
VNU. JOURNAL OF SCIENCE, Mathematics - Physics. T  XVIII, N()3 - 2002

S O M E  R E M A R K S  O N  T H E  F I N I T E - T I M E  

B E H A V I O R  O F  W I E N E R  P A T H S

D an g  P h u o c  H u y
D ep a rtm en t o f  M athem atics, U niversity  o f  I)a  Lat

A b s tra c t  We establish, som e properties o f  the fin ite - tim e  behavior o f  W iener paths. 
Som e applications o f  these results are also given.
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1 . In tro d u c tio n

Throughout this note, by 93(R;V ) we shall denote the Polish space of all continuous 
paths $  : [0 ,oo) — > R*v , and let M i(© (R iV)) be the space of Borel probability measures 
on 23(IR'V)( see, for example, (1, Section 1]). Define, for each X £ R ‘v , the transform ation 
Tx :® (R * ) — ><B(R'V) by

(t) =  x +  * (i) , t e  [0 , 0 0 ), ( 1 .1 )

and let W x ^  =  T x * w ( /v) be the distribution of Tx under when' is W iener’s
measure for ]RA - valued paths. As usual, we use 23 E to denote the Borel field over the 
topological space E, and set

i [ N\ dy )  =  7t(Ar)(y)rfy.

where i [ N \ y )  is the Gauss kernel on R'v .
We mainly refer the reader to [2, Section 3.3] for all questions about the existence, 

the uniqueness and the independence of the coordinates of under which the above
probability distribution was also satisfied. Namely, we have the following properties.

(a) WxN 1 is a unique probability m easure on  M i(iB (R ^)) w ith  the properties that 'I'(O) =  
X fo r  Wx'X almost all  (E Q3(R;N ) and

v v ^ l *  : * (« 0  -  tf(to) 6  B u . . . , * ( t k ) -  í ( í fc_ i)  € B k Ỵ j

=  7 Í r )( f i i ) x  7 ^ ( 5 2 )  t ( t ì k ), (1.2)

fo r  all k  6 Z + ,0 =  to < t\ < • • • < £ * ,  and  /?!,*•• € ©TR/V.
(b)

N
w W  =  w x, X • •. X =  n  w , , .  (1.3)

t = l

/fere we w.se Wr in  place o f  w i !\  and W j, X • • • X w .rjv 2.S i/ie product m easure, 
f o r  any  X  =  ( : r X / V  ) 7 G .
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Oiư aim here is to investigate some of the basic facts about the finite-time behavior 
of Wiener paths. Thus, in Sect ion 2, we shall present the invariance properties of W iener’s 
measure and, as a consequence of Theorem  4.3.8 in [2], some results are obtained. Finally,
applications to the properties of W iener paths are given in Section 3.

2 . S om e p ro p e r t ie s

We begin this section with the invariance properties of the probability distribution 
W x v ' ■ Firstly, we recall two families of transformations on Q 3(R;V). The first of these is
the family | s a : a  6  (0. oo )} of Scaling m aps given by

and the second family of transform ations which we will want, are the rotation 7Z relative 
to R , given by

where R  is a orthogonal m atrix of order N.

Prom the invariance properties were introduced in [2] (see [p. 182 and Exercise 
3.3.28]), we immediately obtain  the following result.

P ro p o s itio n  2.1.
(a) (T ransla tion  in va ria n t)

(2.1)

(2.2)

(2.3)

fo r  any  X, y  € R ;V.
(b) (Scaling invariance)

(2.4)

fo r  each a  £ (0, oo) a n d  X £  R jV.
(c) ( R ota tion  in va ria n t)

(2.5)

(where R /  is the transposed m a tr ix  o /R ^ , fo r  each X € R jV.

Proof. We begin by noting tha t, for each

TxSQ^ ] ( í ) = x  +  Q - H ( a í ) =  S aT  ị * 1 (0 , te ỊO .o o )

and
7 x 7 2 ^  (t)  =  X +  R V ( t )  =  n r ^ T ^ )  (t),  t € Ị0,oo).

Hence,
( 2 .6 )
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and
Tx o1Z =  n o 7 ' n r x . (2.7)

So, by Wiener Scaling invariance (see [2, p. 182]) [resp. Rotation invariant (see [2, Exercise
3-3.28])] together with (2.6) [resp. (2.7)] implies (2.4) (resp. (2.5)].

Now, in order to prove the first, assertion, we see that

T xoT y =  Ty oT x =  Tx+y,

for any x ,y  £ R ^ . Hence,

w ỉ ì £  =  7x-y  * W {N) =  7x * (Ty  * =  Tx * W 'N)

=  Ty *(T x *W<'v>) = r y *W<A' \

which proves (2.3). Proposition 2.1 is thus established. □

In the next lemma, by B ( E ‘,v; R)  we denote the space of bounded ©rfc/v-measurable 
functions from R N into H.

L em m a 2.2. Let f  € B (R /V; H) be a g iven fu n c tio n . T h en , fo r  each t Ç [0,oo) and any  
x .z  € R;V,

[  /($(i) + z)vv£w)(i®) = f  f ( y W t N \ y - x - z ) d y ,  ie[0,oo).

Proof. Indeed, from (1.2) it implies that,

MỈ+iíi* : #(*) € = J  7 t(,V)( y - x - z ) d y ,

for every H € Hence, by (2.3) and the fact th a t is the Lesbesgue measure for 
Q3(RiV), wc have

f  f { m  +  z)wiw>(rf$)= /  / (  V,$‘(t)W 'v>(rf«&)
./Q3(K") \ l )

=  f  / ( « ( O j w ï ï i # )

= [ /(ybi(A,)( y - x - z ) d y ,

this completes the proof. □

We need the following well known notions.

Define, for each Í € [0,oo), the coordinate projections 7Tt : S8 (R /V ) — >• R'v by

7rt $  =  * (t) , (2.8)
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and let,
=  < * { * 3  • s € [0 , i]), t € [0 ,oo) (2.9)

be the ơ-algebra over Í8 (R'V) generated by all maps 7TS, s € Ị(M]. Given a {© fr : £ £ 
[0 , oo)}-stopping time T, we will use the notation

=  {.4 Ç ® (R 'V) : A n { r  < t }  <E f o r  all i € [0,oo)}.

Then it is well known that, *23̂  is always a sub (7-algebra of 93<B(^V) and T itself is a 
23^-m easurable function (concerning this subject, see, for example. [2. Section 4.3] and 
[3, Chapter 2, Sections 4,5] for more information).

The following theorem extends a particular case of Theorem 4.3.8 in [2].

T h e o re m  2.3 . Let T be a {93;v : t € [0,oo)}-stopp ing  tim e and  F  : 2 3 (R ‘V) — > R  
a bounded 03^ -measurable fu n c tio n . Suppose that 7/ : ( r  < oo) — > [0, +oo] is a 33^ - 
measurable fu n c tio n . Then, fo r  each f  € J3(IRjV; /{), X  € R A? and  h  € C (R ^ ;R ^ ) , we

(Here we use i '( r )  in  place o f  ÿ  ( r ( i ' ) ) .)

Proof. Define, from the above assumptions, the function I I  : Q3(R/V) X *B(RiV) — » R  by

where IA  denotes the characteristic function of a set A .
Then H  is 93^ X 93<3(£JV)-Ineastưable. Note that (rj < oo) =  ( r  < oo) n ( 7/ < oo), 

applying Theorem 4.3.8 in [2] and Lemma 2.2, we have

have

/ / ( $ ,  # )  =  Z|0.oo)(t(*)) -IỊ0.OO) (*?(*)) • F(<J>)/(*(r,(<!>)) +  /1 ( < % ( $ ) ) ) ) ,

F ( V ) Ĩ Ự ( t ( * )  + tị( 9 ) )  +  / i(* '(T ))Jw iw>(d*)

=  [  F ( * ) (  Ị  f  ( * { v ( * ) ) + H H r ) ) ) w l Nl ( < m ) w i N) m
J{tị« x>) \J<sạR~) \  /  /

=  ị  p w ( l  / ( y b ỉ í * ) ( y - w -

by change of variables of the integral in parentheses, we get (2 .10 ) and the theorem is 
established. o

From the above theorem we obtain the following corollaries.



C o ro lla ry  2.4. L et T be a {2?ịv : t (E [0, o o )}-sto p p in g  tim e  and  7/ : ( r  <  oo) — > [0, -foo] 
is a -m easurable fu n c tio n . T hen , /o r  any /1 € VìỤ and /1 c  (77 < 0 0), X € R iV and 
/? € ©RiV, we have

W f ) | A n { i  : ^ ( r  +  r?) € £ } )  =  I  ■ s f o w )  € B } ) W W ( d i ') .  (2 .1 1 )

Proo/. Setting F ($ )  =  X a($ 0 ,/(y )  =  Iỡ (y )  and /1 =  0 , by applying (2.10) and Lemma 
2 .2 , we get

v y w ^ n  {$  : ^ ( r  +  r/) €

= J  1 a Ợề ) Ụ ^  l B { y  + n T ) ) ^ w ( d y ) ^ ^ m

=  I  Ự  i f l ( y b ^ ) ( y - * ( T ) ) ^ ) w < w>(d¥)

=  I  Ị I  Ĩ B Ị $ ( i ( í ) ) j w ỉ [ i )w j w < w)( '» ) .

Corollary 2.4 is thus completely proved. □

C o ro lla ry  2.5. Let R  be any orthogonal m a tr ix  o f  order /V, define the  transform ation  
h  : R'v — » by /i(y) — R 7 (y — R y). U nder the  a ssum ptions o f  T heorem  2.3, we have

[  F { 9 ) J [  # ( t  +  7/) +  R t ¥ ( t )  -  ® (r ) )  W {XN) {(M)
J ( tị<oo) V  /

= /  L  / ( y +  R r * ( r ) b i i* ) ( dy ) W /v)(rf¥)
7(r,<oo) V a *  /  (2 .12)
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for each X € R N

Proof. It follows immediately from Theorem 2.3 and the linearity of the transformation 
h. □

3. T h re e  a p p lic a tio n s

The above results can be used to study properties of the behavior of Wiener paths. 
As our first application about these, we give the following computation.

E x am p le  3.1. The following notations will be used from now on:

B N (a.;r)  =  {y e  R w : I y  -  a  |<  r }  (3.1)

Byv(a;r) =  {y € K ;V : I y -  a  |<  r},

where I z I denotes the Euclidean norm of z € R N



for any a  £ and r > 0. It is easy to see (see (2.8)) tha t 7rt~ l (fí/v(a; r))  =  { í  G

QÍ(Rn ) : I # (0  -  a |<  r} e  Identify 'ĩ' € 53(K'V) <— >■ (* ! ,• • •  , 9 N ) e  ( » ( « ) ) w
by

*(«) =  ( # 1(s) ,---  ,< M « )) r , s G [0,oo),

(see, for exam ple ,  [l, p . 16], [2, P-179Ị). T h e n ,  for each  X =  (x*i, • • • , .T/v)7 £  sa tisfy ing  

condition rii= i ^  7̂  0> putting r  =  \ / n  6 for any £ > 0, by the independence of the 
coordinates under W x%' (see [2, Exercise 3.3.28]) we have, for any fixed t € [0,oo),

WjW f  { *  €  ®(R'V) : I 4»(0 |<  y /V e}^

>  W ^N) ^ { * 6  « ( R * )  : I î ' j ( i )  | <  e; f o r  I < j  < N}^J

= n  ({*€*(/*): I 0(0 |< t}).

Next, taking a , =  x ” 2, 1 <  i < N ,  use (2.4) and (2.5) to see that

f j  WXj ( V  € © (* )  : I 4>(t) |<  c} j  =  n  w ssni< ( { ậ  € ® (/ỉ) : I ự.(x,-2í) |<  11 r  } )

= n  Wi (V € : I x« ̂ *r20 1̂  el) •

Hence, we obtain the following inequality

v\4">  ( { *  e  © ( R w ) : I * ( 0  | <  n/7v e } ^  >  f ]  w ,  ({</> G * ( / ỉ )  : I X, ự>(x,-2 í) |<  t } ) ,  

for any c >  0, ỉ G [0,oo), and X is given in the above.

R e m a rk . If putting  Ai =  { ộ  € 33(/ỉ) : I Xj ộ ( x ~ 2t) |<  e}, 1 < i < Ny then (see (1.3))

í í w c * > - < v ( í ụ )  
t=l \= 1  7

= < }. ,1)T ({* € ®(R/V) : Ix* *<(*r20 té e‘> /°r 1  ̂i ^ A'})-
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Thus, we have

W<w) Ị { $ e  <8 (Kn ) : I 9 ạ )  I< \ / jV e } j

^  W(i?» ,1)T ( { *  e  ® (* w) : I * .(® r20 l <  p - | 5  /o r  1 < i <  /V



and

The next applications deal w ith the behavior of Wiener paths over finite time in
tervals.

E x a m p le  3.2 . For any r  € (0, oo), we consider a function from © (R ^ ) into [0, 4-oo] 
which given by

t£ ) ( V )  =  i n f  { t >  0 : I ®(t) |>  r} , 9  e  © (R * ). (3.2)

Then is a {®;v : t €  [0, oo)}-stopping time. In this example, we will show th a t the 
Wiener paths satisfy the following properties.

(a ) For each X € B\ ( o ; r )  (see the n o ta tio n  (3 .1 )) a n d T  > 0, then

J i o )  - ị ) +  to r) O O B ^ Ĩ  - ị ) +  far) (3.3)

j  0)  cos^ 2  "*■ =  e- ^ cos^ 2  ■ ~  +  > (3-4)

/ o r  e v e r y  f c ç Z .  I*\irther,
(b)  fo r  any c >  0 and  X € #/v(0; then

w * v :  } >  T )  >  e "  ^ ^  c o s "  -  2  )  )  ( 3 -5 )

and

( 4 ^  >  T )  > e - ^  ^ c o s w ^ . i ệ l ) .  (3.6)

In order to prove these assertions,we proceed in several steps.

Step L  Using T he same techniques of the proof of Theorem 7.2.4 in [2] with respect to 
the function

/ ( i ,x )  =  e^T 'r*  cos^7T^- ”  2 )  +  e  [0’°°) x Æ

w2 t f  TT X \
resp . ỡ(£,:r) =  c * cosi  2  n ) '  ^  [0>°°) x ft

we see tha t, the assertion (3.3) [resp. (3.4)1 is obtained from the fact th a t /( iA r> r\  7T (1))
"̂>r

resp. #(£ A T>r\  7rtA <n)j is VVx-martingale relative to {*Bj : £ £ [0,co)} (see the

notations (2.8), (2.9)). Furtherm ore, by the independence of coordinates of W iener’s
measure, we also have

W4n>({*€<B(R'v): sup |tf(0l<c}i
V t€[0,T] /

30 Dang Phuoc H uy



for each X =  (x i, • • • , Xfif)1 € R jV and e > 0.

Now, choosing a  =  c~2 • r 2 • TV, again by (2.4),
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l {<t>e<B(R) :  sup \<t>(t)\< 
\  t€[0,T)

=  W’rv^ T ({4> € 33 (fl) : sup I 0 (e - 2  • r 2 • N  t) \< r
• ‘ V te[0,T]

=  G Q3(/ỉ) : sup........  I ự>(í) |<  r } \
‘ * \  te[0,i-2r*/vr] /

for each WXl, 1 < i < N . Hence, it shows from (3.7) th a t

w ^ f i ®  € » ( 11* )  : sup I * ( i)  |<  c} I
V t€ |0 T ]  )

>  n  ( { ộ  € 23(/ỉ) : sup I <p(t) l< r }') •“  * 'V t € [ 0 , c - * T * . N T ]  J (3.8)

S tep  2. Denote by the set of the non-negative real niưnbers. From (3.3) (with k  =  0), 
we see that

Wr { r £ l  > t 'J > e - T - S  c o s ^ -  -  >  0, (3.9)

f o r  X €  [0, r ) .

Taking X € (-/^0 )N n  /Í/V (0; then X, G [0, r) (for each i ( l  <  i <  TV)), and 
therefore, applying (3.9) (with T  replaced by e“ 2 • r 2 • N T ), we get

n X i ( r >r  > e~ 2 - r 2 ■/V7’)  - e_j^  ^ n « " ( * ( —  ■ * '~  2 ) ) '  3̂ ' 10^

Hence, since W rv/jy f{0(O) =  • £t}) =  1 and VVx^ ({'I'(O) =  x}) =  1 (see (1.2)),

(3.8)(3.10) plus the definition of the stopping-time (3.2) leads to

W Í N) > t 'J > e - £ ^ Ỵ ị c o s ^ —  (3.11)

S tep  3. Next, for any fixed X (E #/v (0; putting  y  =  • • • I Then, there
exists a Rotation Ĩ Ỉ  (relative to R ) on 23 (R ^ ) in which the orthogonal m atrix R  satisfied



the condition R y  =  X. Thus, by (2.5), we conclude from (3.11) th a t

W i N) =  n * WyV) ( j i v  >

=  W ịN) : T ^ i n v )  > T } ' SJ  

= w W { *  rrg0^ )  > r} i

> e- i ' ^ c o s ^ l i i - ì ) ) .

Finally, by the same argum ent as above, we also obtain (3.6) and this example is completely 
established.

R e m a rk . We use E F[ X, A]  to  denote the expected value under p  of X  over the set A.  
Taking X =  I  in (3.3) and thereby obtain
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L „  T) “ » ( * ( ^  -  i )  +  f e r jW j( i® )  =  ( - l ) V Í  i

Thus,

E w * COS 7̂T 0  +  kTr'j , r ị lJ > T

=  ( —l ) fc C0S^7T^~ ~  2 )  +  COS 7̂T ^ ~ 2 )  +  ĉ7r)  ’ >

for any r  >  0, 7’ >  0, k  £  z  and X € # i(0 ;r ) . 

Similarly, by (3.4) (with X  =  0), we have

E w . COS f  I  • —  +  ẮC7T j  , r l lJ > T

=  ( - l ) fc°°s f  2 ■ “  +  fc7r) £'VV co's ( 2  ~  +  fc7r)  ’ T- r‘ > T

for any r  >  0. T  >  0, k  £  z  and X  € íỉi(0 ;r ) .

R e m a rk . One could define the sub sets of Ổạt(0; ^7= ) under which we will obtain the 
better estim ates than the inequalities of (3.5) and (3.6). Namely, letting X Ç ft/v (0; 
for each e >  0 , then



This implies that,

* ( * ( &
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-  2 ) )  -  l > ^  r  X  e ỉ f i j v ( 0 ;  § ) ,

x g M  0 ; ^ )  I N  =  1,2,3
(3.12)

where ổtì/v(0; I )  is the boundary of /í/V (0; I )  

and

Co s ( f . M )  =  l,
, , . «  I S O .  (3.13)

Then, it shows from (3.5)(3.12) tha t

W 0V) / g o  > > e ~ * ị

for TV =  1,2,3; € >  0, T  >  0 and X € Ó/Ỉ/V (0; I ) .

Similarly, by (3.6)(3.13), we obtain  the certain result of Theorem  7.2.4 in [2],

yy(N) ^r (W) >  >  e - 4 - JS£ L t t  >  0 , T  >  0.

E x am p le  3.3. Let us consider two {23^ : t € [0,00)} -stopping tim es as follows

ơ(>ỉ) =  inf { s  > 0 : I 'P(.s) |<  ^ } (3.14)
£t

and
r ( ^ )  =  iiif13  > : I #(.v) |>  r} , (3.15)

for each r  > 0 and every í* E Q3(R;V). Let t € (0 ,00) be fixed and X G Byv(0;r). Define
77 : ( r  <  + 00) — > [0, + 00] by

7/($) =  ( t - r ( i ) ) v 0 .  (3.16)

Then 77 is a © ^-m easure function. Furtherm ore, taking ;4 =  ( r  < £), it is obvious th a t
A c  (r] < 00). The following notations will be used:

R  t ì  =  { R y  : y  G Ỡ }  a n d  /3 +  z  =  { y  -f z  : y  G / ĩ} ,  z  €  R 'v , B  €  ©RAT.

In this example, we shall prove th a t the Wiener pa ths satisfy the following properties.

(a) For any orthogonal m a tr ix  R  be g iven , and  every B  G .

w w  € ® ( R W) : r(vt') <  t ,  <Ịr(t) € #

=  € Q 3 ( K w ) : r ( * ) < i ,  f ( i ) e R r ( B - > f ( T ) )  +  $ ( r ) | ) ,
J /  (3.17)
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€ « (R * )  : r { <b ) < t ,  I 9 { t )  |<

< w* ) r̂ -   ̂ < w4iV) ( I * € ©(!'< w 4<v) G © ( ! * )  : r(® ) <  t, I v ( t )  |>  r
(3.18)

and

W i N){r  < t )  =  W i N) ^ € <B(K") : ơ ( 9 )  < t, I 2 9 (t ) -  y ( t )  |< r | j

+  w £yv)^ | t f  € 33(R'V) : a ( V )  < t, I t ( t )  (3-19)

Indeed, first to  prove the assertion (a), from (3.14)-(3.16) applying Corollary 2.4, 
we have

y ụ W ^ 4 n { $  : 9(1) e B}^j =  : r(V) < t, * ( t)  €  f l j j

= [
J (r<t) V I J /  (3.20)

Moreover, for each ^  G ( r  <  t), again by (2.5) we see that

w i w : -  T<®>) 6 B } )  e  4 )

= ( { * : R*(‘ -  T« ) 6 s } )  

- " ^ ( { ^ • ( « - r W J e R 1- » } )  (321)

for any Rotation 1Z ( relative to R) be given. Next, apply Corollary 2.5 with respect to
F(3>) =  I a W  and / ( y) =  XKT B (y)  to  see th a t

f  I A (<Ịf)lR r B ( ^ ( T  +  rì) + R r S ( r )  -  * ( t)W * > (< ỉ® )
J(rj<oo) \  /

=  ị  X * ( * ) ^ X Rr B (y  +  R r < K r)b * W (d y ))w < "> (d * ).



Using Lemma 2.2, the above relation becomes

W<N) ^ n  I ®  : tf(i) +  R r tf(T) -  * ( r )  G r T ổ Ị )

=  € Q3(Rn ) : r ( V ) < t ,  ỉ ( i )  G R r ( í  -  ỉ (t)) +  Í ( t) Ị  j

- J  ự  Z R - a ( y b , W y - R T * ( T))dy ) w *N)(d * )

-  L  O U . lRTs
=  l { K % ( r )  ( { *  •• *(* -  r ( * ) ) e  RTj y} ) (3.22)

Hence, by combinate (3.20),(3.21) and (3.22) we obtain (3.17).

Now, in particular, taking B  =  B /v(0;r) and choosing R  =  —//V (with I n  is the 
unit m atrix of order to N), from (3.17) it implies that

W i N)  ( Ị *  €  « ( R * )  : t ( ¥ )  <  t, I $ ( í )  | <  r Ị ^ Ị

=  W Ẳ N ) Q *  €  « ( R * )  : t ( * )  <  t,  <p(t)  €  2 * ( t )  -  

=  W w Q $ € i B ( R /V) :  t ( Ï ) < î , I 2#(r) -  * ( i)
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(3.23)

Furthermore,

I *  €  ® ( R W) : r ( « )  <  t, I 2* ( r )  -  ®(t) |<  r |  c  I *  € » ( R W) : r ( i )  <  t, I ®(t) |>  r  j

(3.24)

and by the definitions of r  and Ơ, we have

Ị *  €  05(R N ) : r ( ¥ )  <  í, I <b(t) | > r |  =  1$ € <B(RN ) : ơ(tf) < t, I $ ( i)  |>  r  j, (3.25)

and

*  €  Q3(Rn ) : r(® ) <  t, I 2 tf(r) -  * ( t)  |<  r{
=  I *  €  « ( R * )  : ơ(®) <  t, I 2* ( r )  -  tf(t) |<  r j . (3.26)

Besides that,

w iw)( r  < Í) =  w<"> € ®(RW) : r (« )  < í, I * ( 0  |<

+ vv4w) ( I *  e  S ( M N ) : r ( * )  < í, I $ ( 0  |> r  (3.27)
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this together with (3.23) and (3.24) it implies (3.18). Finally, by (3.23), (3.25), (3/26), 
(3.27) we also get (3.19). The example is complete.
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