Local polynomial convexity of union of two graphs with CR isolated singularities

Kieu Phuong Chi*
Department of Mathematics, Vinh University, Nghe An, Vietnam

Received 26 October 2007; received in revised form 4 December 2007

Abstract

We give sufficient conditions so that the union of two graphs with CR isolated singularities in C^{2} is locally polynomially convex at a singularly point. Using this result and some ideas in previous work, we obtain a new result about local approximation continuous function.

1. Introduction

We recall that for a given compact K in \mathbf{C}^{n}, by \hat{K} we denote the polynomial convex hull of K i.e.,

$$
\hat{K}=\left\{z \in \mathbf{C}^{n}:|p(z)| \leq\|p\|_{K} \text { for every polynomial } p \text { in } \mathbf{C}^{n}\right\}
$$

We say that K is polynomially convex if $\hat{K}=K$. A compact K is called locally polynomially convex at $a \in K$ if there exists the closed ball $B(a)$ centered at a such that $B(a) \cap K$ is polynomially convex.

A smooth real manifold $S \subset \mathbf{C}^{n}$ is said to be totally real at $a \in S$ if the tangent plane $T_{S}(a)$ of S at a contains no complex line. A point $a \in S$ is not totally real that will be called a $C R$ singularity. By the result of Wermer, if K is contained in totally real smooth submanifolds of \mathbf{C}^{2} then K is locally polynomially convex at all point $a \in K$ (see [1], chapter 17). Note that union of two polynomially convex sets which can be not polynomially convex set. Let D be a small closed disk in the complex plane, centered at the origin and

$$
M_{1}=\{(z, \bar{z}): z \in D\} ; M_{2}=\{(z, \bar{z}+\varphi(z)): z \in D\}
$$

where φ is a C^{1} function in neighborhood of $0, \varphi(z)=o(|z|)$. Then M_{1}, M_{2} are totally real(locally contained in a totally real manifold), so that M_{1}, M_{2} are locally polynomially convex at 0 . The local polynomially convex hull of $M_{1} \cup M_{2}$ is essentially studied by Nguyen Quang Dieu (see [2,3]).

Let

$$
X_{1}=\left\{\left(z, \bar{z}^{n}\right): z \in D\right\}, X_{2}=\left\{\left(z, \bar{z}^{n}+\varphi(z)\right): z \in D\right\}
$$

where $n \geq 1$ is interger and φ is a C^{1} function in neighborhood of $0, \varphi(z)=o\left(|z|^{n}\right)$. If $n>1$ then X_{1} and X_{2} is not totally real at 0 , so we can not deduce that X_{1} and X_{2} are locally polynomially at 0 by the Wermer's work. However, using the results about local approximation of De Paepe (see [4!) or the work of Bharali (see [5]), we can conclude that X_{1} and X_{2} are locally polynomially convex at 0 . In this paper, we will investigate the local polynomially hull of $X_{1} \cup X_{2}$ at 0 . The ideas of proof takes

[^0]from [2] and [3]. An appropriate tool in this context is Kallin's lemma (see [6,7]): Suppose X_{1} and X_{2} are polynomially convex subsets of \mathbf{C}^{n}, suppose there is polynomial p mapping X_{1} and X_{2} into two polynomially convex subsets Y_{1} and Y_{2} of the complex plane such that 0 is a boundary point of both Y_{1} and Y_{2} and with $Y_{1} \cap Y_{2}=\{0\}$. If $p^{-1}(0) \cap\left(X_{1} \cup X_{2}\right)$ is polynomially convex, then $X_{1} \cup X_{2}$ is polynomially convex. Several instances of such a situation, motivated by questions of local approximation, were studied by O'Farell, De Paepe and Nguyen Quang Dieu (see [8-10],...).

Let f be a continuous function on D. We denote that $\left[z^{2}, f^{2} ; D\right]$ is the function algebra which consisting of uniform limit on D of all polynomials in z^{2} and f^{2}. Using polynomial convexity theory, it can be shown that $\left[z^{2}, f^{2} ; D\right]=C(D)$ for some choices a C^{1} function f, which behaves like \bar{z} near the origin (see [9-11] ...). By the known result about approximation of O'Farrell, Preskenis and Walsh [12] : if X is polynomially convex subset of the real manifold M, K is a compact subset of X such that $X \backslash K$ is totally real. Then, if f is continuous function on X and f can be uniform approximated by polynomials on K then f can be uniform approximated by polynomials on X, and the techniques developed in [13], we give a class function f which behaves like \bar{z}^{n} such that $\left[z^{2}, f^{2} ; D\right]=C(D)$.

2. The main results

We always take the graphs X_{1} and X_{2} of the form $(*)$. For each $r>0$ we put

$$
X_{i}^{r}=X_{i} \cap\{(z, w):|z| \leq r\}, \quad i=1,2
$$

Now we come to the main results of this paper.
Theorem 2.1. Let m, n be positive integers with $m>n$. Let φ be a C^{1} function which is defined near 0 of the form

$$
\varphi(z)= \begin{cases}\sum_{k=-\infty}^{+\infty} a_{k} \bar{z}^{k} z^{m-k}+f(z) & z \neq 0 \\ 0 & z=0\end{cases}
$$

where $f(z)$ is a C^{1} function and $f(z)=o\left(|z|^{m}\right)$. Suppose that there exists $l \leq \frac{m}{2}$ such that

$$
\begin{equation*}
\left|a_{l}\right|>\sum_{k \neq l}\left|a_{k}\right| \tag{1}
\end{equation*}
$$

and $\frac{m-2 l}{n}$ is integer. Then $X_{1} \cup X_{2}$ is locally polynomially convex at 0 . Proof. Consider the polynomial $p(z, w)=\bar{\alpha} z^{m-2 l+n}+\alpha w^{\frac{m-2 l}{n}+1}$ with α choose later. Thus $p\left(X_{1}\right)=$ $\bar{\alpha} z^{m-2 l+n}+\alpha \bar{z}^{m-2 l+n}$ belongs to real axis and

$$
\begin{gathered}
p\left(X_{2}\right)=\bar{\alpha} z^{m-2 l+n}+\alpha\left(\bar{z}^{n}+\sum_{k=-\infty}^{+\infty} a_{k} \bar{z}^{k} z^{m-k}+f(z)\right)^{\frac{m-2 l}{n}+1}= \\
=\bar{\alpha} z^{m-2 l+n}+\alpha \bar{z}^{m-2 l+n}+\alpha\left(\frac{m-2 l}{n}+1\right) \bar{z}^{m-2 l} \sum_{k=-\infty}^{+\infty} a_{k} \bar{z}^{k} z^{m-k}+o\left(|z|^{m}\right) .
\end{gathered}
$$

From $p\left(X_{1}\right)=\bar{\alpha} z^{m-2 l+n}+\alpha \bar{z}^{m-2 l+n} \in \mathbf{R}$, we obtain

$$
\operatorname{Im} p\left(X_{2}\right)=\operatorname{Im}\left(\alpha\left(\frac{m-2 l}{n}+1\right) \bar{z}^{m-2 l} \sum_{k=-\infty}^{+\infty} a_{k} \bar{z}^{k} z^{m-k}+o\left(|z|^{m}\right)\right)
$$

Choose $\alpha=i \frac{\overline{a_{l}}}{\left|a_{l}\right|}$. It follows that

$$
\begin{equation*}
\operatorname{Im} p\left(X_{2}\right) \geq|z|^{2 m-2 l}\left(\frac{m-2 l}{n}+1\right)\left(\left|a_{l}\right|-\sum_{k \neq l}\left|a_{k}\right|\right)>0 \tag{2}
\end{equation*}
$$

for any $z \neq 0$ in a small neighborhood of 0 , by (1). It implies that $p\left(X_{2}\right) \cap \mathbf{R}=\{0\}$. On the other hand, from the inquality (2) we see that

$$
p^{-1}(0) \cap X_{2}^{r}=\{0\}
$$

It is elmentary to check that

$$
p^{-1}(0) \cap X_{1}^{r}=\left\{\left(\rho \exp (i \theta), \rho^{n} \exp (-n i \theta)\right): 0 \leq \rho \leq r\right\}
$$

with a constant θ. Obviously,

$$
p^{-1}(0) \cap X_{1}^{r}
$$

is polynomially convex for r small enough. Thus $p^{-1}(0) \cap\left(X_{1}^{r} \cup X_{2}^{r}\right)$ is polynomially convex for r small enough. By Kallin's lemma (mentioned in introduction) we conclude that $X_{1}^{r} \cup X_{2}^{r}$ is polynomially convex for r small enough. The proof is completed.

Remark. 1) In the Theorem 1 we can replace X_{1} by

$$
X_{1}^{\prime}=\left\{\left(z, \bar{z}^{n}-\varphi(z)\right): z \in D\right\}
$$

Then, as p in Theorem 1 we obtain the estimate

$$
\operatorname{Im} p\left(X_{1}^{\prime}\right)<0
$$

for any $z \neq 0$ in small neighborhood of 0 . On the other hand $p^{-1}(0) \cap\left(X_{1}^{\prime r} \cup X_{2}^{r}\right)=\{0\}$ for r small enough. By Kallin's lemma we may conclude that $X_{1}^{\prime} \cup X_{2}$ is locally polynomially convex.
2) This result includes the more restricted case $n=1$ that is studied by Nguyen Quang Dieu (see [2]).

The following Proposition shows that if we replace $l>\frac{m}{2}$ we may get nontrivial hull of $X_{1}^{r} \cup X_{2}^{r}$.
Proposition 2.2. Let n, p be positive integers and

$$
X_{1}=\left\{\left(z, \bar{z}^{n}\right): z \in D\right\} ; X_{2}=\left\{\left(z, \bar{z}^{n}+z^{p} \bar{z}^{n+p}\right): z \in D\right\}
$$

Then $X_{1} \cup X_{2}$ is not locally polynomially convex at 0 .
Proof. For each $t>0$, let $W_{t}=\left\{(z, w): z^{n} w=t\right\}$. Consider the sets

$$
\begin{gathered}
P_{t}:=W_{t} \cap X_{1}=\left\{\left(z, \bar{z}^{n}\right):|z|=t^{\frac{1}{2 n}}\right\} \\
Q_{t}:=W_{t} \cap X_{2}=\left\{\left(z, \bar{z}^{n}+z^{p} \bar{z}^{n+p}\right):|z|=s\right\}
\end{gathered}
$$

where s is unique positive solution of the equation $s^{2 n}+s^{2 p+2 n}=t$. By the maximum modulus principle we see that the hull of $X_{1}^{r} \cup X_{2}^{r}$ will contain an open subset of W_{t} bounded by two closed curves P_{t} and Q_{t} for any $t>0$ small enough and hence $X_{1} \cup X_{2}$ is not locally polynomially convex at 0 .

Theorem 2.3. Let m be a positive even integer and let n be a odd integer such that $m>n$. Let g be a C^{1} function which is defined near 0 of the form

$$
g(z)= \begin{cases}\left.\bar{z}^{n}+\sum_{k=-\infty}^{+\infty} a_{k} \bar{z}^{k} z^{m-k}+f(z)\right) & z \neq 0 \\ 0 & z=0\end{cases}
$$

where f is a C^{1} function and $f(z)=o\left(|z|^{m}\right)$. Suppose that there exists l such that $\frac{m-2 l}{n}$ is positive integer and

$$
\begin{equation*}
\left|a_{l}\right|>\sum_{k \neq l}\left|a_{k}\right| \tag{3}
\end{equation*}
$$

Then the functions z^{2} and $g^{2}(z)$ separate points near 0 . Morever, $\left[z^{2}, g^{2} ; D\right]=C(D)$ for D small enough.

We need the next lemma (see $[7,8]$) for the proof of Theorem 2.1.
Lemma 2.4. Let X be a compact subset of \mathbf{C}^{2}, and let $\pi: \mathbf{C}^{2} \rightarrow \mathbf{C}^{2}$ be defined by $\pi(z, w)=$ $\left(z^{m}, w^{n}\right)$. Let $\pi^{-1}(X)=X_{11} \cup \ldots \cup X_{k l} \cup \ldots \cup X_{m n}$ with $X_{m n}$ compact, and $X_{k l}=\left\{\left(\rho^{k} z, \tau^{l} w\right)\right.$: $\left.(z, w) \in X_{m n}\right\}$ for $1 \leq k \leq m, 1 \leq l \leq n$, where $\rho=\exp \left(\frac{2 \pi i}{m}\right)$ and $\tau=\exp \left(\frac{2 \pi i}{n}\right)$. If $P\left(\pi^{-1}(X)\right)=C\left(\pi^{-1}(X)\right)$, then $P(X)=C(X)$.

Proof of Theorem 2.3. First we show that the functions z^{2} and $g^{2}(z)$ separate points near 0 . Clearly points a and b with $a \neq-b$ are separated by z^{2}. Now assume that $g^{2}(z)$ takes the same value at a and $-a$ for some $a \neq 0$. Set

$$
h(z)= \begin{cases}\sum_{k=-\infty}^{+\infty} a_{k} \bar{z}^{k} z^{m-k}+f(z) & z \neq 0 \\ 0 & z=0\end{cases}
$$

it follows that $h(a)=-h(-a)$. As m is even, we have

$$
\sum_{k=-\infty}^{+\infty} a_{k} \bar{a}^{k} a^{m-k}=\frac{-f(a)-f(-a)}{2}
$$

Dividing both sides by $a^{m-l} \bar{a}^{l}$ we obtain

$$
a_{l}+\sum_{k \neq l} a_{k} \frac{a^{l-k}}{\bar{a}^{l-k}}=\frac{-f(a)-f(-a)}{2 a^{m-l} \bar{a}^{l}} .
$$

By the inequality (3) and the fact that $f(z)=o\left(|z|^{m}\right)$, we arrive at a contradition if we choose the disk D sufficiently small.

Next we consider for a small closed disk D the set \tilde{X} which is the inverse of the compact $X=\left\{\left(z^{2}, g^{2}(z): z \in D\right\}\right.$ under the map $(z, w) \mapsto\left(z^{2}, w^{2}\right)$. We have $\tilde{X}=X_{1} \cup X_{2} \cup X_{3} \cup X_{4}$ where

$$
X_{1}=\left\{\left(z, \bar{z}^{n}+h(z)\right): z \in D\right\}
$$

$$
\begin{gathered}
X_{2}=\left\{\left(-z,-\bar{z}^{n}-h(z)\right): z \in D\right\}=\left\{\left(z, \bar{z}^{n}-h(-z)\right): z \in D\right\} ; \\
\left.X_{3}=\left\{\left(-z, \bar{z}^{n}+h(z)\right)\right): z \in D\right\} \\
X_{4}=\left\{\left(z,-\bar{z}^{n}-h(z)\right): z \in D\right\}=\left\{\left(-z, \bar{z}^{n}-h(-z)\right): z \in D\right\} ;
\end{gathered}
$$

By Remark 1), $X_{1} \cup X_{2}$ is polynomially convex for D small enough. We have $X_{3} \cup X_{4}$ is the image of $X_{1} \cup X_{2}$ under the biholomorphic map $(z, w) \mapsto(-z, w)$. So $X_{3} \cup X_{4}$ is also polynomially convex with D sufficiently small.

Now we consider the polynomial $q(z, w)=z^{n} w$. Then q maps $X_{1} \cup X_{2}$ to an angular sector situated near the positive real axis, while p maps $X_{3} \cup X_{4}$ to such sector situated near the negative real axis. The sectors only meet at the origin. Applying Kallin's lemma we get $\tilde{X}=X_{1} \cup X_{2} \cup X_{3} \cup X_{4}$ is polynomially convex with D small enough. Furthermore, notice that $\tilde{X} \backslash\{0\}$ is totally real (locally contained in a totally real manifold), by an approximation theorem of O'Farrell, Preskenis and Walsh (mentioned in introduction), we get that every continuous function on \tilde{X} can be uniformly approximated by polynomials. By the Lemma 2.4, we see that the same is true for X, which is equivalent to the fact that our algebra equals $C(D)$.

Acknowledgements. The author is greatly indebted to Dr. Nguyen Quang Dieu for suggesting the problem and for many stimulating conversations.

References

[1] H. Alexander, J. Wermer, Several Complex Variables and Banach Algebras, Grad. Texts in Math., Springer-Verlag, New York, 35 (1998).
[2] Nguyen Quang Dieu, Local polynomial convexity of tangentials union of totally real graphs in \mathbf{C}^{2}, Indag. Math., 10 (1999) 349.
[3] Nguyen Quang Dieu, Local hulls of union of totally real graphs lying in real hypersurfaces, Michigan Math. Journal., 47 (2) (2000) 335.
[4] P.J. de Paepe, Approximation on a disk I, Math. Zeit., 212 (1993) 145.
[5] G. Bharali, Surfaces with degenerate CR sigularities that are locally polynomially convex, Michigan Math. Journal., 53 (2005) 429.
[6] E. Kallin, Fat polynomially convex sets, Function Algebras, (Proc. Inter. Symp. on Function Algebras, Tulane Univ, 1965), Scott Foresman, Chicago, (1966) 149.
[7] P.J. de Paepe, Eva Kallin's lemma on polynomial convexity, Bull. of London Math. Soc., 33 (2001) 1.
[8] Kieu Phuong Chi, Function algebras on a disk, VNU Journal of Sciences, Mathematics - Physics No3 (2002) 1.
[9] Nguyen Quang Dieu, P.J. de Paepe, Function algebras on disks, Complex Variables 47 (2002) 447.
[10] Nguyen Quang Dieu, Kieu Phuong Chi, Function algebras on disks II, Indag. Math., 17 (2006) 557.
[11] P.J. de Paepe, Algebras of continuous functions on disks, Proc. of the R. Irish. Acad., 96A (1996) 85.
[12] A.G. O'Farrell, K.J. Preskenis, Uniform approximation by polynoimials in two functions, Math Ann., 284 (1989) 529.
[13] A.G. O'Farrell, P.J. de Paepe, Approximation on a disk II, Math. Zeit., 212 (1993) 153.
[14] Kieu Phuong Chi, Polynomial approxiamtion on polydisks, VNU Journal of Sciences, Mathematics - Physics No3 (2005) 11.
[15] A.G. O’Farrell, K.J. Preskenis, D. Walsh, Holomorphic approximation in Lipschitz norms, Contemp. Math., 32 (1984) 187.

[^0]: * E-mail: kpchidhv@yahoo.com

