## ON THE ASYMPTOTICAL STABILITY FOR INDEX-k TRACTABLE DAES

### Dao Thi Lien

Teacher's Training College, Thai Nguyen University

Abstract. DAEs arise in various problems in the natural sciences and technology. The stability of DAEs was studied by many authors [3 - 9]. In [9] Tatyana Shtykel proposed a numerical parameter  $\chi(A,B)$  characterising the asymptotical stability of the trivial solution of linear system index-1 DAEs

$$AX' + BX = 0$$

with constant matrix A, B, where A is singular. In this paper we study the same parameter for linear system of index-k DAEs.

#### 1. The index-k tractable DAEs

Consider the differential algebraic equation

$$AX' + BX = 0, (1)$$

where A, B are constant matrices of order m satisfying

$$det A = 0, \quad rank[(cA+B)^{-1}A]^k = r.$$

Definition 1.(see [3]) The equation (1) is called index-k tractable if the matrix pencil  $\{A, B\}$  is regular with index-k.

Since the matrix pencil is regular index-k and  $rank[(cA+B)^{-1}A]^k = r$ , there exist invertible matrices W, T such that

$$A = W \begin{pmatrix} I_r & O \\ O & U \end{pmatrix} T^{-1},$$

$$U^k = O, \ U^l \neq O, \ \text{ for all } l < k,$$

$$B = W \begin{pmatrix} -B_1 & O \\ O & I_{m-r} \end{pmatrix} T^{-1},$$

where  $I_s$  is the  $s \times s$  identity matrix. Let us set

$$\begin{split} Q_0 &= T \begin{pmatrix} O & O \\ O & U^{k-1} \end{pmatrix} T^{-1}, \ P_0 = I - Q_0 = T \begin{pmatrix} I_r & O \\ O & I_{m-r} - U^{k-1} \end{pmatrix} T^{-1}, \\ Q_1 &= T \begin{pmatrix} O & O \\ O & U^{k-2} \end{pmatrix} T^{-1}, \ P_1 = I - Q_1 = T \begin{pmatrix} I_r & O \\ O & I_{m-r} - U^{k-2} \end{pmatrix} T^{-1}, \dots \\ Q_{k-2} &= T \begin{pmatrix} O & O \\ O & U \end{pmatrix} T^{-1}, \ P_{k-2} = I - Q_{k-2} = T \begin{pmatrix} I_r & O \\ O & I_{m-r} - U \end{pmatrix} T^{-1}, \\ Q_{k-1} &= T \begin{pmatrix} O & O \\ O & I_{m-r} \end{pmatrix} T^{-1}, \ P_{k-1} = I - Q_{k-1} = T \begin{pmatrix} I_r & O \\ O & O \end{pmatrix} T^{-1}. \end{split}$$

Typeset by AMS-TEX

Let

$$\mathcal{A} = A - BQ_{k-2} = W \begin{pmatrix} I_r & O \\ O & O \end{pmatrix} T^{-1},$$

$$N_1 = \ker \mathcal{A}, \ S_1 = \{ z \in \mathbb{R}^m : BP_{k-2}z \in \operatorname{Im} \mathcal{A} \}.$$

It is clear that  $Q_{k-1}$  is canonical projector onto  $N_1$  along  $S_1$  and  $P_{k-1}$  is canonical projector onto  $S_1$  along  $N_1$ . Denote

$$A_1 = \mathcal{A} + BP_{k-2}Q_{k-1} = W \begin{pmatrix} I_r & O \\ O & I_{m-r} - U \end{pmatrix} T^{-1}.$$

It is easy to see that

$$A_1^{-1} = T \begin{pmatrix} I_r & O \\ O & I_{m-r} + U + \dots + U^{k-1} \end{pmatrix} W^{-1}.$$

Multiplying (1) by  $P_{k-1}A_1^{-1}$ ,  $Q_0A_1^{-1}$ ,  $Q_1A_1^{-1}$ , ...,  $Q_{k-1}A_1^{-1}$ , respectively, we obtain:

$$\begin{cases}
(P_{k-1}X)' + P_{k-1}A_1^{-1}BP_{k-1}X = 0, \\
Q_0X = 0, \\
(Q_0X)' + Q_1X + Q_0X = 0, \\
\dots \\
(Q_{k-2}X)' + (Q_{k-3}X)' + \dots + (Q_0X)' + Q_{k-1}X + Q_{k-2}X + \dots + Q_0X = 0.
\end{cases} (2)$$

Because of

$$P_{k-1} + Q_0 + \dots + Q_{k-1} = T \begin{pmatrix} I_r & O \\ O & I_{m-r} + U + \dots + U^{k-1} \end{pmatrix} T^{-1} = K$$

is invertible ,hence the system (2) is equivalent to (1); and from the system(2) we have

$$\begin{cases}
(P_{k-1}X)' + P_{k-1}A_1^{-1}BP_{k-1}X = 0, \\
Q_{k-1}X = 0.
\end{cases}$$
(3)

X is a solution of (1) if and only if  $P_{k-1}X$  is the one of (3).

**Definition 2.(see [9])** A matrix valued function  $\mathcal{G}(t) = \mathcal{G}(t, A, B) \in \mathcal{C}^1$  is called the Green matrix of equation (1) if it satisfies the initial value problem (IVP)

$$\begin{cases}
\frac{d}{dt}\mathcal{G}(t) = M\mathcal{G}(t) & (t > 0), \\
\mathcal{G}(0) = P_{k-1},
\end{cases}$$
(4)

where  $M = -P_{k-1}A_1^{-1}B$ .

It is easy to verify that  $M = P_{k-1}M = MP_{k-1}$ ; and consequently  $\mathcal{G}(t) = P_{k-1}e^{tM}$  is the unique solution of the IVP (4).

Therefore the general solution of equation (1) is of the form

$$X(t) = \mathcal{G}(t)X_0 = P_{k-1}e^{tM}X_0,$$

where  $X_0$  is an arbitrary constant vector. Thus, we have proved the following

**Theorem 1.** Let  $\{A, B\}$  be a regular pencil with index-k,  $Q_{k-1}$  the canonical projector onto  $N_1$  along  $S_1$ , and  $P_{k-1} = I - Q_{k-1}$ . Then the initial value problem

$$\begin{cases} AX' + BX = 0, \\ P_{k-1}(X(0) - X_0) = 0, \end{cases}$$

for all  $X_0 \in \mathbb{R}^m$  has a unique solution X(t) given by  $X(t) = P_{k-1}e^{tM}X_0$  with the matrix  $M = -P_{k-1}A_1^{-1}B$ .

This theorem seems not new but the method of proof is appropriate for studying the asymptotical stability of index-k tractable DAEs.

# 2. The criterion of asymptotical stability of the trivial solution of DAEs with index-k

# 2.1. The asymptotical stability of the trivial solution of DAEs with index-k

Definition 3.(see [3 - 7],[9]) The trivial solution  $X \equiv 0$  of (1) is called stable in the sense of Liapunov if for certain projector  $\Pi$  along the maximal invariant subspace of the matrix pencil  $\{A,B\}$  associated with the infinite eigenvalue the IVP

$$\begin{cases} AX' + BX = 0, \\ \Pi(X(0) - X_0) = 0, \end{cases}$$

for all  $X_0 \in \mathbb{R}^m$  has a solution  $X(t, X_0)$  defined on  $[0, +\infty)$ . Moreover, for each  $\varepsilon > 0$  there exists a  $\delta = \delta(\varepsilon) > 0$  such that  $||X(t, X_0)|| < \varepsilon$  for all  $t \ge 0$  and for all  $X_0 \in \mathbb{R}^m$  with  $||\Pi X_0|| < \delta$ . Here we choose  $\Pi = P_{k-1}$ .

Definition 4.(see [6],[9]) The trivial solution  $X \equiv 0$  of (1) is said to be asymptotically stable in the sense of Liapunov if it is stable and there is a  $\delta_0 > 0$  such that for all  $X_0 \in \mathbb{R}^m$  satisfying the inequality  $||\Pi X_0|| < \delta_0$  one gets  $X(t, X_0) \to 0$  as  $t \to +\infty$ .

**Lemma.** If U is a k-nipotent matrix then  $det(\lambda U + I_{m-r}) \neq 0$  for all  $\lambda \in C$ .

**Theorem 2.** The trivial solution  $X \equiv 0$  of (1) is asymptotically stable if and only if all finite eigenvalues of the matrix pencil  $\{A, B\}$  have negative real parts.

# 2.2. The criterion of asymptotical stability

Let all finite eigenvalues of the pencil  $\{A, B\}$  with index-k have negative real parts. Assume that the matrices M and  $P_{k-1}$  have the structures described above. We consider the Liapunov equation

$$XM + M^*X = -P_{k-1}^* F P_{k-1}, (5)$$

with an unknown matrix X. The matrix F is supposed to be hermitian and positive definite. Since

 $||P_{k-1}e^{tM}|| \leq \gamma(r)(\frac{||B_1||}{\sigma})^{r-1}e^{-t\sigma/2},$ 

the following intergral

$$H_k = \int_0^{+\infty} e^{tM^*} P_{k-1}^* F P_{k-1} e^{tM} dt + Q_{k-1}^* F Q_{k-1}$$

converges. On the other hand  $H_k$  is hermitian and positive definite and  $H_k$  satisfies the equation (5).

Theorem 3. If the matrix pencil  $\{A, B\}$  has index-k and all its finite eigenvalues belong to the negative complex half plane, then  $\chi(A, B) = 2\|A - BQ_{k-2}\|\|B\|\|H_k\| < \infty$ . Inversly we assume that  $\chi(A, B) < \infty$  and  $H_k$  is a solution of (5). Then the following inequality is valid

$$||X(t)|| \leq \sqrt{2||A - BQ_{k-2}|| ||B|| ||H_k||} e^{\frac{-t||A - BQ_{k-2}|| ||B||}{2||A - BQ_{k-2}|| ||B|| ||H_k|| ||B_A^{-1}||^2}} ||P_{k-1}X_0||$$

$$\leq \sqrt{\chi(A, B)} e^{\frac{-t||A - BQ_{k-2}|| ||B||}{\chi(A, B)||A_1^{-1}||^2}} ||P_{k-1}X_0||.$$

This means that the trivial solution  $X \equiv 0$  is asymptotically stable.

Acknowlegment. We wish to thank Prof. Pham Ky Anh and Dr. Nguyen Huu Du for their valuable suggestions during the preparation of this paper.

### References

- 1. B. P. Demidovish, Lectures on the Mathematics Theory of Stability, Nauka, Moscow 1967 (in Russian).
- S. K. Godunov, Ordinary differential equations with constant coefficients, T.V.1 Boundary problems Novosibirk University 1994 (Russian).
- 3. E. Griepentrog, R. Marz, Differential Algebraic Equations and their Numerical Treatment, Teubner Texte Math. 88, Leipzig 1986.
- 4. M. Hanke, Rodriguezs and R. Antonio, Asymptotic properties of regularized differential algebraic equations, Preprint Nr 95-6, Humboldt Universitat zu Berlin 1995.
- 5. R. Lamair, R. Marz and M. M. R. Mattheij, On the stability behaviour of systems obtained by index reduction, Preprint Nr 92-27, Humboldt Universitat zu Berlin 1992
- R. Marz, Criteria for the trivial of differential algebraic equation with small nonlinear to be asymptotically stable, Preprint Nr 97-13, Humboldt Universitat zu Berlin 1997.
- C. Tischendorf, On stability of solutions of autonomous index-1 tractable and quasilinear index-2 tractable DAEs, Preprint Nr 91-25, Humboldt Universitat zu Berlin 1991.
- C. Tischendorf, Feasibility and stable behaviour of the BDF. Applied to index-2 differential algebraic equations, Preprint Nr 93-04, Humboldt Universitat zu Berlin 1993.
- Tatyana Shtykel, On the criterion of asymptotic stability for index-1 tractable differential algebraic equations, Preprint Nr 98-6, Humboldt Universitat zu Berlin 1998.