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ON FD-CAP SETS IN CONVEX GROWTH
HYPERSPACES OF CONVEX N-CELLS

Ta Khac Cu
Department of Mathematics,Vinh University

Abstract If X is a conver n-cell, n > 2, then every non-trivial conver growth
polyhedron hyperspace G is an fd-cap set in the closure G of G in CC(X).

1. Introduction

Let X be a compact convex set lying in a Banach space. We write CC(X) for the
hyperspace of all non-empty convex sets in X topologized by Hausdorff metric:

acA beB B

d(A, B) = max {umx min {ja — b, max mil\n lla — bll}
e B a&

for A,B e CC(X).

By P(X) we denote the family of all convex polyhedrons in X. A family G C
CC(X) (resp. G C P(X)) is a conver growth hyperspace (resp. convex growth poly-
hedron hyperspace) provided it satisfies the condition: If A ¢ ¢ and B € CC(X)
(resp. B € P(X)) such that A C B, then BC G.

2. The results

Proposition 2.1. If G is a convex growth polyhedron hyperspace then closure G of G in
CC(X) is a closed convex growth hyperspace.

Curtis [2] has shown that if G is a non-trivial closed convex growth hyperspace
of convex n-cell, n > 2, then G is homeomorphic to the Hilbebrt cub @Q iff G\ {X} is
contractible. In this note we prove the following theorem strengthening the theorem of
Curtis.

Theorem 2.2. If X is a convex n-cell, n > 2, then every non-trivial convex growth
polyhedron hyperspace G is an fd-cap set in the closure G of G in CC(X).

Here we say that a subset M of a metric space X is an fd-cap set in X iff M is a
countable union of finite dimensional compact z-sets and the following condition hold

(Cap.) There is an increasing sequence of finite dimensional compact
z-sets {M,} with U M, is dense in M such that given a finite dimensional compact

neN
set K C X,¥e > 0,n € N, there is an embedding h : K — M,, for some m > n such that

hlknm, = id and d(h(z),z) < € for each z € K.
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Definition 2.3. We say that M is a cap-set in X iff M is a countable union of compact
z-sets and the above condition is satisfied for every finite dimensional compact set K C X.

Combining the theorem with the result of Curtis [2] we obtain the following fact.

Corollary 2.4. Let G be a non-trivial convex growth polyhedron hyperspace of a convex
n-cell X, n > 2 and let G denote the closure of G in CC(X). If G\ {X} is contractible,
then (G,G) = (Q,Q7), where Qf = {x = (z:) € Q : z; =0 for almost i}.

3. Proof of the theorem

For each n € N, put

Gn={A€G:VA<n}
F.={A€G:ACIntX and VA<n),

where VA denotes the number of vertices of A. Obviously, G,,, F,, are z-sets in G for each

neNandGDFZ | Fa, G= |J Gnand G=F(=CC(X)).
neN neN
The proof of the theorem is divided into two steps.

Step 1. Given ¢ > 0, n € N and a finite dimensional compact set K C G, there is a map
g : K — F, , for some p > n such that

9linr, =1d and d[g(z),z] < £/2

for r € K.
Proof. Take an m > n such that F, is an %e — net for K. Let {U;,C;};es be a Dugundji
system for K \ F,, (see [1]) and let U = {U;}jes, k = dim K.

By N(U) we denote the nerve of U and let Ny(U) be the 0-skeleton of N(U). Since

dim K = k, we may assume that every simplex ¢ of N(U) has at most k + 1 vertices. We
define

f:No(U) = Fp,
by the formula f(U;) = a; for every j € J, and extend f over the 1-skeleton N;(U) of

N(U) as follows:

Let C be edge of N(U) with endpoints U;,U; and midpoint C*. We define f on
C = [U,C*]u[C*,U;] by the formula

fl(1 = t)U; + tC*| = Conv{a,, (1 — t)a; + ta,},
fl(1 = t)U; + tC*] = Conv{a,, (1 — t)a; + ta;},

for t € [0,1]. It is easy to see that f(z) € Fy,,2 for each z € C = [U;,U;).
We now extend f over N(U).
Let C denote the hyperspace of subcontinua of the 1-skeleton of N(U). Take a map

¢ : N(U) = C such that ¢(z) = {z} for each z € Ny(U), and if o is the carrier of point
x, then p(z) C oV,
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We define f : N(U) — F by the formula
f() = Conv{f(p) : p€ p(a)} for z € N(U).

It is easy to see that f is continuous (i.e. f/o is continuous for every simplex o of N(U))
and f(z) € Formz for every ¢ € K.
Let p = 2km?, we define g : K — F, by the formula

T ifre KNF,
gle) = f[Z)mnm

eJ

ifz € K\ Fin,

where  {);};es is a locally finite partition of unity inscribed into
U = {U;};es. Since m > n, we have

Q|I(n1-‘n = id.

For each =z € K\ F,, let
E(zx) = {j € J, Mj(z) > 0}.

Then cardE(x) < k + 1 and

dlg(r),z) =d | f Z 2i(2)U; | ,z]| <
J1€EE(z)
< d[Conv{a;:j€ E(z)},x] <

< sup {d(a;,z) : j € E(z)} < 2d(Fn, ).

This shows that ¢ is continuous.

Since F, is an :11-6 — net for K, we infer that d(g(z),z) < —;— forz € K.

Step 2. There is an embedding h : K — F,, for some m > p > n such that

hlknr, = glknr, = id

and i
d(h(z), 9(x)) < 3¢

for each z € K.
Proof. Without loss of generality we may assume that X C R2. Let us put

I?:U{g(x:) :z € K} C IntX.

Since K is compact, dist.(f{',BX) > (0, where dX denotes the boundary of X.
Let h be an embedding of K into IX. For some k € N, let h;, i =1,... ,k be the
it'’s coordinate functions h.



For each = € K, put
2w T;i

S(z) = Conv{ e3Pk +1) 50 . 3pk+1)—1

V) ifj=r(k+1)forr=0,...,3p(k+1) -1
;=0 j+ghe(x) ifj=r(k+1)+qgforr=0,...,3p(k+1) -1,
g=1;... jk.
We define h : K — F by the formula
h(z) = g(x) + éd(x, B)S(x) for each z € K,
where
B=FNK
and )
§ = 5 min {5, dist(K,BX)} .
[t is easy to see that
h(K) C F,
for m = 3p(k + 1), hip = g|p = id and d[h(z), g(z)] < % for each z € K.
Let us show that h is an embedding. Given z,y € K with z # y.
Consider three case.
Case 1. z,y € B = KNF,. Then we have ,
h(z) = g(z) = = # y = g(y) = My).
Case 2. x € B and y € K \ B. Then we have
Vh(z) = Vg(z) < p < 3p(k + 1) = Vh(y).
Thus h(zx) # h(y).
Case 3. x,y € K\ B. Let V be a vertex of g(z) such that
7 < Walz) - om
Vg(z)

where V denotes the angle of g(x) at V.
Let V* denote the angle pictured as in figure 1.

&) h b= & d(x,B)

FIGURE 1
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Then we have

17\‘:27r—172 on 2@..
Vg(x) P

In this case h(z) has at least

in 3p(k + 1 ;
= Jf —B(———-)- = 6(k + 1) vertices of the form
P 2m

2nT;i

V+6d(z,B)-eSPk+1) 50 aa6k+1)). (5)

Consider two cases.

Case 3a. V is a vertex of g(y). Since z # y, from (1), (2), (3), (4) follows that
there are at least nine points of the form (5), which are not vertices of h(y). This shows
that h(z) # h(y).

Case 3b. V is not a vertex of g(y), whence h(y) has at most two vertices of the
form (5), thus h(z) # h(y).

Thus h is one-to-one. Since K is compact, it follows that f is an
embedding.

This completes the proof of the theorem.
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