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REFERENCE LEVELS, SIGNAL FORMS AND DETERMINATION OF
EMISSION FACTOR IN DLTS
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Abstract. The existence of reference levels of signals which determine directly
the temperature dependence of emission factor in deep level transient
phenomena is discussed. The basic algebraic structure of reference levels in the
classical DLTS is studied and various signal forms with derived reference levels
are given. We then demonstrate the use of these signal forms and compare them
with the classical DLTS double boxcar signal.
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1. Introduction

The existence of the deep levels is an important phenomenon in semiconductor
physics. It is well-known that they cause many considerable behaviours of
materials. The characterization of the deep traps faced many difficulties until 1974

when Lang has introduced a spectroscopic method called the Deep Level Transient
Spectroscopy (DLTS) [1]. This allows

‘ ke setting 1
1
to deduce from the exponential e @
setting 2 = —» | setting 2

capacitance decays C(f)=4Ce * the g =

— >

: " & -
basic physical parameters of the © \
traps such as the activation energy, o \

capture cross-section and Temperature ~ Time
concentration. The Lang's method

has been widely accepted today as

the standard tool, although it has Fig.1. Lang's method SEaa
S(T)=C(t,)-C(t;) for wvarious ¢, and ¢,

settings and draws the temperature

several limitations such as the slow
run and relatively low resolution. To
extract the trap parameters from the dependence of S(T). The maximum
exponential decays, Lang has
introduced the  signal  form )
S(T)=C(t,;)-C(ty) - technically realized windows.

using a double boxcar circuit, which

determine the temperatures T of the
emission factor e,,,, set forth by the rate

monitors the capacitance transients
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functional dependence of emission factor on temperature e=f{T) and can construct
the Arhenius plot In(e/7%) versus 1000/T for the determination of trap parameters
(Fig.1). The key element in this technique is thus the determination of the
temperature dependence e=f(7).

Up to now, many attempts have been made in this field to improve the DLTS
method. Among the techniques that have been reported [2-14] (the list is certainly
not complete), there are two that attracted general attention: the Fourier and the
Laplace technique. These are both transformation methods manipulating with the
whole range of measured data, usually digitally recorded 512 or 1024 points. Recall
that the classical S(T) uses only 2 points and throws the rest away. In general the
Fourier and the Laplace signal forms show more sensitive peak structure of the
gain, but since they do not involve any rate window the exact emission factor at the
maximal gain can not be calculated in advance. Thus the correspondence of the
peaks and the deep centers appears in these cases somehow subtle and arbitrary.

A common feature of all spectroscopic methods is the presentation of the
analytic algorithm converting the set of the capacitance transients C(t), each of
them has been recorded at some preset temperature T, into the specific values of
certain analytic functions f,(T), showing the peak structures according to T. The
/,(T) have two important properties: (1) they are spectroscopic in the context that
each of the peaks in f,(T) can be associated with one specific deep center and (2)
they are linear, i.e. the Arhenius plot [In(e/T?) versus 1000/T] transformation of the
maxima of arbitrarily chosen peak is linear. The functions f,(T) represent the
algorithm and usually the method is named after f,(T). Hereinafter the f,(T) are
refereed to as the signal form. For short we may remove the index n denoting the
time-settings and use f(T) instead of f,(T). The different signal forms involve the
different number of measured data and have the different ability in separation of
the overlapping deep centers. The classical Lang's signal form, for example,
involves only 2 points in the whole transient, whereas the Fourier and the Laplace
signal forms are composed principally of the whole transient. There is not known
until today any other spectroscopic signal form than the above three.

In this work we present the study of the algebraic structure of the Lang's
classical signal form S(T) showing that this form possesses a desirable property of
having a so-called reference level of signal which directly determines the
relationship e=f(T). This property of DLTS was not reported anywhere before. We
then introduce the classes of many other signal forms having the same algebraic
structure of the reference levels and reducing the Lang's form as a special case. In
contrast to the Lang's form that involves 2 values of C(t), there is a class of forms
which involve only 1 single value C(t). This is a surprising fact these forms also
provide the peak structure of gain according to T. The Lang's signal form is
extended into the class of signal forms which contains many other forms providing
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the same results as the Lang's form. The fact that there exist many analytic
functions f(T) fulfilled the requirement of being the signal forms is first described in
this paper.

2. The reference levels in Lang's signal form S(T) and their algebraic
structure

The dependence of the capacitance transient C(?) on time ¢ is considered in
general case as:

C)=Csa BAC. & (1)

where Cj is C(t=w), AC=ZAC; = C(t=0)-C, and i denotes the number of present deep
traps.

With respect to the normalized capacitance given as C,(t)=(C(t)-Cy/AC, and
denote t,=t-d, t,=t+d, we redefine the Lang's signal for this general case:

SI)=C,(t-d)-C,(t+d)=
A, FAC) [ 5 — g il

Suppose that the traps are independent and not overlapping each other (they
are far each from other in the temperature scale), one may differentiate this signal
according to some emission factor e;, leaving the other ones zeroed, to determine the
signal maximal gain in the given temperature range. We modify the result from [1]
with respect to the variables ¢ and d mentioned above:

e, =In[(t+d)/(t-d))/2d | (3)

This relation shows that by fixing the rate windows (by ¢ and d) one also
selects the emission factor to which the Lang's signal reacts mostly when it scans
through the set temperature range. With the increase of temperature the trap
begins to release electrons and it releases mostly when the emission factor is high
enough, raising the Lang's signal to maximum. But when the trap becomes blank,
the emission process slows down resulting in the drop of Lang's signal. This
intuitive understanding of the emission process - although not correct, offers certain
physical meaning to the Lang's signal and set the believe that it really depicts the
physical traps.

One thing that seems either unobserved or attracted no considerable attention
from the Lang's time is that the relation (3) used to obtain the e, ., almost equals 1/t
numerically. Using the Euler number definition formula lim{+1/n)" =¢ one can

n-—a

without difficulty prove that In[(t+d)/(t-d)]/2d really converges to 1/t when d— 0.
Giving the fact that in[(t+d)/(t-d))/2d ~ 1/t, the e,,, always corresponds to C,(t)=¢™
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is a great advantage for the signal form

to possess the reference level since this means that e=f{7T) can be derived directly
from its reference level.

Although the Lang's signal only approaches this reference level in the limit
case when the gate width 2d is infinitesimally small, there is a lot of other signal
forms as discussed in the next section, which have exact reference level. The
importance of reference levels follows from the fact that they lead to the
understanding of the algebraic structure of the exponential decays in general and of
the capacitance transient particularly. We now introduce the so-called Lang's
signal class and derive the algebraic structure for this class.

Consider the moving of gate from ¢ to t'=at, for a is a positive real number.
Since e,,,, depends inversely on ¢ it follows that the emission factor e (t) detected on
the basis of e, (t) changes as: e;(t) = efat) = 1/at = (1/a)e,(t). The transient
associated with this e,(t’) will have at time ¢ the value equal to the value of the
transient associated with e;(?) at time t/a:

e WU _ pmea(titia =C,,(1/a)=lcn(l)]”u

So we can construct a modified Lang’s signal, to be called of the order a as:

S(T™ =C, (t-d)"*-C, (t+d)" (4)

which still has a central position at ¢ but produces the maximal output along the
reference level C,=e ™ (e=2.718282). Of course, the classical Lang's signal S(T) is of
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order 1: S(T)!".. With all possible a, the system S(T)*! forms a class of signals - the
Lang's signal class. The fact that the e, of S(T)“ really converts to a/t when d—
0 can also be observed by differentiating S(T)** according to e, (leaving all other e;..,
=0) and set it to 0. The result is: e,,.(S(T)*)= a In[(t+d)/(t-d)]/2d = ae,, (S(T) =
a/t. When a<1, the S(T)"! catchs C,=e ™ at lower T and when a>1 it catches C,=e™®

at higher T compared to S(T).

This signal class associates each point X in the plane [y=C,(t), x=t] with some
horizontal reference level line y=e ™ and the vertical line x=t, so that X lies in the
intersect between these two lines. Each point X thus determines a unique emission
factor e;=a/t. It is naturally to unify X with e, and write e,=e,(a,t). From the analysis
above it is obvious that:

ea,t)= ae(1,t)= e(1,t/a) (5)
e;(a,t)"= a"¢;(1,t)"=a"¢,(1,t")= e;(a",t")=e;(1,(t/a)")

This tells us about the equivalence of all reference levels in the signal
processing system using the double boxcar. The following relations comes
straightforward.

Ale(a,t)+e;(b,t)]= Ae(a,t)+he(b,t)= - (6)
= Lae;(1,t)+Abe;(1,t)=A(a+b)e;,(1,t)= e;(A(a+b),t)
[e;(a,t™)x e;(b,t™]" = e(a,t*)x e;(b,t™)* =
= a"e,(1,t)"x b*e;(1,t)™ =(ab)’e,(1,t)" ™™ =
= ¢;((ab)*,tH™*m)
One may notice that they follow a linear algebra on R

3. The signal classes and forms

There is an important property of the Lang's signal form: it shows certain
separability when the different traps overlap. The signal that is worth the use in
practice should be both spectroscopic and resoluble. Up to now, the only
spectroscopic signals that brought better resolution were from the transformation of
the whole transient. These signals, however, do not possess the reference levels and
their algebraic structures are quite different.

This section describes two classes of the signal forms, which we call here the
Gaussian and the Poisson class (to the later one the Lang's class S(T)® reduces as a
special case), possessing the same algebraic structure of the reference levels as the
Lang's signal form and also fulfilling the requirement of being resoluble and
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spectroscopic. The fact that there may
exist other spectroscopic signals than the
Lang's one can be intuitively recognized
from the temperature dependence of C(t)
(Fig.3). The simplest way how to creat the
peak-shape function from the C(?)=f(T) is
to either differentiate C(t) according to T
(or done by Lang, to substract C(t,) from
C(t,) - which evidently reduces to the
C(t)-s become
infinitesimally close). These classes are
summarized in the Table 1, where the last

differentiation when the

column shows the estimation for maximal
pseudo-random noise level (in % of the
maximal signal) that does not disturb
their e,,., more than 5% from the correct
value.

In general, the signal classes can
be classified into two different groups.
The 1*
consisting of the classes with signals
formed from the finit number of C(t). The
2™ is the infinite group
consisting of the classes with signals

1s the finit element group,

element

formed from the infinite number of C(%).
This classification can be extended to
cover also the 3™ class of signal forms,
which deal with the
algorithms, that is the fractal group.

non-analytic

Principally, any non-analytic algorithm
Ft,T,.C(t,T)) taking Crt), t, T as the
inputs and outputs the peaks can be

considered as the signal form if it
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Fig.3. The development of capacitance at
three successive times for the Lang's n-
GaAs example with two traps E=0.44eV
and 0.75eV.
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Fig.4. Comparison of some selected
signal forms to the classical Lang's
S(T) form for a sample with one trap
E=0.44eV.

satisfies the conditions for the signal forms. The study on the 2"! and 3" groups will

be presented in another paper. This work set focus on the 1* group of signal forms.
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Table 1. The finit element signal classes: signal forms, their e ,, and reference levels

Class Signal forms oy

Reference level Max noise
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The finit element signal classes

The signal forms are composing
from one single C(f) or from a finit
number of C(¢;). The Lang's class is a
special case where the number of C(¢)
is 2. It is worth to adopt the following
notation. According to the number of
C(t;) they consist of the signal form is
called the unitary or binary signal
form.

Among the unitary signal forms,
the Poisson ones - derived from the
Poisson distribution function, deserve
most attention since they provide sharp
peak and their resistibility to noise is
high. The Gaussian forms also possess
good peak structure but they seem
more sensitive to noise. Both these two
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Fig.5. The Arhenius plot constructed
using the Gaussian signal form No. 1
(Table 1) for the Lang's example n-
GaAs with two traps E=0.44eV and
0.75eV.
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classes are of e ® reference level class with e, =a/t. Fig.4 compares some of them
with the classic Lang's form which belongs to the middle quality signals. The Lang's
signal form, workable in the interference of 1-1.5% noise, is the best form among
the binary ones but is comparable to the Gaussian forms (1.5%) and is worse than
the Poisson forms (3-5%).

A common feature of the finit element forms is that they all have e reference
level with a preset. The e,,, depends only on ¢t and is always a/t. This enables the
straightforward construction of the functional dependence e=f(T): at each T when
the C(t) is recorded, the time t where C(f) crosses the horizontal line C=e™
determines e(T)=a/t. So the repeated scanning of C(¢) over the whole temperature
range as for the classical DLTS is not needed. The use of the unitary signal forms
even makes the measurement process more faster in one aspect that we don't need
to scan the whole time ¢ and can set focus onto the specific area. This topic is
however the subject of the further study. The existence of the unitary signal forms
itself is a surprising fact. Fig.5 illustrates the use of the Gaussian signal form to
determinate the traps in the Lang's example n-GaAs.

4. Conclusion

The existence of reference levels of signals and many signal forms in DLTS is
discussed here for the first time. We showed that the set of the reference levels
forms a linear algebra which holds valid for the presented classes of signal forms.
The reference levels allow the direct determination of e=f(T) in a geometrical way.
Besides the Lang's signal class, obtaining from the modification of the Lang's
classical form S(T), the two other signal classes - the Gaussian and the Poisson
classes, are discussed. The existence of a unitary class of signals is probably the
most interesting result of this work. The unitary signal forms are, in one hand,
more persistent to noise, in the other, reduce the need of repeating the
measurement. They provide very good results compared to the classical DLTS.
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