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XAFS CUMULANTS AND THERMAL
EXPANSION OF BCC AB BINARY ALLOYS
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Department of Physics, College of Science, VNU

Abstract: A new quantum statistical anharmonic theory has been derived for cal-
culation and analysis of XAFS cumulants and thermal cxpansion of bee AB binary
alloys systems. This model is developed based on the anharmonic vibration of ab-
sorber from atom sorte A and backscatierer from another atom sorte I3, including
contributions of their nearest neighbours. Atomic pair polential has been taken by
plus-averaging of Morse polential. The caxpressions have been derived for effective
spring constant, correlated Finstein frequency, correlaled Finstein temperature, first
cumulant or net thermal expansion, second cumulant or Debye- Waller factor, third
cumulant causing phase change of XAFS spectra, and thermal expansion cocfficient.
Numurical evaluations have been carried oul for Fey_ ,W,. The results are temper-
ature dependent and reflect the experiment und fundamental theoretical behaviuors
of these quantitics.

1. Introduction

The X-ray Absorption Fine Structure (XAFS) spectra and their Fourier transfom
magnitude provide structural information of substances including alloys. At low tem-
perature the harmonic theory works well [1]. But as the temperature increases due to
anharmonic effects the XAF'S spectra provide different structural informations at different
temperares [2-7]. To correct these uncertainties the cumulant expansion approach [4] has
been developed. According to this theory the XAFS function contains the factor

ev®) aw(k) = 2ic\V) - 2k%0? — %z’kf’a(’“ +o

where ¢(!) is the first cumulant or net thermal expansion, o(?) is the second cumulant or
Debye-Waller factor, and ¢(®) is the third cumnulant providing the phase change of XAFS
spectra [3]. Most of the efforts is focused to interpret the measured anharmonic or high-
temperature XAF'S spectra. Some progresses have been made to calculate the curmulants
of the crystals [5,6,10,11], and recently our evaluations for fcc alloys systems have been
discussed [9].

This work is our next step of [9] deriving a quantum statistical anharmonic proce-
dure to calculate the cumulants and thermal expansion of bee binary AB alloys systems
in XAFS theory. Our model is based on the local atomic vibration including anharmonic
effects in a small cluster of the absorber from an atom sorte (A) and the backscatterer from
another one (B) with taking into account of their nearest neighbors’ contributions. The
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creation and annihilation operators are used to describe phonon interaction, and physical
parameters have been derived by averaging calculation using the statistical density ma-
trix. Numerical calculations have been carried out for bee alloys Fe,_.W,. The results
are temperature dependent and reflect the experimental ones and fundamental theoretical
behaviours of the above derived quantities.

2. Theory

We consider anharmonic vibration between absorber as atom A and backscatterer
as atom B with taking into account the contributions of their immediate neighbors so that
their interaction is characterized by an anharmonic effective potential

1 2 3
U(,H(ar)=§ke”z + kyx’ 4o T=7r-—rg, (1)
where r is spontantaneous bond length between absorbing and backscattering atoms, g
is its equilibrium value, k.ss is effective spring constant, and k3 is cubic anharmonicity
parameter which gives an asymmetry in the pair distribution function.

It is usually sufficient to consider weak anharmonicity, then our derivation of the
expressions of cumulants and thermal expasion of bee alloys systems in XAFS theory
is based on quantum statistical theory with quasi-harmonic approximation, according
to which the Hamiltonian of the system is written as a harmonic term with respect to
the equilibrium at a given temperature, plus an anharmonic perturbation [5]. Using the
definition [5,12] y = z — a as the deviation from the equilibrium value of = at temperature
T and a(7") =< r — 1y > as the net thermal expansion we express Eq. (1) in the form

1
2
The single bond interaction potential between the atoms A and B contained in

the effective potential (2) of the system is obtained by an plus-averaging of Morse pair
potential and is given by

Uesf(y) = =kessy* + 06U (y). (2)

Uap(z) = Dap(—1+ OAB$2 e a',m-'l?a +e), (3)
1 D aa% + Dpa? Daa® + Dga’
Dag= =i+ D w028 T 2008 1w B~ ABA " BEE
2 Dap Dagp
where D4 p and a4 p are the Morse potential parameters
Ua.p(z) = Dy p(e™234.8T _ 2eA.B7), (5)

Considering the contributions of immediate neighbors of absorber and backscatterer,
as well as, the atomic distribution in bee structure, we derive the effective spring constant

kess =2DAB(C'1(1,4;;-—-3CQGQ’AB), (6)

the perturbation potential due to anharmonicity

8U(y) = Dap(2C aapay — Cadspy?). (7)
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Our approach is based on a local vibration picture and a Einstein model is ap-
propriate. From the above relations the correlated Einstein frequency wg and correlated
Einstein temperature 0 have been derived, and they are given b

b

2D / v

wp = ( Ab[ClaAB - 3(/'200,413]) ’ ®)
A /9D, 1/2

O = P ( 15 [Craap — 30200//113]) J @)
B i

In the Eq.(6-9) we used kp as Boltzmann’ s constant and the following symbols

Ci=1+3(Ha+up), Co=1+pa+up,

MasMpg My Mp

= — = —— = —— 1
H My + Mp Pa My+ Mg 8 Mg+ Mp ( O)

where M4 and Mg are the mass of the absorbing and backscattering atoms, respectively.

The cumulants are derived by averaging the value of y [5,12]. Atomic vibration is
quantized as phonon, and anharmonicity is the result of phonon interaction. Therefore, to
calculate the matrix elements for these interactions we express y in term of annihilation
and creation operators @ and a™, i. e. ,

y = oo(d + a*),00 = (h/2uwi)'/?, (1)

and use the harmonic oscillator states |n) as eigenstates and F,, = nfuwp as eigenvalue.
The cumulants have been derived by averaging procedure, using the statistical density
matrix p and the canonical partition function Z in the form

1
(ym) = Ztr(pym))m = 172,*3) ety (12)
where
Z=trp, p=po+0p, Zo=trp (13a)
—BH, pe i 2
po =€ ) H0=2—’;+§keffy 8= 1/kgT, (13b)
B
bp=— / po = e~ P Hog(](B) = PHlogye=Plto, (13¢)
0

Using Egs. (12,13) we derived the expressions for the averaging value of y for the
even moments m,

Ze-"ﬂn‘*’g (nly™eIn) ,m. = 2,4, 6, (14)

n
and for the odd moments my

- 1 e"ﬁEn e e—ﬁEn' mo
W) = 5 3 S <AlfUG)In > (™), mo =135 (19)

n,n’
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In the calculation of transition matrix elements the selection rule has been obeyed.
From Eq. (14) we derived the second cumulant or Debye-Waller factor
hwg 142 Y

2 D
] —_—
7 ( ) 4(31[),\30,4;,1—-7,'

(16)

Using Eq. (15) and the condition < y >= (0 we derived the first cumulant or net
thermal expansion
_ 3Chwpalp 1+ 2

a(T) = e"(T) = s b
( ) ( ) SC?DABQQABI_"Z ( )

and the third cumulant

Co(hwg)?a’yp 1 + 10z + 22

A1) =
) = 6302 0k, (=27

(18)

The parameter a(7") describes an asymmetry of the pair potential or the thermal ex-
pansion of the bond length 7 4 5 between the two atoms A and B due to the anharmonicity,
that is why from Eq.(17) we derived the thermal expansion coefficient

. 2

ar(T) = ¥ ;
") = 4CTDana%, " T AT

(19)

To get the above simplified formulas several mathematical expressions have been
used.

From the above expressions it is easy to receive the following relation

arrTo®  3z(1+z)In(1/z)
c® T (1—-2z)(1+10z+22)

(20)

In order to define the behaviours of the above obtained thermodynamic quantities
in temperature dependence we derived them in the low temperature (7" — 0) and high
temperature (7" — o0) limits. The results are presented in Table I.

Table L. The values of o'/ . 0*.6'* &, and . rTa® / ¢ for an alloys AB at low
temperature (7' — 0) and high temperature (7" — o) limits.

Value T—0 T >

oV 3C, e phag(1+22)/8CID pa, 36, Al ks THACHD 05

o’ hop(1+2z)/4C,D pa 45 kT 2CED s

ot Cott (heog)'(1+122) 116G Dy 3C, ey (kpT ) / 4C) Doty
Qy 3C,kpalp2(inz )2 (1+22)/ 4CED gaipray  3Crkpalyp /4CIDptintan

a,rTo* /o" 3zln(1/z) 12
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3. Numerical results

2]

Now we apply the above derived expressions to numerical calculations for the bee

binary alloys Fe; _,.W,. The Morse potential parameters D4 g and a4 g were taken from

Ref. 8. The calculated values of Dap,aap, s, kefs,wp, 0 for the alloys FeW are

given in Table II.

Table II. The calculated values of D ;. ;. .a .k, .0, .0, for the alloys FeW.

Sample | Bond |D,(eV ) | auy (A% ot (A*) | kyg(Nm) (oE(XI()”H:) 0,.(K)
FeW Fe-W 0.708 1.9734 2.7725 92.1962 3.5896 274

The vibration characterizing quantities for the alloys bond Fe — W, calculated by
present procedure are different from those for the single crystal bond Fe — Fe and W — W,
calculated by the procecure presented in Ref. 14. This can be seen in the Table III.

Table lII: Comparison of the values £, .@;.and 8, of the single crystal bond with those of

the alloys bond of FeW.
Sample Bond kup(N/m) W, (<107 Hz) 0,(K)
R Fe-Fe 47.2748 3.1836 243
W W-W 115.9597 2.7481 210
FeW Fe-W 92.1962 3.5896 274

Fig. 1 shows the temperature dependence of our calculated net thermal expasion
o) of FeW compared with those of its components Fe and W. Fig. 2 shows the
temperature dependence of our calculated Debye-Waller factor 02 of FeW in comparison
with those of its components F'e and W.
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Fig. 1: Net thermal expansion o' ()
of FeW compared with those
of its components Fe and W.
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Fig. 2: Debye-Waller factor o*(4)
of FeW compared with those
of its components Fe and W.




22 Nguyen Van Hung

Fig. 3 inllustrates the temperature dependence of our calculated third cumulant
o) of FeW in comparison with those of its components Fe and W. Fig. 4 shows the
temperature dependence of thermal expansion coefficient ar of Feg.ss W 12 compared with
those of its components Fe and W. Fig. 5 demonstrates the temperature dependence
of our calculated cumulants relation aprTe?/c® of FeW compared with those of its
components Fe and W.
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Fig. 3: Third cumulant o*' (&%) of FeW Fig. 4: Thermal expansion coefficient
in comparison with those of its ay (K' ’) of FeW in comparison with
components Fe and W. those of its components Fe and W.
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Fig. 5: Cumulants relation a, 7o’/ a*) of FeW in comparison with those of its
components Fe and W.

4. Discussions and conclusions

- In this work the expressions of XAFS cumulants and thermal expansions of the
two components bee alloys systems in temperature dependence have been derived based
on quantum statistical theory.

- The net thermal expansion o(!), Debye-Waller factor ¢ and third cumulant o*)
contain zero-point contributions as quantum effects at low temperature, and contain the
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classical limits at high temperature, where o1, ¢? ~ T, and ¢(®) ~ T2, These behaviours
are seminlar to those of the results of theories [5,6,10] and by experiments [2,13] for the
single crystals.

- Thermal expansion coefficient has the form of specific heat which approaches
to a constant value at high temperature as the Dulong-Petit rule and vanishes at low
temperature obeying the cubic temperature rule.

- The cumulants relation aprTa?/0'®) approaches the classical and experimental
value [2] of 1/2 at 0 (Fig. 5). This denotes the Einstein temperature as the limit above
which the classical approach can be applicable and below which the gquantum theory must
be used as it was defined for the single erystals [5].

- This approach can also be applied to the research of thermodynamic properties of
nano systems.
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