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HILBERT-KUNZ MULTIPLICITY, PHANTOM
PROJECTIVE DIMENSION BY SPECIALIZATION

Dam Van Nhi
Pedagogical College, Thai Binh

Abstract. The ground field & is assumed to be infinite. We denote by K a field exten-
sion of k. Let # = (x),...,z,) be indeterminates. Let u = (uy, ..., %) be a family of
indeterminates, which are considered as parameters. The specialization of an ideal I of
R = k(u)[z] with respect to the substitution u = a = (a1, ...04,) € K™ was defined as
the ideal I, which is generated by the set {f(a, z)|f(u,z) € I Uk[u,z]}. The theory
of specialization of ideals was introduced by W. Krull. Krull has showed that the ideal I,
inherits most of basic properties if I and it was used to prove many important results in
algebra and in algebraic geometry. In a paper, we introducedand studied specializations
of finitely generated modules over a local ring Rp, where P is a prime ideal of R, and
showed that the multiplicity of a module is preserved through a specialization. Now, the
problem of concern is the preservation of Hilbert-Kunz multiplicity and of finite phan-
tom projective dimension of modules through specialization when k has positive prime,
characteristic p. The purpose of this paper is to prove the preservation of Hilbert-Kunz
multiplicity, mixed multiplicity and of finite phantom projective dimension of a module
through specializations.

0. Introduction

The purpose of this paper is to prove the preservation of Hilbert-Kunz multiplicity,
mixed multiplicity and of finite phantom projective dimension of a module through spe-
cializations. First of all we fix some notations that will be used throughout this paper.
The groundfield k is always assumed to be infinite and has positive prime characteristic
p. We denote by K a field extension of £ and K 2 k?. Aggregates such as x,,...,z, or
a1, ... ,0m, where Yo; € K, will often be written = or a. Accordingly, the ring or field ex-
tensions k[z1,... , @) or k(a1,. .. ,an) will be written k[z] or k(a), with evident variants
of these designations. For short we set R = k(u)[z] and Ro = k(a)[z]. In this paper, we
shall say that a property holds for almost all a if it holds for all @ except perhaps those
lying on a proper algebraic subvariety of K™. For convenience we often obmit the phrase
“for almost all o” when we are working with specializations.

The theory of specialization of ideals was introduced by W. Krull [3]. Krull defined the
specialization of an ideal I of R = k(u)[z] with respect to the substitution u — «a as the
ideal I,, which is generated by the set {f(a,z) | f(u,z) € INk[u, z]}. The ideal I, inberits
most of basic properties of I and it was used to prove many important results in algebra
and in algebraic geometry.

Let P be a prime ideal of R. In [8], we introduced and studied specializations of finitely
generated modules over a local ring Rp and the multiplicity of a module is preserved
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through a specialization was also be showed in [9]. Now, the problem of concern is the
preservation of Hilbert-Kunz multiplicity and of finite phantom projective dimension of
modules through specializations when k has posive prime characteristic p.

The paper is divided in three sections. In section 1 we will discuss the notion
of Hilbert-Kunz multiplicity, which has been introduced by Kunz [5] in 1969, and has
been studied in detail by Monsky [7], Watanabe and Yoshida [12]. We will also discuss the
preservation of the notion of mixed multiplicity, which was introduced by Bernard Teissier,
(see, for example, [10]). Section 2 will present our discuss tight closure of ideals and of
modules by specializations. While preservation of finite phantom projective dimension of
a module [1], [2], by specializations will be studied in section 3.

1. Hilbert-Kunz multiplicity by specialization

We first recall some basic facts from [8] about the specializations of ideals and
modules. Let P be a prime ideal of R and let S denotes the local ring Rp. It is supposed
that g is an arbitrary associated prime ideal of P,, and we set Sq = (Ra)e. The notion
Sa is not unique. However, all local rings S, have the same dimension as S. Here the
maximal idcals PS of § and S, of S, will be denoted by m and n, respectively. We
commence with the following results, which are useful late.

Lemma 1.1. [11, Lemma 1.5] Let I C P be an ideal of R. Then, for almost all a,
(i) IaSa is unmixed if IS is unmixed,
(i) ht IS4 =htIS:

We start by recalling the definition of a specialization of a finitely generated S-
module. Let M be a finitely generated S-module. Suppose that S* 28t s M —0
is a finite free presentation of M, where the matrix of ¢ is (a;) with all a;; € S. We know
that an arbitrary element f € R may be written in the form

r=20), ) € ks, gfu) € b\ 0},

For any a such that g(a) # 0 we define f, := p(a, z)/g(a). For every element

a='£'€85 f,gER,g;‘-'O,

we define a, 1= fo/ga if go # 0. Then a, is uniquely determined and belongs to S, for
almost all a. For almost all «, there is a homomorphism ¢, : SI — S? given by the
matrix ((aij)a). As the definition of a specialization of module, we obtain a finite free
presentation

84 2% 8B s B —30),
where M, = Cokerg,, see [8]. The S,-module M, is called a specialization of M.
Let Go : 0 —» Sd¢ 24 gdeen 4 ...y g 2 gdo 4 M 5 ( be a free
resolution of M. Then, the below complex will be obtained:
(Go)a: 0—s §de e gdes .. g Blegda _,pp 4

By the following lemnma we shall see that the specialization of a minimal free reso-
lution of modules is again minimal.
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Lemma 1.2. If G, is a minimal free resolution of M, then (G,), is also a minimal
resolution of M, for almost all a.

Proof Let G, : 0 —» S 2% gde-s ... 4 g %Y 6do __, pr 5 0 be a minimal
free resolution of M, where ¢, is given by the matrix A; = (a¢i;) with all enties a; € m
forallt=1,...,£ By [8 Lemma 2.1], the complex

(Fe)a: 0 — Sd‘ it Sot-1 — .o — §h 2 e £ 8% —s M, — 0

is a free resolution of M. Since (A;)a = ((atij)a) is the representing matrix of (¢;). and
since (agij)a € Mq, the free resolution (G, ), of M, is minimal for almost all a.

The dimension of S is denoted by d. Set g = p® with ¢ € N. We write S!/9 for the
ring obtained by adjoining all gth roots of elements of 5. We write S = | J, S /4, Denote
by F* the Frobenius functor. The inclusion map S € S'/9 is isomorphic with the map
F¢: S — S, where F¢(a) = a%. Let a be an ideal of S. Let al¥ denote the ideal generated
by the gth powers of all elements of a. Note that if T denotes a set of generators for a, the
{t9 |t € T} generates a4,

Let q be an m-primary ideal of S and M a finitely generated S-module. We know
that the usual multiplicity of M with respect to q is defined as the number

oM /g™ M).d!
R '
In [7],[12], the Hilbert-Kunz multiplicity of M with respect to q is defined as follows
(M /q'P T M
enk(q, M) = lim —(———/—q———)-

e—300 pde

e(q, M) = lim

Note that the limit of right-hand side always exists and eg k (g, M) > 0 and equality
holds if and only if dimM < dimS. f0 — L — M — N — 0 is a short exact
sequence of finitely generated S-modules, then ey (q, M) = enx(q, L) + enx(q, N), see
(7], [12]. In particular, we shall write as e(q) instead of e(q,S), and ey (q) instead of
ernk(q,S). From Lech’s lemma follows egx(q) = e(q) for every parameter ideal q. In
[9], we proved the preservation of the multiplicity of a module through a specialization.
Now we will prove that the Hilbert-Kunz multiplicity of M with respect to q is preserved
through a specialization, too.

Theorem 1.3. Let q be an m-primary ideal and M a finitely generated S-module of
dimension d. Then, for almost all o, we have egk (qa, Ma) = ek (q, M).

Proof. Let Gy : 0 —» §de 24 Gdeey ... gdv #1, gdo __, Af 5 0 be a minimal
free resolution of M. By Lemma 1.2, the complex ;

(G O—s St Bp gdicn 0.5 i B0 i g pg o

is a minimal free resolution of M,,. We first observe that the following equalities

enk(q, M) = Z( 1) ey (9, 8%), enk(qa, M, Z( ~1)"*eyk(da, SE)
i=0
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follow from the additivity property of the Hilbert-Kunz multiplicity [7]. Since dim M, =
dim M by [8, Theorem 2.6], to obtain ex k(qa, Ma) = erk(q, M), it is therefore sufficient
to verify that ey (q, %) = en i (qa, S&). By definition we get

ernk(dq, Sd‘) = d;.egk(q) = di.e(q).

Since e(qa) = e(q) by [9, Theorem 1.6], we have epk(q,5%) = di.e(q) = die(qa) =
enk(da, S%). This completes the proof.

Because ey i (q!%, M) = ¢%.eyx (9, M) and eHK(q[q‘ M,) = q¢®*.enk(qa, M,) by [7],
as an immediate consequence of Theorem 1.3 we have the following corollary.
Corollary 1.4. Let q be an m-primary ideal and M a finitely generated S-module. Then,
for almost all a, we have ey k(qa ‘ﬂ M,) = egk (99, M) for all g = p®,e > 1.

We now recall the notion of mized multiplicity [10]. Let a and b be m-primary ideals
of S. In the case d = 2, M = S, the number

e(alb) = 5 {e(ab) — e(a) — e(b)}

is called the mized multiplicily of a and b. We shall see that the mixed multiplicity is
unchanged through a specialization.

Proposition 1.5. Let a and b be m-primary ideals of S. Then, for almost all «, we have
e(a!f][bgf]) = e(al9|bl?) for all ¢ = p®,e > 1.

Proof. Upon simple computation, from the above definition we get
i
e(ald|pld) = E{e((ab)(")) — e(ald) — e(blq])}'

2
q
= Z {c(ab) ~ e(a) ~ e(8)} = ge(alo)
By definition, a, and b, are n-primary ideals. In the same way above, we get
e(ald b9} = ¢%e(aq|bs)

Since e(q.) = e(q) for every parameter ideal q by [9, Theorem 1.6], e(as|bs) = e(alb).
Then the proof is completed. |

2. Tight closure for ideals and for modules by specialization

In this section we shall study the specializations of tight closure for ideals and for
finitely generated S-modules and shows that many properties of modules will be preserved
by a substitution u — «a. We first will recall some definitions of the tight closure theory
for ideals and for modules.

We set S° = S\ {0}, and S% = S, \ {0}. Let a be an ideal of S. An element a € S
is said to be in the tight closure a* of a if there exists an element ¢ € S° such that for
all large g we have ca? € al?. If a* = a, we say that a is tightly closed. Since § is a local
regular ring, as an immediate consequence of [2, (4.4) Theorem), we have the following
lemma.
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Lemma2.1. Every ideal of S is tightly closed.
Proposition 2.2. If a is an ideal of S, then (a*), = (a,)" for almost all a.

Proof. Since S and S, are local regular rings, we have a* = a and (a,)* = a, by Lemma
2.1. Then, we obtain (a*), = a, = (a,)* for almost all a.
For an ideal a of S we denote it’s integral closure by @. Then we have:

Proposition 2.3. If a is an m-primary ideal, then (@), = @, for almost all c.

Proof. Because a C @, thereis a, C (@)4. By [9, Theorem 1.6], e(aa) = €(a), e((@)a) = e(a).
From e(a) = ¢(@) follows e(a,) = €((@).). Since S, S, are localizations of polynomial rings,
they are quasi-unmixed rings by [6, Theorem 31.6]. By [3, Theorem 4.3, we get (3), = @a.

Note also that we can identify F'¢(S*) with S® in such a way that if z = (a,,... ,a,) €
S* then z9 = (af,...,a%). Suppose that the homomorphism ¢ : S* — S" between
finitely generated free S-modules is described by an h x s-matrix (a;;), then the map
F¢(¢) : S* — S™ is described by the matrix (af;). The S-module M is always assumed

to be finitely generated. Let S* 24 8F —s M — 0 be a finite free presentation of M.

F(¢)

Since I™® is exact, the sequence S* Sh —s Mld — 0 is a finite free presentation of

Fe(M) = M9 = CokerF¢(¢).

We observe that there is a canonical map M — M4 that sends z to 1®z. If z € M,
we shall write 29 for the image of z in M9, Let N € M be a submodule of M. We say
that z € M is in the tight closure N* of N if there exist ¢ € S° and and integer ¢’ such
that cz? € N9 for all ¢ > ¢'. If N = N*, we say that N is tightly closed (in M). The
following proposition is the generalization of Proposition 2.2.

Proposition 2.4. For every submodule N of the finitely generated S-module M, there
is (N*)a = (Ng)* for almost all a.

Proof. Since S is regular ring, from (2, (8.7) Proposition] we know that every submodule
N of M is tightly closed. Since N* = N and (Na)* = Na, we get (No)* = No = (N*)a
for almost all a.

The following proposition shows that the operation 9] commutes with specialization.

Proposition 2.5. Let M be a finitely generated S-module. Then (M%), 2 (M,)" for
almost all a.

Proof. Assume that S°* 2y 8" —s M —s 0 is a finite free presentation of M. Then

s+ %) oh _, Mla) 5 0 and Ss 22, Gh 4 M, —» 0 are finite free presentations of
M9l and M., respectively. From these exact sequences, we obtain two exact sequences
go Pl gh (M), — 0 and §2 %) §h —y (M) — 0 as finite free
presentations of (M4), and (M,)!9, respectively. Upon simple computation, we see that
Fé(¢)a and F¢(¢s) have the same matrix ((af;)a). Hence (M [4) o = (M) for almost
all a.

This isomorphism enables us to identify the module (M9), with the module
(My)\9,
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3. Finite phantom projective dimension by specialization

Now we want to discuss the concept of finite phantom projective dimension in [1].
First we will need several definitions. Let

G.: 0*—+G5—?£+G¢_1——+---—>G1—?1§G0——+0

be a finite complex of finitely generated free S-modules. The complex G, is called to
have phantorn homology if Ker¢; C (S¢;1,)* for all i > 1. The complex G, is said to
be stably phantom acyclic if the complex F¢(G,) has phantom homology for ¢ > 1 and
for all integers e > 0. A finite stably phantom acyclic complex G, of projective modules
of constant rank is said to be a finite phantom projective resolution of its augmentation
M = Hy(G,). Then the module M is said to have finite phantomn projective dimension ¢,
which is denoted by ppdM and is defined to be the length of the shortest complex G,. M
is phantomn perfect if ppdM = min{ ht(AnnM)(S/q) | q is a minimal prime of S}, see [1].
The following proposition shows that the finite phantom projective dimension of a module
is unchanged through a specialization.

Theorem 3.1. Let M be a finitely generated S-module. Then ppdM, = ppdM for
almost all a.

Proof. We denote ppdM by £. Without loss of generality we may assume that

ot 00— 5% 28 Slen 3 0is 59 B 8% _ 53— 5.0
is a minimal finite phantom free resolution of M with minimal length. By Lemma 1.2, the
complex (G,)a is a minimal free resolution of M,. By Phantom acyclicity criterion, e.g.
(1, (5.3) Theorem], (G4 )q is a minimal finite phantom free resolution of M. Hence, there

is ppd M, = £ = ppdM for almost all a.

Corollary 3.2. Let M be a finitely generated S-module. Then ppd(M,)!% = ppdM !
for almost all a.

Proof. Because S, S, are regular rings, the functor F¢ is exact. Then, ppdM'% = ppdM
and ppd(M, ) = ppdM,. Since (M9), = (M,)!% by Proposition 2.5 and ppd(M %), =
ppdM4 by Theorem 3.1, therefore ppd(M,)!4 = ppdM'¥ for almost all a.

Corollary 3.3. Let M be a finitely generated S-module. If M is phantom perfect, so is
M, for almost all a.

Proof. Assume that M is phantom perfect. Then
ppdM = min{ ht(AnnM)(S/q) | q is a minimal prime of S}.
Since S is locally equidimensional, there is
min{ ht(AnnM)(S/q) | q is a minimal prime of S} = htAnnM.

Since AnnM, = (AnnM), by [8, Theorem 2.6], htAnnM, = htAnnM by lemma 1.1.
Therefore ppdM, = htAnnM, follows from Theorem 3.1. Hence, M, is phantom perfect.

An element z € S is said to be a phantom nonzerodivisor on M if for all t > 1 and
all e € N one has that the annihilator of 2! in F*(M) is contained in the tight closure

of 0 in F¢(M). M is said to have phantorn depth 0 if there is no element of m that is a
phantom nonzerodivisor on M.
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Corollary 3.4. Let M be a finitely generated S-module. If M has phantom depth 0,
then M, has again phantom depth (0 for almost all a.

Proof. By [1, (5.9) Proposition] we know that M has phantom depth 0 if and only if
ppdM = htm. By Theorem 3.1, ppdM, = ppdM. By Lemma 1.1, htm, = htm. Then
ppdM, = htm,. Using [1, (5.9) Proposition] again, M, has phantom depth 0.
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