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ON THE LOCAL DIMENSIONS OF FRACTAL MEASURES

Le Van Thanh, Nguyen Van Quang
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Abstract. Let Xo, Xy, -+ be a sequence of independent, identically distributed
random variables each taking values ro, 7y, - |7 with equal probability p = n—ll_-—l-
Let p be the probebility measure induced by S = Y 00 p' X;. The aim of this paper
is to study some properties of support of p and the local dirnension of p at clements

s € suppp in the case: ro = 0,7 <1y < -+ < 1y, and q are integers such that

T

5 <gs<m+1l, rm—q€D= {rg,rh--- ,rm}; P = %
1. Introduction and notations

By a probabilistic system we mean a sequence Xg, X, -+ - of independent, identically
distributed random variables cach taking values rg, 7y, - - - | 7,,, with respective probabilities

Po,P1," " ; Pm. We say that the systemn is uniformly distributed if p; = m-’—*l For0 < p <1,

put
oo n
.S':Z/)iX, S,‘:Zp’x,
1=0 1=0

Let p and p, denote the probability distributions of S and S,,, respectively. Then p is
called the fractal measure associated with the probabililistic system.
Recall that for s € sup p, the lower local dimension a,(s) of p at s is defined by

] B(s, F
a,(s) = lim inf o il Bis l)), where B(s, h) = [s — h, s + h].
h—0+ log h
We similarly difine the upper local dimension using the upper limit and denote it by a*(s).
If the two limits are equal, then the common value is called the local dimension of p at s
and is denoted by a(s). Roughly speaking, if a(s) exits, then u(B(s, h)) is approximately

a(s) for small h. Thus 2 can be viewed as a probability measure of degree

proportional to A
of singularity a(s). In this sense, the local dimension measures the degree of singularities
of p locally.

In [4], T. Hu considered the local dimensions of fractal measure p in the case

m=1rg=0, 7, =1 and p~! = Y5 (this number is said to be the golden number).

2
In (5], T. Hu and N. Nguyen studied the problem in the case ry = 0,7y = 1,--- , 7, =m,
Do =P = 104 = Py = -’-n—f—‘_—l, H = ‘-;-, 2 < g < m, qis an integer. It is very difficult

to study the above problem in the case that the distances between ry,r2,--- , 7y are not

equal. In [6] only considered the problem in special case: m = 2, 7o = 0,7 = 1,73 = 3;

pp=p=p=jandp= =g
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The aim of this paper is to study some properties of suppu and the local dimension
of p at elements s € suppp in more general case. The main results of this paper are the
theorems 2.7 and 3.1. Our results here extent some results in [5] and {6] (see proposition 2.4
in [5], proposition 2.1 and Main Theorem in [6]).

All notations and definitions of this paper we refer to (2], [4] and [5]

2. Some properties of fractal measure

Throughout of this paper the following assumptions are made: ro = 0,7 < 7 <
- < T are integers such that 2> < ¢g<m+1, r,—-qe€e D= {ra,r1,+" 7m} Bod
T (ll. The following proposition was proved in [5].

Propositions 2.1. Let s,(0) < s,(1) <--- < s,(k,) denote the set of all distinct values
of suppu,,. Then we have

1. 5,(0) =0 and sp+i(kn+1) = Sn(kn) + mg™""! for every n € N

2 The distance between two consecutive points in sup u is at least g™

3. Suppptn C SUPPin+ and suppp = U ,SUPPHin.

Proposition 2.2. Let

n
; e s +1 —Hon, am @
< 8 D= {(10,J21,---,$ﬂ)€Dfn q E q 'z = 8y
1=0

Then we have
pn(sn) =# < $p > (m+1)7""

where # < s, > denotes the cardinality of sn.

Proof. For x(n) = (29,21, ,Zn) €< $p >, put

Azn) = ﬂ{w Xi(w) = z; }.

i=1

It is easy to see that if z(n),y(n) €< s, >, z(n) # y(n) then Ayn) N Ayn) =0 and

iiles) = Plu: S(w)= 8y }= Plwi Zq"X,'(w) iy

n

— 1"{&4) . X,,(w) = Vi W’; Zq_ixi — }}

1=1

=P( U /\un))—“- Y. PlAxm)= ) P(ﬂ{w X(W—’vz)

z(n)eE<sn> n)E<sn > z(n)€<sn>

= Z (ﬁl’({w: X,-(w)zx,-}))

r(n)€<s,> 1=1

i S

n+1
r(n)e<s(n)> (Tn + 1)
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Definition 2.3. Let s, € suppy, Sp41 € SUPp,+1, we say that s,., is represented
through s, if there exists £,4) € Dm such that s, = sp + ¢ Lng.
It is easy to see that if s,+ is represented through s,, then

HL s> £ #sau1>.

Lemma 2.4. If s, € supppips, then there is s, € pu, such that s,., Is represented
through s, and 0 < s, — s, <27 ™.

Proof. If sp.q € supppn~1 then there exists (n+ 1) = (zg, Ty, , Znsy) € D2
such that
n+l
W] B2 Zq“ia:i = }:i =0)"g ' + ¢ " 1 = 8n + g™}
1=0 (

and

n—1 -1

0< 8pst ~8n =0 " 'Zps1 Lg " 'rm <qg ™ '2g=2¢"".

Lemma 2.5. Ifs,,| € supppn,., then there are at most two points s,, and s,, in supppn
such that s, is represented through them. In this case s,,, 8! are two consecutive points
in supppty,.

Proof. Suppose that there are three points t,, <t} < t! in suppu and three elements
/

Tn, Th, Th in Dy, such that
Sn+1 = bn + q-—n_lmn—H
Sn+1 =t +q "z
gt = £ 4 g0l
Then
By 2 ts L4257
Thus

Spil — 1 2 297",
which is imposible (by Lemma 2.4 ) and the first part of the lemma is proved.
Now, suppose that s, is represented through s, and s/, s, < s, we have
g " < lsn i q;l Sl — 8 < zq_ﬂ
which follows that |s, — s/,| = ¢”™ and sn, s, are two consecutive points in suppgn.

Lemma 2.6. If s, .| € supppn+1 is represented through s, € supppn and t, € suppiin
such that 8, < tn < 8n4y thenty =8 +q .
Proof. We have
This implies
bn—Spn=q
which completes the proof.
The main result of this section is following theorem.
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Theorem 2.7. If s,,s; are two consecutive points in suppu, then

pn(sn)
pn(sh)

<n+1

Proof. We prove the inequality by induction. Clearly the inequality holds for n = (.
Suppose that it is true for n < k. Let sgy; > s, be two arbitrary consecutative points
N SUPPik+|

s—k+1=sp+q " oy
s'—k+1=sc+q " al,
. - - \’
where sy, S} € SUPPpk; Th+1,Zpsq € Dm.

Then

3;: S S;C+1 < Sk+1.

We consider three case:
a. If s). > si then spyy > s > si. Using lemma 2.6 we get

Sk =sk+q "

By lemma 2.5, sx4q has at most two representations through s, and s}. It follows that

#<Spr1 >SH# < >H#E< S, >
Thus
prei(Sk1) _ # < Sk > H# < sk > A < 8) >

llk*-l(s; 4-1) #s;c+1 - # < S,k >

# < s > _l_{_#k(sk)
P = /
# < sp > i (5%

<1+ (k+1)=k+2.

b. If s} = si then by lemma 2.5, there exists at most one point tx € supppk, tx 7 Sk
such that sg. is represented through i (si and tx are two consecutive points). It follows
that

# <y > < FLsg>HFE<E D>

Thus
phei(Sk41) _ # <se1 > _ # <o > +# <8 >
Peri(Sky1)  Hes1(Skyq) ~ # <t >
12
.. iU S S Dy
Hi(sk)

c. If s < s; then we consider two cases.
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c;. If there exists t). € suppyu such that s; < ¢ < sx then from the inequality
ka1 — Sk <2¢7° < s — s},

we have
Bpaq € 855 B
On the other hand, since sx+; and sx are two consecutive points, we have sg.; = s

and

Sk+1 = Sk = S) + 2% » S + gl Sl

! ! —k~—1
Spi) =8 T q Tm
I /!
Skl __>_ tk
v . . " N % ) =k
Using lemma 2.6 we get b, = s, + ¢~ ".

This implies

~k-1,

s;c_H = s;c +q . LL - qv_”c +q_k_lrm = t:c + q_k'](rm - q).

Since 1, — q € Dy, we have S;\--l is represented through t;. It follows that
! !
#<Sk+l>2#<tk>‘

We now prove that tj. and s are consecutive points in supppk.
Suppose that there exists ¢ty € suppuy such that t, < &) < sk, then si | >t
(because s;.., and sx4; are two consecutive points in supppk4). It follows that

a1 — Sk 2t~ 2t +q " — 5 =2¢7".

It is imposible (by Lemma 2.4). Hence t; and sy are two consecutive points.
By lemma 2.5, s¢+1(= si) has at most two representations through sg and s .It
follows that
#<sp SSHE#ELS>HHE<Y >

and

prri(sner)  #<se>A# <> # <sk>

& Ll4+k+1=k+2.
pic+1 (k1) # <ty > # <ty >

cz. If does not exists t;, € suppux such that s; < {, < sk, then s, and s are two
consecutive points in px. By lemma 2.5, sk+1 has at most two representations through s
and s. It follows that

H L Sy DER EHOFH L

and
Hik+1 (5k+1 )

<k+2
“‘k"'l(s;c-é-l)

The theorem is proved.
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Corollary 2.8. If s,,s] € suppu, and |s, — sl | < cq™™ then

lfvx( )

Iln (bn)

< (n+1)“

Proof. Let s] =ty < t; < --- < tx = s, be k+1 consecutive points in suppu,.
Then by Proposition 2.1 we have k < ¢ and

pn(sn) _ pn(te) _ pn(te) pn(te-1)  pa(th)
pn(sn)  pn(to)  pa(ti-1) pn(te—2)  pn(to)

<(n+)(n+1)---(n+1) <(n+1)".

3. Local dimensions of fractal

The following theorem is an extension of Proposition 2.1 in [6].

Theorem 3.1. For s € suppp, we have

) - looﬂﬂ(sn)
e n—-»oo nloggq

provided that the limit exists. Otherwise, by taking the upper and lower limits, respec-
tively, we get the formulas for a*(s) and a.(s).

Proof. Suppose that there exists the limit

ofs) = lim log p(B(s, h))

o log h

where B(s,h) = [s — h,s + h].
For h > 0, take n such that

n

g " <h<qg

n

Then
w(B(s,g™") _ w(B(s,h)) _ u(B(s,q7"))
logg—" - log h = logg—m-! .
Since
an
= s

we have
u(B(s,q47™)) < pn(B(s,cq™™)) < u(B(s,2¢q7")),

where ¢ = q’"l 4 1 is a constant depending only on m and q. Similarly, we have

p(B(s.q™™)) = pn(B(s,c'q™™)).
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Thus
pn(B(s,c'q™™)) < u(B(s,q7™)) < pn(B(s,cq™™)).

This implies

log pta(B(s, cq™™)) = log u(B(s, g~ ™)) » log pn (B(s, 'q™™))
—-nlogq - —-nlogq N —nloggq '

For t € B(s, cq) Nsuppp, we have

ke

ltn — sn| < 2cq™

By corollary 2.8, we have

pn(tn) < (n+ l)2cﬂn(3n)'

This implies
pn(B(s,¢q™™)) < (2c+ 1)(n + 1)* pn(sn),

and

2 B(s,q™" - n n\9n
i 08B, a™)) o logpn(sa) . [108 s (sn)]
n—00 -nlogq

n—eo —nlogqg  n—eo  —nloggq

Similarly, we have

i B(B(s:a7)) oy [0 nlsn)l
n—00 —-nloggq n—co —nloggq

This completes the proof.
The following corollaries can be proved by the same technique as those in [6] (by
using theorema 3.1 and proposition 2.2).

Corollary 3.2. For s =Y -, q 'z € suppu, we have

as) = log(m + 1) + lim log # < 8, >
T logg n—eo  nlogg

provided that the limit exists. Otherwise, by taking the upper and lower limits respectively
we get the formulas for a®(s) and a.(s).

Corollary 3.3.
1
5o Joa(m+1)
loggq,
where

a = sup{a(s) : s € suppu} a* = sup{a*(s): s € suppu}.
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Corollary 3.4. (see [6] Main Theorem). Form=2,1=0, 7 =1,r2=3,g=m+1=
3, we have

a=a=l.
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