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SOME REMARKS ON THE FINITE-TIME
BEHAVIOR OF WIENER PATHS

Dang Phuoc Huy
Department of Mathematics, University of Da Lat

Abstract We establish some properties of the finite-time behavior of Wiener paths.
Some applications of these results are also given.
Keywords: Wiener's measure, stopping-time, Wiener scaling invariance.

1. Introduction

Throughout this note, by B(R") we shall denote the Polish space of all continuous
paths ¥ : [0,00) — R", and let M;(B(R¥)) be the space of Borel probability measures
on B(RV)( see, for example, [1, Section 1]). Define, for each x € RV, the transformation

Ty : B(RY) — B(RY) by

r

(rxqf (1) = x + (1), t € [0,00), (1.1)

and let WY = T, « W(V) be the distribution of T under WV), where W(V) is Wiener's
measure for RV- valued paths. As usual, we use Bz to denote the Borel field over the
topological space I, and set

7 (dy) = " (y)dy,

where 7§N)(y) is the Gauss kernel on RV,

We mainly refer the reader to [2, Section 3.3] for all questions about the existence,
the uniqueness and the independence of the coordinates of WV) under which the above
probability distribution was also satisfied. Namely, we have the following properties.

(a) WY is a unique probability measure on M, (B(R™)) with the properties that ¥(0) =
x for W) _almost all ¥ € B(RY) and

w,&“”({\p  W(t) — U(lo) € By, U(te) — U(t_y) € Hk})
= 12081 wp e (Ba) o x 400, (Ba), (1.2)

Jorallke Z* 0=1y < t; <--- < tg, and By, -+ ,Bx € Byn~.

(b)

N
WED) =W, v ow ik Wiy = T Wy (1.3)
s |
Here we use Wy, in place of Wii), and W, % --+ x W, is the product measure,

for any x = (z1,--- ,zn)" € RV,
Typeset by AAS-TEX
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Our aim here is to investigate some of the basic facts about the finite-time behavior
of Wiener paths. Thus, in Section 2, we shall present the invariance properties of Wiener's
measure and, as a consequence of Theorem 4.3.8 in [2], some results are obtained. Finally,
applications to the properties of Wiener paths are given in Section 3.

2. Some properties

We begin this section with the invariance properties of the probability distribution
Wy ), Firstly, we recall two families of transformations on B(RY). The first of these is
the family {Sa ca € (0, oo)} of Scaling maps given by
(o @) et ’
Sa¥ (1) = a”2¥(at), t € [0,00), (2.1)
and the second family of transformations which we will want are the rotation R relative
to R, given by

R/ (1) = RE(L), t € [0, 00), (2.2)
where R is a orthogonal matrix of order N.

From the invariance properties were introduced in [2] (see [p. 182 and Exercise
3.3.28]), we immediately obtain the following result.

Proposition 2.1.
(a) (Translation invariant)

WM =Ty« WM =1 « WY, (2.3)
for any x,y € RV,
(b) (Scaling invariance)
WM = 5, » W (2.4)
x&X

for each a € (0,00) and x € RV
(¢) (Rotation invariant)

WY = R+ WY, (2.5)

(where R is the transposed matriz of R), for each x € RY.

Proof. We begin by noting that, for each ¥ € B(RV),

{sza\p} () = x + o~} 0(at) = ;’sa'rmxp} (t), t € [0,00)
and
[T,;RW] (1) = x + RO(t) = ['RTRT,‘\I'] (1), t € [0,00).
Hence,

Ty rbiSyemiBigl (2.6)
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and

TeoR=RoThry. (2.7)

So, by Wiener Scaling invariance (see [2, p. 182]) [resp. Rotation invariant (see [2, Exercise
3.3.28])] together with (2.6) [resp. (2.7)] implies (2.4) [resp. (2.5)].

Now, in order to prove the first assertion, we see that
TxoTy =Ty o Tx = Tixyy,

for any x,y € RY. Hence,
W) = Tory « W) = Ty x (T W) = T, x WM
=Ty % (T x WM) =T, » W,
which proves (2.3). Proposition 2.1 is thus established. a

In the next lemma, by B(R"; R) we denote the space of bounded B -measurable
functions from R" into R.

Lemma 2.2. Let f € B(R"; R) be a given function. Then, for each t € [0,00) and any
x,z € RN,

/B(RN) f(2(t) + )W) (d@) = e FAANN (y — x — z)dy, t € [0,00).

Proof. Indeed, from (1.2) it implies that,
W ({900 € B)) = [ "y - x-a)ay
B

for every B € Br~. Hence, by (2.3) and the fact that WY s the Lesbesgue measure for
B(RY), we have

WM (4®) —
[B IRCORDIRIC) /

B(RN)

f ( ?r,qﬁ (t)) WM (d®)

= [ reowa)
B(RN)

= [ 1oy —x - 2)ay,

this completes the proof. O
We need the following well known notions.

Define, for each ¢ € [0,00), the coordinate projections m : B(RV) — RV by

m ¥ = (1), (2.8)
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and let
BY =o(n,:s€[0,1]), t €[0,00) (2.9)

be the o-algebra over B(R") generated by all maps 7,,s € [0,t]. Given a {‘I‘-,\ 1t €
[0, 00) }-stopping time 7, we will use the notation

BY = {ACBRY): An{r <t} e B forallt€[0,00)}.

Then it is well known that, BY is always a sub ¢-algebra of Byrvy and 7 itself is a
BN _measurable function (concerning this subject, see, for example, [2. Section 4.3] and
[3, Chapter 2, Sections 4,5 for more information).

The following theorem extends a particular case of Theorem 4.3.8 in [2].

Theorem 2.3. Let 7 be a {‘va € [O,m)}-.stopping time and I : B(RY) — R
a bounded BY -measurable function. Suppose that 7 : (1 < o0) — [0, +00] is a BY-
measurable function. Then, for each f € B(RY;R), x € RN and h ¢ C(RV;RV), we
have

/ F(\P)f(\IJ(7-+1;) + h(kIf(r)))WiN)(d\Il)
(n<oo)

_ /(m) P ([ 1(y+ 900+ 500D )ifey @) Mo,

(Here we use ¥(7) in place of ¥ (7(¥)).)

Proof. Define, from the above assumptions, the function I : B(RV) x B(RY) — R by

H(®, V) = Zijg o) (T(P)) - Zi0,00) (n(®P)) - F(®)f (‘1’(7)(4’)) +h (d>(r(‘1’))) )
where Z 4 denotes the characteristic function of a set A4 .

Then H is BY x By~ )-measurable. Note that (1 < 0o) = (7 < 00) N (n < o0),
applying Theorem 4.3.8 in [2] and Lemma 2.2, we have

/(Koo) F(‘I’)f(‘l’('r(‘ll) +n(¥)) + h(\p(r)))w’(‘N)(d‘p)
B £n<m) (&) (L(RN) d (\I/(n(q))) i h((b(r))) Wg?'r))(’i‘l'))w,({v)(d‘b)
= [y PO L, 11 (3 2071 =) )y ),

by change of variables of the integral in parentheses, we get (2.10) and the theorem is
established. O

From the above theorem we obtain the following corollaries.
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Corollary 2.4. Let 7 be a {B) : t € [0,00) }-stopping time and n: (1 < 00) — [0, +00]

is a BN -measurable function. Then, for any A € BY and A C (n < ), x € RN and
B € Bzw~, we have

W’(‘m(/m{@ L U(T47) € B}) = Lw&,’{j)({é:zb(n(m) € B})W;N)(dqx). (2.11)

Proof. Setting F(¥) = ZA(¥), f(y) = Zp(y) and h = 0, by applying (2.10) and Lemma
2.2, we get

w,&”>(/m (O:¥(r+7) € B})
= /(,,@) zA(W)( L In(y+ \P(r))v,’,‘z\a)(dy))W,‘:‘”(dW)
-/ ( /. zg(y)v:,‘zm(y—\P(r))dy)wim(d\v)
-/ ( [ T (q»(nm))ws,’ij)w@))wi”)(cw)-

Corollary 2.4 is thus completely proved. O

Corollary 2.5. Let R be any orthogonal matrix of order N, define the transformation
h:RN — RN by h(y) = R"(y — Ry). Under the assumptions of Theorem 2.3, we have

/ 1-‘(\1:)f(x1'(7 +7) +RTU(r) - \I:(r))Wi”’(d‘I’)
(n<o0)
= F(¥ RTO (7)) N o (dy) )WV (aD),
/<,,<oo) ( )(/RN fly+ (7)) Yo ( y)) < (d¥) -
for each x € RV,

Proof. Tt follows immediately from Theorem 2.3 and the linearity of the transformation

h. a

3. Three applications

The above results can be used to study properiies of the behavior of Wiener paths.
As our first application about these, we give the following computation.

Example 3.1. The following notations will be used from now on:

By(a;r) ={y eR" : |y —a|< 7} (3.1)

BN(a;r)z{yEIRN |y —algr},

where | z | denotes the Euclidean norm of z € RY
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for any a € RY and r > 0. It is easy to see (see (2.8)) that =, ' (Bn(a;r)) = {¥ €
B(RN) : | ¥(t) —a |<r} € Bygry). Identify ¥ € B(RY) +— (¥y,---,¥y) € (‘B(li))N

by
W(s) = (Wi(s), -, N (S))I, s € [0, 00),

(see, for example, [1, p.16], [2, p.179]). Then, for each x = (2, -+ ,zy)T € RV, satisfying
condition H:N:l z; # 0, putting r = v Ne for any ¢ > 0, by the independence of the
coordinates under W) (see (2, Exercise 3.3.28]) we have, for any fixed t € [0, 00),

WM ({q: e BRY): | ¥(t) |< VN f})

> Wi"’)({‘l' € BRY): | ¥,(t) < ¢ for1<j< N})

N
= HW" ({(p € B(R) : | ¢(t) |< <})'

Next, taking a; = x‘.‘?, 1<i< N, use (2.4) and (2.5) to see that

N

N ‘
Hw"* ({(b € B(R) : | #(t) |< (}) = HW“Q"'“ ({d) € B(R) : | d)(x;?t) 1< €] 2y |—1 })
=] 1

=1
N
= HWI ({qﬁ € B(R) : | z; p(z7%t) |< (})
i=]
Hence, we obtain the following inequality

N
w,&”’({\p e BRY): | ¥(1) < \/ﬁe}) >[I ({¢ € B(R) : | . ¢(z%t) |< «-})‘

for any ¢ >0, t € [0,0¢), and x is given in the above.

Remark. If putting A; = {¢ € B(R) : | z: p(x7%t) |< ¢}, 1 <i < N, then (see (1.3))

[Twa =i e ([14)
=1 =1
= W((;v)l), ({‘Il € BRN) : |z, ¥i(z72t) |[< ¢ for1<i< N}).

Thus, we have

WM ({\y € B(RV) : | ¥(t) |< \/Ne})

€

| z: |

ZW(‘?.’.?‘,U-:-({\P € BRY): | Ui(a7%) |< —— for 1<i< N}).
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The next applications deal with the behavior of Wiener paths over finite time in-
tervals.

Example 3.2. For any r € (0, 00), we consider a function 'rgr) from B(RV) into [0, +o0)
which given by
0(0) =inf {t > 0: | ¥(t) |27}, ¥ e BRY). (3.2)

Then 'rg:) is a {‘B;’V :t € [O,oo)}—stopping time. In this example, we will show that the
Wiener paths satisfy the following properties.

(a) For each x € By(o;r) (see the notation (3.1)) and T' > 0, then

=)

/(Tmﬂ) cos(,,(‘l‘t;T) _ %) 4 kw)WI(d\I') N5 Cos(,.-(% . %) + ;m) (3.3)

>r

/ cos(-7Z 2 + kw)Wx(d‘Il) = e"zﬁz"f':’ cos(zr— 3 + kvr), (3.4)
(r257) 2 r 2 r

for every k € Z. Further,
(b) for any € > 0 and x € By (0; —5=), then
VN

and

o2 N
W,&N)(ng) > I) e~ T 5 cosM (w(——l - | - %)) (3.5)
and
w2 NS
W) ('rg:,) > T) > e~ % 7 cosV (% : |ﬂ_’€f_l> (3.6)

In order to prove these assertions,we proceed in several steps.

Step 1. Using The same techniques of the proof of Theorem 7.2.4 in [2] with respect to
the function

fit &)= e%‘l'?" co-s('ir(E - %) +k7r), (t,z) € [0,00) x R

r

2

[rcsp. glt,z) =™ 72 cos(% =k k'n'), (t,z) € [0,00) x R]
T
we see that, the assertion (3.3) [resp. (3.4)] is obtained from the fact that f(t/\'rélr), T, )
>r
[resp. g(t A 'rgr), WMT(;))J is W,-martingale relative to {8} : t € [0,00)} (see the

notations (2.8), (2.9)). Furthermore, by the independence of coordinates of Wiener’s
measure, we also have

W,(‘N)({\I' e BRY): sup | ¥(t)|< e})
t€(0,T]

ZW,(cN)( T e BRY): sup | ¥,(t 3
{ ( te[o,]l () \/]_V:

5
=1I=11Wx‘.({¢e%(R) a::éprl(p(t)' ﬁ})’ (3.7)

;forlSjSN})
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for each x = (1, - ,z2n)T € RN and ¢ > 0.

Now, choosing a = ¢~% .72 . N, again by (2.4),

Wi, ({«» € B(R): sup | (1) |< —ﬁ})

t€[0,T)

=W.w _. ({qb € B(R): sup |p(e™2.72.Nt)|< r})
€ ! te(0,T)

=W.yr ., ({d) € B(R): sup | 6(t) |< r}),
] i P ’1‘1

te{0,e 272N

for each W;,, 1 <1 < N. Hence, it shows from (3.7) that
wiN) ({\Il e B(RY): sup | (1) |< c})
te(0,T]

N
> HWL{E-:‘ ({qb € B(R) : sup | #(t) |< r})
i=1 C t€[0,e~2-r2.NT) (38)

Step 2. Denote by Ry the set of the non-negative real numbers. From (3.3) (with k = 0),

we see that
‘!'2 .
W, (‘Tgr) > T) >e” ‘7 cos(w(g - %)) >0, (3.9)

Taking x € (Rg )Y N By (0; V‘ﬁ), then D(@ -x; € [0,7) (for each i(1 <7 < N)), and
therefore, applying (3.9) (with 7" replaced by ¢ .72 . NT'), we get

for z € [0, 7).

N N

HW,_,@_I‘ (TQ,) > €2 upt NT) > e_zz?_.m"‘;:c Hcos(vr(\/—ﬁ—  Ti — %)) (3.10)

: " €
=1 =]

Hence, since W, /5 _ ({¢(0) = N . z.}) = 1 and WV ({¥(0) = x}) = 1 (see (1.2)),
(3.8)(3.10) plus the definition of the stopping-time (3.2) leads to

N
W,((N)(ng) > T) > e_;;.%?zz I-‘[cos('rr(ﬂ - i — %)) (3.11)
> €

=1

Step 3. Next, for any fixed x € By (0; V‘N), putting y = (:9%, cee %)r Then, there
exists a Rotation R (relative to R) on B(R") in which the orthogonal matrix R satisfied
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the condition Ry = x. Thus, by (2.5), we conclude from (3.11) that
W) (Tg;” > T) — R WM (T_;p > T)
= WM ({lp r75n ) (RE) > T})
= WM ({w : 7SV(T) > T})

> e"%‘%z cos™ (w(lx—l - %))
€

Finally, by the same argument as above, we also obtain (3.6) and this example is completely
established.

Remark. We use E”[X, A to denote the expected value under P of X over the set A.
Taking z = 5 in (3.3) and thereby obtain

o ﬂ‘IJ(T)_l YW, ik,
‘/(r‘-;,’yr) S( ( r 2)+k )W’z(dq') (—1)%e :

Thus,

EW= [cos (W(W—:— - %) ‘o k‘rr), 'rgr) > T}
- (—l)"%:os(a*r(% - %) + kvr)Ew§' Iicos('/r(-ﬂ?T- - %) + kw), 'rgr) > T},

forany r >0, T >0, k € Z and = € B;(0;7).
Similarly, by (3.4) (with z = 0), we have

EWe ‘:co.s (g— . ITIL + kw), 'r-(>_l,_) > T}

= (-1)* cos(-‘% : ; + kw)EW ‘:cos(g : ﬂTT 4 k'rr), 7(21,) > ’[‘],

forany r >0, T >0, k€ Z and = € B,(0;7).

Remark. One could define the sub sets of By (0; 7‘)?) under which we will obtain the

better estimates than the inequalities of (3.5) and (3.6). Namely, letting x € By (0; 7‘?),
for each € > 0, then

| | " m I l
> < 5 and 5 T p

0<

wlﬁ

<

VAR
o)A
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This implies that,
.&'_I — l)) =1 v 6
COos| T z - 4 E(SB Oa 2/
( ( # s 4 N(, 3) (3.12)
e N=123
X € BN(O, W)

where § By (0; §) is the boundary of By (0; §)

and

= xe=1, (3.13)

con(3 - ) = 1
x € By (0; \/‘V)

Then, it shows from (3.5)(3.12) that
W) (TﬁN) > T) > (:"1;'1\’_'2’1,

for N=1,2,3; ¢>0, T">0and x € 6By (0; §).
Similarly, by (3.6)(3.13), we obtain the certain result of Theorem 7.2.4 in [2],

”2 i2.<
W(N)(rgf) >’I‘) >e T >0, T>0.

Example 3.3. Let us consider two {‘B{V €0, oo)}-stopping times as follows
o(¥) = inf{s >0: | ¥(s) |< g} (3.14)

and
7(¥) =inf{s > o () : | ¥(s) |> 7}, (3.15)

for each r > 0 and every ¥ € B(R"V). Let t € (0,00) be fixed and x € By(0;7). Define
n: (r < +00) — [0, +00|] by

n(®) = (t —7(¥)) vO0. (3.16)

Then 7 is a B -measure function. Furthermore, taking A = (7 < t), it is obvious that
A C (n < 00). The following notations will be used:

RB={Ry: ycB} and B+z={y+z: ye€ B},ze€ R", B € Byn.

In this example, we shall prove that the Wiener paths satisfy the following properties.

(a) For any orthogonal matriz R be given, and every B € Byn.
wv) ({\p € BRN): r(¥) <t, ¥(t) € B})

= WM ({w € BRY): 7(¥) <t, ¥(t) e RT(B - ¥(r)) + \Il(r)}),
(3.17)
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(b)

Wim({‘l’ € BRY): 7(¥) <t, | ¥() < r})

5 Walr<9) sw&”’({\pe%(n&"’): T(¥) <t, | ¥(t) Izr})

- (3.18)
and
WM (r < ) = WM ({w e BRY): o() <t, | 20(r) - V(L) |< r})
W ({o e m@®) s o) <1 90) 2 7}). (3.19)

Indeed, first to prove the assertion (a), from (3.14)-(3.16) applying Corollary 2.4,
we have

W) (An {w:0(t) e B}) = w}(”)({qf: T(0) <t, ¥(t) € B})

Lo ol

Moreover, for each ¥ € (7 < (), again by (2.5) we see that

Wees ({cp L ®(t - 7(¥)) € B}) =R * Wireem ({«p LBt —T(¥)) € B})
o g:')w(f)({q) :R®(t - 7(¥)) € B})

= Wrei ({q) ot —1(¥)) € RTB}) (3.21)

for any Rotation R ( relative to R) be given. Next, apply Corollary 2.5 with respect to
F(U) =Tx(¥) and f(y) = Igrg(y) to see that

[( < )zm)zm(wr )+ RTY(r) - \P(r))wﬁ“’(d\m

- —/('7<oo) Z4(¥) ([;.zv Tnrp(y + RT‘I’(T))'YSI(m)(dy)) WM (dw).
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Using Lemma 2.2, the above relation becomes
wWiN) (A N {w (1) + RTO(r) - ¥(7) € RTB})
- w,(‘”)({\p € B(RV): 7(¥) <t, ¥(t) e RT(B - ¥(7)) + \D(T)})

i <:)( o TR0 (¥ RT\IJ(T))dY) WM (d¥)

= /(Tq) Wireen ({@ L0t — (1)) € RTB}) WM (d). (3.22)

Hence, by combinate (3.20),(3.21) and (3.22) we obtain (3.17).

Now, in particular, taking B = By(0;7) and choosing R = —Iy (with Iy is the
unit matrix of order to N), from (3.17) it implies that

wN) ({\p e BRN): 7(¥) <t, | ¥(t) |< 'r})
= W) ({\p e B(RY): 7(¥) <t, ¥(t) € 2¥(7) — B})

=WV ({\p €BRY): r(T}<t, |20(r) - ¥(t) < r}) (3.23)

Furthermore,

{w € BRY): 7(¥) <t, | 20(r) — ¥(t) |< r} C {@ e BRY): 7(¥) < ¢, | T(t)[>r
(3.24)

and by the definitions of 7 and o, we have
{\1: e B(RY): 7(¥) <t, | ©(t) |> r} = {xp e B(RY): o(¥) <t, | ¥(t) |> r}, (3.25)
and
{xp e BRY): () <t, | 20(r) — ¥(t) |< 'r}
= {\p € B(RY): o(¥) <t, | 2¥(r) - ¥(t) |< r}. (3.26)
Besides that,
WM (r < t) = WM ({\p e BRN): 7(¥) <t, | B(t) |< r})
{

s W§N>( ¥ e BRN): 7(¥) <t, | V() |> r}) (3.27)
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this together with (3.23) and (3.24) it implies (3.18). Finally, by (3.23), (3.25), (3.26),
(3.27) we also get (3.19). The example is complete.
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