability measure functors preserving the ANRproperty of metric spaces, *Proceedings of Amer. Math. Soc.* Vol. 106, No.2(1989).
- Ta Khac Cu, Direct limits which are pre-Hilbert spaces, Acta. Math. Vietnam, No.2(1989).

9