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X A F S  C U M U L A N T S  A N D  T H E R M A L  
E X P A N S I O N  O F  B C C  A B  B IN A R Y  A L L O Y S

N g u y e n  V an H u n g
D ep a rtm en t o f  P hysics, College o f  Science, V N U

A b s tra c t:  A new  q uan tum  sta tis tica l (inharm onic theory has been derived fo r  cal­
cu la tion  and analysis o f  X A F S  cum ulan ts  and therm al earpansion o f  bcc A B  binary 
alloys system s. This m odel is developed based on the anharm onic  vibration o f ab­
sorber fro m  atom  sorte  A and  backs ca tterer fro m  another a tom  sorte  11, including  
contributions o f  th e ir  nearest neighbours. A tom ic  pair po ten tia l has been taken by 
plus-averaging o f  M orse potentia l. The expressions have been derived fo r  effective  
spring constan t, correlated E in s te in  frcqiicncy, correlated E in ste in  tem perature, fir s t  
cum ulan t or ne t therm a l expansion, second cum ulant or Debye- W aller fac tor, third  
cumulant, causing phase chanqe o f  X A  F S  spcct.ro, and  therm al expansion coefficient. 
N um urica l evaluations have been carried out fo r  F eI _ s W x. The results are tem per­
ature dependent and Ttfleet tJic experim ent and fundam enta l theoretical bchaviuors 
o f  these quantities.

1 . I n tro d u c tio n

The X-ray Absorption Fine S tructure (XAFS) spectra and their Fourier trarisfom 
magnitude provide structural information of substances including alloys. At low tem­
perature the harmonic theory works well [1]. But as the temperature' increases due to 
anharmonic effects the XAFS spectra provide different structural informations a t different 
temperares [2-7]. To correct these uncertainties the cumulant expansion approach [4] has 
been developed. According to  this theory the XAFS function contains the factor

e ^ k \ w ( k )  =  2i<7<1> -  2 k 2a 7 -  1 » * V 3> +  . . .  ,
• J

where (jt1) is the first cmnulant, or net therm al expansion, Ơ^  is the second cumulant or 
Debye-Waller factor, and is the th ird  cumulant, providing the phase change of XAFS 
spectra [3]. Most of the efforts is focused t o interpret the measured anharmonic or liigh- 
tem perature XAFS spectra. Some progresses have been made to calculate the cumulants 
of the crystals [5,6,10,11], and recently our evaluations for fee alloys systems have been 
discussed [9].

This work is our next step of [9] deriving a quantum  statistical anharrnonic proce­
dure to calculate the cum ulants and therm al expansion of bcc binary A n alloys systems 
in XAFS theory. Our model is based on the local atomic vibration including anharmonic 
effects in a small cluster of the absorber from an atom sorte (A) and the backscatterer from 
another one (B) with taking into account of their nearest neighbors’ contributions. The
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creation and annihilation operators are used to describe phonon interact ion, and physical 
parameters have been derived by averaging calculation using the statistical density m a­
trix. Numerical calculations have been carried out for bcc alloys F e \ - x w x . The results 
are tem perature dependent and reflect the experimental ones and fundamental theoretical 
behaviours of the above derived quantities.

2. T h e o ry

We consider allharmonic vibration between absorber as atom  A and backscatterer 
as atom B with taking into account the contributions of their immediate neighbors so th a t 
their interaction is characterized by an anharrnonic effective potential

1 2 1
^ e / /(z )  =  2 k *f Jx  + k *x  +  • • • > X =  r  -  r 0, (1)

where r  is spontantaneous bond length between absorbing and backscattering atoms, To 
is its equilibrium value, kef f  is effective spring constant., and ^3 is cubic anharmoiiicity 
parameter which gives an asymmetry in the pair distribution function.

It is usually sufficient to consider weak ankarmonicity, then our derivation of the 
expressions of cumulants and therm al expasion of bcc alloys systems in XAFS theory 
is based on quantum  statistical theory with quasi-harmonic approximation, according 
to which the Hamiltonian of the system is w ritten as a harmonic term  with respect to 
the equilibrium at a given tem perature, plus an anharmonic perturbation [5]. Using the 
definition [5,12] y  =  X — a as the deviation from the equilibrium value of X a t tem perature 
T  and a ( T)  = <  r  — r 0 > as the net thermal expansion we express Eq. (1) in the form

Ue f f ( y )  =  ị k e f / y 2 + ô ư ( y ) .  (2 )

The single bond interaction potential between the atom s A and B contained in 
the effective potential (2) of the system is obtained bv an plus-averaging of Morse pair 
potential and is given by

ƯAỉì (x ) — \  +  OiABX2 -  a'ABx* 4----- ), (3)

n _. l / n , n N , n DAa 2A + D Ba ị  , D Aa \  + DBa ị
VAD  — 7Ị\L)A +  V b ),OíAB -  * ----------- 7Z---------------- ,<*AB -  2 ------------ n —  ---------------------------- 5 V4 )

* I ' AB V A B

w here  D a tì a n d  atA.tí a re  th e  M orse  p o te n t ia l  p a r a m e te r s

U a ,b (x ) =  D AiB( e ' 2aA BX -  2 e ~ aABX). (5)

Considering the contributions of immediate neighborvS of absorber and backscatterer, 
as well as, the atomic distribution in bcc structure, we derive the effective spring constant

k ef f  =  ^ D a b Ì C ỵClaB — 3C2aa'i4j5), (6 )

the perturbation potential due to anharmonicity

SU(y)  =  D A li(2C ].aABa y  -  C 2ot'AHy 3). (7)
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Our approach is based on a local vibration picture and a Einstein model is ap­
propriate. FYom the above relations the correlated Einstein frequency UJE and correlated 
Einstein tem perature 6 e  have been derived, and they are given by

1/2
(8)<+>E — f — —  \ C \ o ia b  -  Z C 2 a a 'A B Ỷ j

h  / 2  D Ab A 1/2
Oic — -— ---- — \C \otAB — oC 2aaA B\

KR \  f* /
(9)

In the Eq.(6-9) we used k[} as Boltzm ann’ s constant and the following symbols

C l =  1 + -  [fify +  (J?B ) , Ơ2 =  1 +  n \  +  /ig ,

M a M b  _  M a ___ M b __  / inv
fl ~  M a +  M b  ’ flA  ~  M a  +  M b  ’ ~  M A + M b '

where M a and M b  are the mass of the absorbing and backscattering atoms, respectively.
The cumulants are derived by averaging the value of y  [5,12]. Atomic vibration is 

quantized as phonon, and anharm onicity is the result, of phonon interaction. Therefore, to 
calculate the matrix elements for these interactions we express y in t erm of annihilation 
and creation operators ả and a + , i. e. ,

y = ơ0(â +  â + ) , ơ 0 =  (11)

and use the harmonic oscillator states In )  as eigenstates and E n =  n h u i as eigenvalue. 
The cumulants have been derived by averaging procedure, using the statistical density 
matrix p  and the canonical partition function z  in the form

(ym ) =  ị t r ( p y ”') ,r n  =  1 ,2 ,3 , . . .  , (12)

where

z  =  trp,  p =  Po +  sp,  Z q =  trpo  (13a)

P0  = e - pẵio, H 0 =  Ç -  + ị k c f f y 2, í 3 =  l / k B T,  (13b)

Sp  =  -  f 0 P0  =  e ~ ^ 'H°SỮ  (P) =  e0Ho0U e~0Ho. (13c)
Jo

Using Eqs. (12,13) we derived the expressions for the averaging value of y for the 
even moments m e

(ym°) = 4 ~  <n|y"*-|n) ,m c =  2 ,4 ,6 , (14)
n

and for the odd moments mo

(y mo) =  ề  E  e~ ^ "  —  < n \ỏ u (y )\n >  . ™0 =  1 ,3 ,5 ..-  (15)&0 , ton ~  tin 'n ,n '



In the calculation of transition matrix elements the selection rule has been obeyed. 
Prom Eq. (14) we derived the second cumulant or Debye-Waller factor

2 (rr\ _  1 + 2  -Or /T  ( mr;\
=  * = e  • (lfl) 

Using Eq. (15) and the condition <  y  > =  0 we derived the first cumulant or net 
thermal expansion

a ự )  ^ < - > ( r )  =  g W p » i i f  (,T)
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and the third cumulant

(3)m  C 2{ t u o E )  a ' A B  1 + 10« + 2
ơ ( r > -  u c & r j f c  (1 - >  • (18)

The param eter a ( T )  describes an asynunetry of the pair potential or the thermal ex­
pansion of the bond length Ta b  between the two atoms A and B due to the anharmonicity, 
that is why from Eq.(17) we derived the thermal expansion coefficient

“ T ( r )  i ( % D AB ° \ o  A B \ ( 1 - Z ) T ) 1 -  (19)

To get the above simplified formulas several m athem atical expressions have been
used.

FYoin the above expressions it is easy to receive the following relation

a r r T ơ 2 3z(l + z)ln(l/z)

<r<3> (1 - z ) ( l  + l0 z  + z 2) ' 1

In order to define the behavioiưs of the above obtained thermodynamic quantities
in tem perature dependence we derived them  in the low tem perature (T  —> 0 ) and high
tem perature (T  —y oo) limits. The results are presented in Table I.

Table I. The values of cr(U ,CT2 ,a T a n d ctr r T ơ 2 / ơ (3) for an alloys AB at low
temperature ( 7’ —» 0 ) and high temperature (7’ —>00 ) limits.

V a l u e r - >  0 T  —> 00

a " '
*>

Ơ

a<5>

a T

a T r T ơ 2 Ơ [V)

+ 2 z )  i C ^ D ^ a ^ f t  

hú)E ( \  + 2 z )  4C \D ABa AB 

C i «'a b (*°>b ) 2(  1 + U z j / i e c ^ a ^

3C 2k - ịá AỊịZ ( ỉn z  ) 1' ( \  + 2 z /  & A B a ABrAB 

3 z  l n ( \  /  z )

^ 2 a A B ^B ^  ■* 4 t,\ ^ A B a AB

k B I  /  2Cj2

ỵ 4 C Ị

3C 2 k B a '/W 4C|2 D ju ìữ2ABr AB 

1/2
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3. N u m e ric a l re s u lts

Now we apply the above derived expressions to numerical calculations for the bcc 
binary alloys F e \~ x w x . The Morse potential param eters I )  A [Ị and Ola /y were taken from 
Ref. 8 . The calculated values of D a B ì ^ a B ì a Atìi  Oe  for the alloys F e W  are
given in Table II.

Tabic II. Ihe calculated values of D AB M 4B M'AB ,k tìff .(Oỵ ,&E for the alloys 1‘eVV.

S am ple B ond DM ( e V) <*AB ( Á  2) CA3 ) k ' f f f N  m) ( Ogf xW* Hz) e E( K )

FeW Fe-W 0.708 1.9734 2.7725 92.1962 3.5896 274

The vibration characterizing quantities for the alloys bond F e  — w , calculated by 
present procedure are different from those for t he single crystal bond F e  — F e  and w  — W,  
calculated by the procedure presented in Ref. 14. This can be seen in the Table III.

Table III: Comparison of the values kejg .(oE.anciOE of the single crystal bond with those of

the alloys bond of FeW.

Sam ple B o n d k ,f f(N  ■ m ) (0 H(xl ( )n  Hz) 9 ,: (K )

" le Fe-Fe 47.2748 3.1836 243
w w-vv 115.9597 2.7481 210

FeW Fe-VV 92.1962 3.5896 274

Fig. 1 shows the tem perature dependence of our calculated net. thermal expasion 
ơ-(l ' of F e W  compared with those of its components F e  and w . Fig. 2 shows the 
tem perature dependence of our calculated Debye-Waller factor Ơ2 of F e W  in comparison 
with those of its components F t  and w .

T (K) T(K)

Fig. 7: Net thermal expansion <7 (i) (Ẵ) 
of FeW compared with those 
of its components Fe and w.

Fig. 2: Debye-Waller factor Ơ2(Ằ2) 
of FeW compared with those 
of its components Fe and w.
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Fig. 3 inllustrates the tem perature dependence of OUI* calculated third cumulant 
of F e W  in comparison with those of its components F e  and w . Fig. 4 shows the 

tem perature dependence of therm al expansion coefficient Qr of Feo .88 Wo.12 compared with 
those of its components F e  and w .  Fig. 5 demonstrates the tem perature dependence 
of our calculated cumulants relation o t t T ơ 2/ ơ ^  of F t W  compared with those of its 
components F e  and w .

Fig. .3:Third cumulant c r5l(À3) of FeW 
in comparison with those of its 
components Fe and w .

Fig. 4:Thermal expansion coefficient 
a T (k  1 ) of FeW in comparison with 

those of its components Fe and w .

2 0 0  3 0 0

T(K)
40 0 5 0 0

Fig. 5: Cumulants relation a r r T ơ 2 <7 '31 of FeW in comparison with those of its
components Fe and w .

4. D iscussions a n d  conclu sions

- In this work the expressions of XAFS cumulants and therm al expansions of the 
two components bcc alloys systems in tem perature dependence have been derived based 
on quantum  statistical theory.

- The net thermal expansion Debye-Waller factor Ơ2 and th ird  cumulant Ơ 
contain zcropoin t contributions as quantum  effects a t low tem perature, and contain the
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classical lim its at high tem perature, where ờ2, ~  T,  and ~  'I'2. These behaviours 
are seminlar to those of the results of theories [5,6,10] and by experiments [2,13] for the 
single crystals.

- Therm al expansion coefficient has the form of specific lieat which approaches 
to a constant, value at high tem perature as the Dulong-Petit rule and vanishes at low 
tem perature obeying the cubic tem perature rule.

- The cumulants relation ot'yrTơ 2Ị ơ !y?,) approaches the classical and experimental 
value [2] of 1/2 at 0 g  (Fig. 5). This denotes the Einstein tem perature as the limit above 
which the classical approach can be applicable and below which the quantum  theory must 
be used as it was defined for the single crystals [5].

- This approach can also be applied to the research of thermodynamic properties of 
nano systems.
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