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THE CONTROLLABILITY OF DEGENERATE SYSTEM
DESCRIBED BY RIGHT INVERTIBLE OPERATORS

Nguyen Dinh Quyet, Hoang Van Thi
Hanoi University of Pedagogy

Abstract. The controllability of a linear system described by right invertible opera-
tors was studied by many authors. However, for the degenerate system, the problem
has not been so far considered. In this paper, the controllability of these systems is
studied.

0. Introduction

The theory of right invertible operators was started in 1972 with works of D.
Przeworska- Rolewicz and then has been developed by M. Tasche, I von Trotha, Z.
Binderman and many other Mathematicians (see [7]). With the appearing of this theory,
the initial, boundary and mixed boundary value problems have been considered. Since
1977- 1978, Nguyen Dinh Quyet, in series of articles, has introduced the controllability of
linear systems described by right invertible operators in the case of a resolving operator
being invertible (see(2, 3]). The results related to the controllability of linear systems were
generalized by Pogorzelec for the case of one-sized invertible resolving operarors. In 1992,
Nguyen Van Mau, in his study, introduced the controllability of general system and stud-
ied the controllability of linear systems described by generalized invertible operators (see
[5]). However, for the degenerate systems, the problem has not been so far investigated.
In this paper, the controllability of the degenerate system described by right invertible
operators is studied.

1. Some fundamental notions

Let X be a linear space over a field F of scalars (F = R or C).
Denote by L(X) the set of all linear operators with domains and ranges contained

in X and Lo(X) = {A € L(X) : domA = X} .

Definition 1.1. [7] An operator D € L(X) is said to be a right invertible operator if
there is an operator R € Lo(X) such that ImR C domD and

DR=1, (1.1)
where I is identity operator. In this case, R is called a right inverse opetator of D. The set

of all right invertible operators belonging to L{X) will be denoted by R(X). If D € R(X),
we denote Rp = {R € Lo(X) : DR = I}.
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Proposition 1.2. (7] If D € R(X), then for every R € Rp we have

domD = RX & ker D. (1.2)

Definition 1.2. [7] An operator F' € Lo(X) is said to be an initial operator for D
corresponding to R eRp if F? = F\FX =ker D and FR = 0 on domR. The set of all
initial operators for I) will be denoted by Fp.

Definition 1.3. [7] Suppose that D € R(X) and R € Rp. An operator A € Lo(X) is
said to be stationary if DA — AD = 0 on domD and RA — AR = 0.

Theorem 1.1. (7] Suppose that D € R(X). A necessary and sufficient condition for an
operator F' € Lo(X) to be an initial operator for D corresponding to R € Rp is that

F=1I-RD. (1.3)

Definition 1.4. (7] An operator V € Lo(X) is said to be a left invertible operator if there
is an operator L € L{X) such that ImV C domL,LV = I . We denote A(X) the set of

all left invertible operators belonging to L(X) and by Ly the set of all left inverses of
V e A(X).

Definition 1.5. [5| An operator V € L(X) is said to be generalized invertible if there is
an operator W € L(X) ( called a generalized inverse of V') such that:

ImV € domW , ImW C domV and VWYV =V on domV.

The set of all generalized invertible operators in L(X) will be denoted by W(X). If
V e W(X) , we denote by Wy the set of all generalized inverses of V.

Proposition 1.2. [5] Suppose that V € W(X) and W € Wy , then

domV = WV (domV ) @ kerV (1.4)

Theorem 1.2. [5| Suppose that A, B € L(X),ImA C domBand ImB C domA, then
I — AB is right invertible ( left invertible, invertible, generalized invertible) if and only if
so is I — BA. Moreover, if we denote by Rap(Lap, Wag) a right inverse ( left inverse,
generalized inverse ) of I — AB , then there exists Rpa € Ri—pa(Lpa € L1-pa,WBa €
Wi, _na, respectively such that:

(I') Rap =1+ ARpaB, Rpa=1+ BRAgA ,

(ii) Lap =1+ ALpaB, Lpa=1+BLapA,

(iii) (I-AB)"'=1+ A(I - BA)"'B, (I-BA)"'=I1+B(I-AB)'A,

(iv)] Wap =1+ AWgaB, Wga=I1+BWuypA.

The theory of right invertible operators and thier applications can be seen in 5, 7].
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2. Degenerate systems

Definition 2.1. Suppose that D € R(X),dimker D # 0 and A, B € Lo(X) , with A # 0
non-invertible. Then a linear system of the form

ADz=Bx+y , yeX (2.1)

is said to be a degencrate system.

Proposition 2.1. Suppose that D € R(X),dimker D # 0; F is an initial operator for
D corresponding to R € Rp and A, B € Lo(X), with A # 0 non-invertible. Then the
following identities hold on domD:

AD — B = D{I - R[(I - A)D + B]}, (2.2)
(AD — B)R= A - BR, (2.3)
AD -~ B=(A-BR)D - BF. (2.4)

Proof. (1) On domD we have

D{I - R(I-AD+B]}=D-DR[(I-AD+B|=D-(I-A)D-B
=D-D+AD-B=AD-B.

The proofs of (2.3) and (2.4) are completely similar.

Proposition 2.2. Suppose that all the assumptions of Proposition 2.1 are satisfied. If
A — BR is right invertible ( left invertible, invertible, generalized invertible), then so is I —
R[(I — A)D+ B]. Moreover, if Rap(Lap,(A—BR)™', Wa p) is right inverse ( left inverse,
inverse, generalized inverse ) of A — BR, then there exists Ro € Ry_pir-ayp-p)(Lo €
Li-g(1-a)p+B) Wo € Wi_gj(1-a)p+B) respectively, such that:

(i) Ro=1+ RRap|(I - A)D + B],

(i) Lo=1I+ RLap|(I — A)D + B},

(iii) {I - R[(I - A)D+ B]}"!'=I+ R(A-BR)"'((I-A)D+ B],

(iv) Wo =1+ RWu5((I - A)D+ B].

Proof. We will prove the case (iv). We have I — [(I — A)D + BJR = A — BR. Suppose
that A — BR € W(X) and WA,B € Wa_Bgr- Then I — R[(I - A)D + B] € W’(X) (by
Theorem 1.2 ). Moreover, there exists Wy = I + RW 4 g[(I — A)D + B] is a generalized
inverse of I — R[(I — A)D + B] .

An operator A — BR is said to be a resolving operator for the system (2.1), if
A — BR is invertible, then the system (2.1) is said to be well-determined. Otherwise, it is
ill-determined.

Theorem 2.1. Suppose that all assumptions of Proposition 2.1 are satisfied. Then, we
have:
(i) If A— BR € R(X) and Rap € Ra_pr , then all solutions of the system (2.1) are
given by
x={I+ RRap|(I - A)D + B]{ Ry + 2) + Z, (2.5)
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where z € kerD, Z € ker{I — R[(] — A)D + B]},
(if) If A— BR € A(X) and Lap € La—pr, then all solutions of the system (2.1) are
given by

x={I+ RLag[(I - A)D + B]}(Ry + z), z € kerD, (2.6)
(iii) If A — BR is invertible, then all solutions of the system (2.1) are given by

x={I+ R(A-BR)"'(I-AD+ B|}(Ry+2z), z € kerD, . (2.7)

(iv) If A— BR € W(X) and Wa g € Wa_pr , then all solutions of the system (2.1)
are given by
z={I+RWyp[(I-A)D+ B|}(Ry+2z)+z, (2.8)

where z € ker D, Z € ker{I — R{(I — A)D + B]}.
Proof. Since both one-sided invertible and invertible operators are generalized invertible,

it is sufficient to consider the case (iv). According to equality the (2.2) in Proposition 2.1,
we see that (2.1) is equivalent to D{I — R[(I — A)D + B|}xz =y . Hence,

{I —R|(I-A)D+B|}x=Ry+2z,z€kerD, (2.9)

By the assumption, A — BR € W(X) and W1 5 € Wa_pgr. Thus, Proposition
2.2 implies that I — R[(I — A)D + B] € W(X) and there exists a generalized invertible
operator Wy = I + RW 4 g|(I — A)D + B]. Therefore, (2.9) obtaines that all solutions of
(2.1) are given by o = {I + RWa p|(I = A)D + B]}(Ry + z) + z.

3. The initial value problem

Suppose that D € R(X), dimkerD # 0; F is an initial operator for D corresponding
to R € Rp; and A, B € Lo(X), with A # 0 non-invertible. In this section, we consider
the initial value problem for degenerate system (DS)g of the form:

ADzx = Bx+y , ye X (3.1)
Fo=x9 . xo € ker D, (3.2)

Theorem 3.1. Suppose that all the assumptions of Proposition 2.1 are satisfied and
Ry + zp € {I = R[(I — A)D + Bl}domnD. Then, we have:
(i) f A-BR € R(X) and Rap € Ra—pr , then all solutions of the problem (3.1)-(3.2)
are given by
z={I+ RRagp[(I — A)D + B]}{(Ry + xo) + %, (3.3)

where z € ker{I — R[(I — A)D + B]}.

(ii) If A— BR € A(X) and Lap € La-gr, then all solutions of the problem (3.1)-(3.2)
are given by

= {I + R[;AB[(I - A)D + B]}(Ry + :L‘o). (34)

(iii) If A — BR is invertible, then solution of the problem (3.1)-(3.2) are given by

x={I+ R(A - BR)™'|(I - A)D + B]}(Ry + z¢). (3.5)
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(iv) If A— BR ¢ W(X) and Wy € Wa_pr . then all solutions of the problem
(3.1)-(3.2) are given by
 — {I - HM’\”[(I = /1)[) -+ B]}(Iﬂ'fj + .I'()) + z ' (36)
I where Z € ker{I — R[(I — A)D + B]}.

0

Proof. According to the proof of Theorem 2.1, from (3.1) we have
{I-RUI-A)D+Bl}za=Ry+z2,z¢€kerD. (3.7)
Thus, acting on both sides of this equality by operator F' , we find that Fz — FR|(I —
A)D + Blx = FRy + Fz. Hence g = Fz = Fz = z . Therefore,
{I-R|(I-A)D+B]}x=Ry+ag. (3.8)
By our assumption, A — BR € W(X) implies that I — R[(I — A)D + B] € W(X)
and there exists it's generalized inverse Wy = I 4+ RW4 gl(I — A)D + B] , with condition
Ry+zo € {I — R[(] — A)D + B|}domD , we have all solutions of the problem (3.1)-(3.2)
18 given by
x={I+RWspllI—-A)D+ B]}(Ry+z9)+ 2, 2€ker{I] — R[({ — A)D + B]}.
Theorem 3.2. Suppose that A, B are stationary operators and A — BR is invertible.
Then, the initial value problem (3.1)-(3.2) has a unique solution
z=(A—- BR)"'(Ry+ o). (3.9)
Proof. By the assumption A, B are stationary operators, AD — B = D(A — BR) and (3.1)
becomes D(A — BR)x = y , this implies that (A — BR)z = Ry + 2, 2 € ker D . The
condition (3.2) finds that z = xy . Moreover, A — BI{ is invertible. Thus, the solution of
the problem (3.1)-(3.2) is unique and given by
= (A~ BR)"" (Ry + o).
Example 3.1. Suppose that X is the space (s) of all real sequences {z,},n=0,1,2,---
with addition and multiplication by scalars defined as follows: If x = {z,}, y = {yn}, A €
R then z +y = {Tn + yn}, Az = {dzpo},n = 0,1,2,.-- Write D{z,} = {Zns1 — za},
R{zp} = {tn}, 0 =0, ¥n = S pcg Tk,n > 1 and F{zn} = {2n},2n = 20,2 = 0,1,2,---
It is easy to verify that D € R(X),R € Rp, I’ is an initial operator for ID corresponding
to R and ker D = {z = {2,},2, = ¢,n € N,c € R}. Consider the degenerate system
(DS)g of the form:
ADz=Bx+y , yeX (3.10)
Fz=% |, Tp € ker D, (3.11)
where A, B are defined by A{z,} = {Zns1}, B{za} = {Tn+2 — z,} and y = {yn} € X,
Tg = {zo} € ker D are given. We conclude that A # 0 is non-invertible, the resolving
operator A — BR is invertible, A — BR = (A — BR)™' = —I . By Theorem 3.1, the
solution of the system (IDS)g is of the form:
@ ={I+ R(A - BR)™'[(I - A)D + B]}(Ry + Zo)
={I — R[(I — A)D + B]}(Ry + %)

= {@0,To — Y0, To — Yo — Y1, %0 — Yo — Y1 — Y2, " }.
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Example 3.2. Suppose that X, D, R and F are defined as in Example 3.1; Write A{z,} =
{2z0+x1,0, 22+ 23,23+ 24, }, B{zn} = {z2—20,0,24 — 2,25 — 23, - }. Clear, A#0
and is non-invertible, since ker A = {xo, —2x0, T2, —2,22, —2, -+ } # {0} and AX # X
Let y = {yn} € X and Ty = {zo} € ker D.
Now we consider the degenerate system (DS)q of the form:

ADz =Bz +y (3.12)
Fzx=7%y , To € ker D (3.13)

It is easy to verify that the resolving operator A — BR is generalized invertible. Indeed,
(A - BR)I(A — BR){z,} = (A — BR){z,} ,i.e. A—BR € W(X) and I € W4_pr.
Moreover, ker{I — R[(I — A)D + B|} = {{0,0,z2,23,24, - },2n € R,n=2,3,4,---}. By
(3.6) , the solution of the problem (DS)g is given by

x={I+ R[(I -A)D+ B]}{Ry + To) + 2 , Z € ker{I — R[(I — A)D + B|}
= {zg, To + Yo, To + Yo + 2y1 + T2, 0 + yo + 241 +2y2 + T3, -+ }.

4. Controllability of the degenerate system

Let X and U be linear spaces over the same field 7(F = R or C). Suppose that
D € R(X), dimkerD # 0; F € Fp is an initial operator for D corresponding to R € Rp;
and A, B € Lo(X), with A # 0 non-invertible and C' € Lo(U, X). We consider the problem
(DS)o:

{ ADz = Bz + Cu, with condition RCU & {zo} C {I — R[( — A)D + B]} domD(4.1)
Fz =z9 , zo€kerD. (4.2)

The spaces X and U are called the space of states and the space of controls, re-
spectively. Elements ¢ € X and u € U are called states and controls, respectively. The
element g € ker D is called an initial state. A pair (zo,u) € (ker D) x U is called an
input.

In section 3, we have proved that the problem (4.1)-(4.2) is equivalent to the equa-
tion

{I - R|(I-A)D + B}z = RCu+zo. (4.3)

Hence, the inclution RCU & {xo} C {I — R[(I — A)D + B]} domD is a necessary
and sufficient condition for the problem (4.1)-(4.2) have solution for every u € U . Denote
by @,(1 = 1,2,3,4) the following sets, defined for every zo € ker D, u € U:

(i) fA—BRe€ R(X) and Rap € Ra-BRr , then:

@y (zo,u) = {z =T\ (RCu + x0) + 2, Z € ker{I — R[(I — A)D + B]},
T\ = I+ RRas((I - A)D + B] }. (4.4)

(i) If A— BR€ A(X) and Lap € La—pR , then:

Py(zo,u) = {z = To(RCu + x0), To = I + RLap|(I - A)D + B] }. (4.5)
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(iii) If A — BR is invertible, then:
®3(zo,u) = {e=T3(RCu+ o), Ta =1+ R(A— BR)™'[(I - A)D+ B]}. (4.6)
(iv) A—-BRe W(X) and W4 B € Wa_gr , then:

Dy(zo,u) = {z =Ty(RCu + z0) + 2, Z € ker{I — R[(J — A)D + B]},
| Ty = I+ RWasl(I— A)D + B]}. (4.7)

Note that ®;(i = 1,2,3,4) are sets of all solutions of the problem (4.1)-(4.2) in the
corresponding case.

Definition 4.1. Suppose that we are given a system (DS)g and the sets ®;(zo,u) of the
forms (4.4)-(4.7) . A state z € X is said to be (i)- reachable (i = 1,2,3,4) from an initial
state zo € ker D if for every T,(T\ = I+RRag[(I-A)D+B|, Ty, = I+RLAg((I-A)D+B],
Ty =1+ R(A—BR)™'[(I - A)D + B], Ty = I + RW4 p((I — A)D + B]) there exists a
control u € U such that x € ®;(xo,u).

Write Rangy ., ®: = U & (zg,u), zg € ker D, (i =1,2,3,4).
uel/

It is casy to see that Rangy ., @; is (i)- reachable from zg € ker D by means of controls
u € U , and these sets are contained in domD .

Lemma 4.1. Suppose that T;(i = 1,2, 3,4) are defined as in (4.4)-(4.7) , then:

T:(RCU & {zo})+ker{I — R[(I — A)D + Bl}
= T,RCU & {Tizo} ® ker{I — R[(I - A)D + B]}.  (4.8)

Proof. Tt is sufficient to prove the case i = 4.

By our assumption, I — R[(I — A)D + B] € W(X) and Ty € Wi_gi1-a)p+8)-
Therefore, Proposition 1.2 implies that X = T;{I — R[(I — A)D + B]}X @ ker{I — R|(I -
A)D + B]}. On the other hand RCU & {zo} C {I — R[({ — A)D + B]} domD, there exists
E C domD such that RCU @ {zo} = {I — R[(I - A)D + B)}E C {I - R[(I - A)D +
B]} domD. Hence,

T4(RCU & {xo})+ker{I — R|(I — A)D + B|}
=Ty{I — R{(I - A)D + B]}E + ker{I — R[(I — A)D + B|}
= Ty{I - R|(I — A)D + B]}E & ker{I — R|(I — A)D + BJ}
= T3(RCU & {z0}) ® ker{I — R[(I — A)D + Bl}.

We will prove the equality T4(RCU @ {z0}) = T4RCU @ {T4z0} . Indeed, let
z € (T4aRCU)N{Tyz0}, i.e. there existsu € U , t € F such that z = TyRCu = Tytzg , or
T4(RCu — tzg) = 0 . By our assumption RCU & {zo} C {I — R[(I — A)D + B|}domD,
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there exists v € domD such that RCu —tzg = {I — R[(I — A)D + B]}v , this implies that
0 = T4(RCu — tzo) = Tu{I — R|(I — A)D + B]}v , or

0={I — R[(I—A)D + B|}T4{I — R[(I — A)D + B]}v
={I — R[(I-A)D+B]}v = RCu-—tx.
Hence, 0 = Dtxg = DRCu = Cu, tzg =0 and z = T4y RCu = Tytzo =0 .
Remark If either A -~ BR € A(X) or A — BR is an invertible operator, then
ker{I — R|(I — A)D + B]} = {0} . Thus the formula (4.8) takes the form:
T:(RCU @ {z0}) = T:RCU @ {Tizo}, (1=1,2,3,4). (4.9)

Corollary 4.1.

Rangy ., ®; = T:RCU & {Tizo} ® ker{I — R((I — A)D + B]}. (4.10)

Corollary 4.2. A state x is (i)- reachable from a given initial state xq € ker D if and
only if z € T;RCU & {Tixo} ® ker{I — R[(I — A)D + Bl}, (i=1,2,3,4).

Definition 4.2. Let be given a degenerate system (IDS)g of the form (4.1)-(4.2) and let
Iy € Fpi = 1,2,3,4) be arbitrary initial operators (not necessarily different).

(i) A state xy € ker D is said to be F;- reachable from an initial state xq € ker D if
there exists a control w € U such that z, € F;®;(xg,u) . The state x, is called a
final state.

(ii) The system (DS)g is said to be F;- controllable if for every initial state zo € ker D,

F;( Rangy, .,®:) = ker D. (4.11)
(iii) The system (DS) is said to be F;- controllable to z; € ker D if
T; € Fi(RangU,zods‘i) (4'12)

for every initial state xg € ker D.

Lemma 4.2. Let be given a degenerate system (DS)q and an initial operator F; € Fp .
Suppose that the system (DS)g is Fi- controllable to zero and that

F,(T; ker D + ker{I — R[(I — A)D + B]}) = ker D. (4.13)

Then every state z, € ker D is F;- controllable to zero.

Proof. Tt is sufficient to prove the case i = 4. Let z; € ker D , since the assumption (DS)g is
F3- controllable to zero. Thus, 0 € F3( Rangy, ., @) for every zg € ker D | i.e. there exists
a control up € U/ and zg € ker{I — R|[(L— A)D + B]} such that Fy[T4( RCuo+ o) +z0) =0,
Oor

F4(T4RC'U0 + ZQ) = —FyTyxo. (4.14)
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The condition (4.13) implies that for every z; € ker DD, there exists x5 € ker D and

zy € ker{I — R|(I — A)D + B]} such that
1’1.1(']14.'1’,'2 + Z]) = I. (-’115)
On the other hand, by formula (4.14), for every x3 € ker D, there exists ug € U and

zy € ker{I — R[(I — A)D + B]} such that
1-‘(1; H( '?l-é) + 2(’) <+ Z;) = }':1('[‘.;1'2 -+ 21). (416)

So that (4.15) and (4.16) imply Fi(ThRCuy + 21) = x, , with 2z} = z5+ 2z, €
ker{I — R[(I - A)D + B} . This proves that every state x; € ker [J is F4- reachable from

7010,
Theorem 4.1. Suppose that all assumptions of Lemma 4.2 are satisfied. Then the de-
generate system (1)S)g is I~ controllable.
Proof. Suppose that A — BR € W(X). By our assumption there exists ug € U and
zg € ker{I — R[(I — A)D + B]} such that

Fi|[Th(RCug + x¢) + 20} = 0. (4.17)

On the other hand, by Lemma 4.2, for every x; € ker D there existsuy € U  and
21 € ker{I — R[(I — A)D + B]} such that

Fi(TyRCul + 21) = ;. (4.18)
Therefore, (4.17) and (4.18) imply that F3{T3[RC(uo + ug) + zo] + (z0 + 21)} = 2,
i.e. the state x, is F4- reachable from initial state zg. The theorem has been proved.

Theorem 4.2. Let be given a degenerate system (DS)y of the form (4.1)-(4.2) and an
initial operator F; € Fp(i=1,2,3,4) andlet Ty = I + RRAg|(I —A)D+ B|if A— BR €
R(X). Ty =I+RLagl(I-A)D+B]if A-BR € A(X), T3 = I+R(A-BR)~!{(I-A)D+B]
if A~ BR is invertible and Ty = I + RW 4 gl(I — A)D + B] if A— BR € W(X). Suppose
that C € Io(U = X, X' = U'), D € L(X,X'), and A, B,R € Lo(X,X'). Then, the
system (DS)q is Fi- controllable if and only if

ker C*R*T; F = {0}. (4.19)
Proof. 1t is sufficient to consider the case 1 = 4 . Note that in all the cases consider,
F,;T;RC maps U into kerD. The condition (4.19) is equivalent to
F;T;RCU =ker D. (4.20)
The assumption RCU & {z0} C {I — R[(I — A)D + B]} domD, implies that
]’147141?0(] = FJI};(R(]U 5] {J:U}) — {[‘11T4.’150}
C FyTy{I — R[(I = A)D + B]}domD — {FsTyxo}
C Fy{T4{I — R|(I — A)D + B]}domD & ker{I — R[(I — A)D + B|}}
~{F3Taxo} — Faker{I — R[(I — A)D + B|}
= FydomD — {FyTyxo} — Fyker{I — R[(I — A)D + B|} C ker D.
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By (4.20), we have F; Ty RCU = FydomD—{FTyzo}—Fs ker{I-R[(I—A)D+B|} = ker D.
Thus, FyTa RCU +{F1Tszo}+Fs ker{I—R[(I-A)D+B|} = FydomD = ker D. This means
that for every z; € ker D, there exists v € domD,u € U and zg € ker{I— R[(I—A)D+ B]}
such that ¢, = Fyv = FyTyRCu + FyTyzg + Fyzg = F4[Ty(RCu + zo) + 20, 1.e. z; is Fy-
reachable from zg. The arbitrariness of xzg, 2, € ker D implies that

F4( Rangy +,P4) = ker D.

Conversely, suppose that Fy( Rangy ;,®4) = ker D. Choosing zg = 0,29 = 0, we
get that f4Ty RCU = ker D. The proof is completed.

Corollary 4.3. Suppose that A, B are stationary operators. Then the system (I)S)g is
F5- controllable if and only if

ker C*R*(A — BR)*" Fy = {0}. (4.21)

Theorem 4.3. Suppose that the system (DS)g is Fi- controllable. Then, it is Fy- con-
trollable for every initial operator F! € Fp.

Proof. Tet F; be an initial operator for D corresponding to R € Rp, ie. F;R; =0 .
On the other hand, for every z, € ker D and v € X, there exists zo € ker D such that
x1 = xy+ I Ryv. By our assumption the system (DS)q is F;- controllable. Thus, for every
o, Ty € ker I, there exists a control u € U and zg € ker{I — R[(I — A)D + B]} such that
F[T{RCu + o) + z0) = a2 , or Fi[Ti(RCu + o) + 2] = Fi(x2 + R;v), for some v € X.
Hence, F!/[T;(RCu + xp) + z0) = F!(z2 + Riv) = z2 + F/R;v = 1 . The arbitrariness of
zo, x1 € ker D, the proof is completed.

Theorem 4.4. Let be given a degenerate system (IDS)q and an initial operator Iy € Fp.
Then, the system (DS)o is F;- controllable if and only if it is F;- controllable to every
element v' € F;T;RX.

Proof. First, we prove the equality:
Fy{T1(RX & ker D) + ker{I — R[(I — A)D + B]}} = ker D. (4.22)

Indeed, since {I — R[(I — A)D + B]}domD C domD = RX @ ker D, there exists
E C X and Z' C ker D such that RE @ 2’ = {I — R[({ — A)D + B]}domD. This implies
that

WRE® Z') + ker{I — R[(I — A)D + B]}
= Ty{I - R[(I — A)D + B]}domD & ker{I — R[(I — A)D + B}} = domD.
Hence,
ker D = FydomD = Fy{T4(RE ® Z') + ker{I — R[(I — A)D + B|}}
C Fy{T1(RX & ker D) + ker{I — R[(I — A)D + B]}} C ker D,

i.e. the formula (4.22) is has been proved.
Suppose that the system (DS)g is Fy-controllable to every element v’ € FyTyRv,v €
X, i.e. there exists a control ug € U and zy € ker{I — R[(I — A)D + B]} such that

P:; [T4(RCUO + l‘o) + ZD] - F4T4Rv.
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This implies that
i':"{.lh[”(.??lu + g + .L‘gl + 29 + Z]} = 1“4{’1:1(1’{!1 -+ .’Eg) + 2 }, (423)
where z; € ker{I — R[(I — A)D + B]} and z, € ker D are arbitrary.
By formula (4.22), for every x; € ker D , there exists 2] € ker{I — R|(] - A)D+ B|},
v' € X and z) € ker D such that @) = Fy[Tq(Rv' 4+ ) + 2]} . This equality and (4.23)
obtain ’
FiTa(RCuy + o + 25) + 20 + 21} = 7. (4.24)
On the other hand, the condition 0 € F;T; RX and our assumption imply that
(DS)o is Fi4- controllable to zero, i.e. 0 € I4( Rangy ,,®4) for every g € ker D. There-
fore, there exists uy € I/ and z3 € ker{I — R[({ — A)D + B|} such that
F|Ty(RCuy — 2h) + 22} = 0. (4.55)
If we add (4.24) and (4.25), then F3[T,(RCus + z9) + z3} = z; , where .3 =
zg + 2] + 22, uz = ug + u,. The arbitrariness of zo, z, gives Fy( Rangy ,,®s) = ker D.
Example 4.1. Suppose that X is the space (s) of all real sequences {z,},n =0,1,2,---
Write: Doy} = {gar—8s) Rizu}l={uk =0 5 = Zz;(l, rr,n 2 1 and
I'{xn} = {zn},2n = 20, =0,1,2,--- It is easy to check that D € R(X),R € Rp and I
is an initial operator for D corresponding to R. Moreover,
ker D=4z = {z,}, 2, = ¢;n € N,c € R} # {0}-
Suppose that U = {{un} :un € Ryu, = 0,Yn 2 1} , an operator C € Ly(U, X) is defined
by C' = al (I is an identity operator, & € R) and Tg = {zo} € ker D. We consider the
degencrate system (1DS)g of the form
ADz=Bz+Cu , uelU (4.26)
Fr =70, (4.27)
where A, B are defined as follows A{zn} = {zn+1}, B{zn} = {zn+2 — za}. In Example
3.1, we see that A # 0 non-invertible, the resolving operator A — BR is invertible and
A~ BR= (A~ BR)"' = —I. Therefore, by formula (4.6), the solution of (DS)¢ is given
@3(Zg,u) = T3(Ralu + %), T3 = I — R[(I — A)D + B
= {zo, zo — aug, Tp — aug, Tg — QUg, - - }. (4.28)
Let Ry € Rp be defined by Ry{x,} = {—z0,0, 2,2, + 22,2, + 2+ 3, -+ }. Thus,
Fy{en} = (I — RyD){zn} = {z1}. Therefore, for every Ty = {zo} € ker D, there exists
tip = {£2,0,0,0,---} € U such that F3®3(To,dp) = F3{%,0,0,0,---} = {0}, ie. the
system (DS)o is F3- controllable to zero. Moreover, F3T3(ker D) = ker D. By Theorem
4.1, the system (DS)g is F3- controllable.
Example 4.2. Suppose that X is the space (s) of all real sequence {z,}. Let D,R, F, A,
B € Lo(X) be defined by D{zn} = {zn+1 — zn}, R{za} = {¥n}, w =0,
Yn = Zz;é T, 2 1, 'F{mn} = {:’:O}r A{xn} == {21‘0 *+ -'L'],O,-’E‘z + T3, T3 + T4,T4 +
25, } and B{z,} = {22 — 20,0, 24 — ®2,25 — T3,26 — T4, - }. It is casy to see that
D e RX), Re Rp, kerD = {z = {za},2n. = ¢,n € N,c € R} # {0} and F is an
initial operator for D corresponding to R. The operator A # 0 and non-invertible, since
kerA = {zg, —2x9, Ty, —2, T2, — T, - } # {0} and AX # X.
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Let U = {{un}: un € Ryu, = 0,¥n 2 2} and C = I € Lo(U, X). Consider the
degenerate system (DS)g of the form:

ADz=Bzx+Cu , uelU (4.29)

Fr =%y , ZTg€kerD (4.30)
We have A~ BR € W(X), I € Wa_pnr, since (A— BR)I(A—- BR){zn} = (A —BR){z.}.
Moreover, ker{I — R[(I — A)D + B]} = {{0,0,22,%3,24,--*},zn € R,n = 2,3,4,---}.
Therefore, by the formula (4.7), the solution of the problem (DS)g is given by

P4(To, u) = {I + R|(I — A)D + B]}(RCu +Zo) + %,% € ker{I — R|(I - A)D + B]}
= {xo, To + o, To + ug + 2uy + Tz, T + ug + 2uy + I3, -- }. (4.31)

Let ¥y € Fp be defined by Fy{x,} = {&1}. Then for every To = {zo} € ker D, there
exists Ty = {—x0,u,0,0,0,---} € U such that Fy®4(To,uy) = {0,0,0,---}. Thus, the
system (DS)g is Fy- controllable to zero. Moreover,

Fa(Tiker D + ker{I — R[(I — A)D + B]}) = ker D, withT; = I + R|(I — A)D + B].

By the Theorem 4.1, the system (1)S)q is F;- controllable.
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