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Concept lattice and adjacency matrix
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A b s t r a c t .  In this paper, we introduce a new encoding for a given binary relation, by using 

adjacency m atrix  constructed on the relation. Therefore, a coatom  o f a concept lattice can 

be characterized by supports o f  row vectors o f  adjacency m atrix. M oreover, w e are able to 

com pute a poly-sized sub-relation resulting in a sublattice o f  the original lattice for a given 

binary relation.

1. In troduction

Lattices have given rise to much interest for the past years, first as a powerful mathematical 
structure (see e.g. BirkhofPs work from 1967), then as useful in applications such as exploiting 
questionnaires is Social Sciences (see e.g. Barbet and M onjardet’s work from 1970 [I]). Galois 
lattices were later widely publicized and studied by the large body o f work done by Wille and Granter 
and the many researchers who worked with them, under the name of concept lattices in a much more 
general context (see e.g. [2]).

Nowadays, concept lattices are well-studied as a classification tool (see [2]), are used in several 
areas related to Artifical Intelligence and Data Mining, such as Data Base M anagement, Machine 
Learning, and Frequent Set Generation (see e.g. [3-5]).

The main drawback o f concept lattices is that they may be o f exponential size. This makes it 
impossible, in practice, to compute and span the entire structure they describe. It is thus o f primeval 
importance to be able to navigate the lattice efficiently, or to be able to define a polynomial sized 
sub-lattice which contains the right information.

In this paper, we introduce a new encoding for a given binary relation, by using adjacency matrix 
constructed on the relation. Therefore, a coatom of a concept lattice can be characterized by supports of 
row vectors o f adjacency matrix. Moreover, we are able to compute a poly-sized sub-relation resulting 
in a sublattice o f the original lattice for a given binary relation and we used the main results in this 
paper to determine the concept lattices or a sublattice o f given concept lattice which satisfies the above 
problem.

The paper is organized as follows: Section 2 gives some preliminary notions on concept lattices. 
In section 3, we give main results.
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2. P relim inaries

In this section, let us recall the notion o f concept lattice as far as they are needed for this paper. 
The definitions in this section are quoted from [5]. A more extensive overview is given in [3]. To
allow a mathematical description o f extensions and intentions, concept lattice starts with a (formal)
context.
D efinition 2.1. A fo rm a l context is a triple K  :=  (G; M ; R ) where G and M  are sets and R C G x M  
is a binary relation. The elements o f  G are called objects and the elements o f  M  attributes. The 
inclusion {g-,m) e  R  is read ’’object g has attribute m ”. For A  c  G, we define

A ' := {m  e  MỊVgr £ A  : (p ;m ) G R

and fo r  B  c  M , we define dually

B' :=  {g e G\im e B : e R}.
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We assume in this article that all sets are finite, especially G  and M .  A  context K  with |G | =  k
and \M\  =  ^ is called an k -hy-i context. The proofs o f the following results are trivial therefore we
omit them.
Lem m a 2.2. Let { G; M- , R)  be a context, A ị \ A 2 c  G sets o f  objects, and Bị - , D2 C M  sets o f  
attributes. Then the fo llow ing  holds:
(1) c  Ẩ2 =» c  A \ and B i c  B 2 B '2 c  D\.
(2) ^  c  A " and B  c  B ".
(3) A ’ = A '"  and  B ' =  B '" .
(4) A  c  B ' ^  B  c  A ' ^  A  X B  c  R.
D efinition 2.3. A fo rm a l concept is a pa ir [A] B ) with A C G ,  B C M , A '  =  D and D' =: A. (This 
is equivalent to A  Q G  and B  c  M  being maximal with A  X D c  R.) A  is called extent and B  is 
called intent o f  the concept. The set o f  all concepts o f  a fo rm a l context K  together with the partia l 
order (A i; D i)  <  (A 2 ; B 2 ) A \ c  A 2 (which is equivalent to D 2 c  B ị)  is called concept lattice o f  
K  and denote by C{ R)  =  £ (G ; M ; R).

Such a lattice, sometimes refered to as a complete lattice, has a smallest element, called the 
bottom element, and a greatest element, called the top element.

An e le m e n t { A \ \ D i )  is said to be a predecessor o f element (A] D)  if Ai  c  A.  An element 
is said to be a ancestor o f element {A] B)  if c  and there is no intermediate element 

( ^ 2; B 2 ) such that A i  c  A 2 c  A.  The ancestors o f the top element are called coatoms.
Let K  := ( G ; M ; R )  and K '  :=  { G ' \ M' \ R ' )  be two contexts. We call K  and K '  isomorphic, 

and write K  =  K ' ,  i f  there exists two bijections ip : G ^  G'  and p : ẢÍ —> M '  such that {g]m)  e  
R  <i=> {ip{g)] p { m ) )  e  R '  fo r all 5  6  Ơ and m  e  M .
Theorem  2.4. [The basic theorem  of C oncept Lattice [5]] The concept lattice o f  any form al context 
{ G \ M ] R )  is a com plete lattice. For an arbitrary set { { A ị - Bi )\ i  e  /}  c  C { G ; M ; R )  o f  form al 
concepts, the siipremum is given by
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and the infimum is given by

ie ĩ ie ỉ ie ĩ
A complete lattice L  is isomorphic to C{G\ M \ R )  i f f  there are mappings 7  : G  
such that 7 (G) is siipremum-dense and ị i [M)  is infm um -dense in L, and

g R m  4:̂  7 (5 ) <

In particular, L  =  £ (L ; L; < ).
The theorem is less complicated as it first may seem (see [5]). We give some explanations 

below. Readers in a hurry may skip these and continue with the next section.
The first part o f the theorem gives the precise formulation for infimum and supremum o f arbitrary 

sets o f formal concepts. The second part o f the theorem gives (among other information) an answer 
to the question if  concept lattices have any special properties. The answer is ”no”; every complete 
lattice is (isomorphic to) a concept lattice. This means that for every complete lattice we must be able 
to find a set G  o f objects, a set M of attributes and a suitable relation R, such that the given lattice is 
isomorphic to £ (G ; M ; R ). The theorem does not only say how this can be done, it describes in fact 
all possibilities to achieve this.

3. The m ain results

In the section we assume that K  :=  { G \ M \ R )  is a context with G  — and
M  — { m i , . . ., m i) .  The adjacency matrix X  =  {ai j )ixk of a context K  := (Ơ; M ; R)  is defined by 
aij =  1 if  {gj \ mi )  e  I  and a i j  =  0 otherwise. We denote by X k  the adjacency matrix o f a context 
K .  Then we denote by Vi the row vector o f the adjacency matrix X k  and by V { K )  the set o f row 
vectors o f the adjacency matrix For a vector V — ( x i , . .  .,Xfc) o f V { K ) ,  Supp{v )  = {i \ X i  = 
1} c  [1, /c] =  { 1 , . .  , , k }  and conversion for a subset z  o f [1, fc], we denote by Vz the vector in V { K )  
such that z  = S u p p iy z ) -  For a subset A  o f G, we denote by Ẩ =  {i I ổi G >1} and conversion for a 
subset z  o f [1 , k], we denote by A z  the subset o f set G  such that z  =  A z-
E xam ble 3.1. Let a binary relation between set G = {gi ,  9 2 , 9 3 , 9 4 , 9 5 } and M  = { m i ,  m 2 , m 3 , m 4 } 
be the below table. Then the row vector V2 =  (1 ,1 ,0 ,0 ,0 )  and Su p p {v 2 ) =  {1 ,2} . Let z  =
{2, 3, 4} c  [1, 5] then =  {ổ2, ổ3,

91 92 93 94 95
m i 0 1 1 0 0

7712 1 1 0 0 0

m 3 1 0 1 1 1

7714 1 0 0 1 1

Now by Theorem 2.4, every vector o f V { K )  is attached to a unique concept. Let K  := 
(G; M ; R )  be some formal context. Then for each vector V of  V { K )  the corresponding a concept is

ip{v) := {^Supp{vỳ-^Supp{v))-

L em m a 3.2. Let K  :=  { G \ M \  R)  be a context. Then fo r  all vectors V o f V { K ) ,

= AA"^S u p p (v ) ^Supp(v]



Proof. The inclusion c  is trivial. Assum e that g e  such that g 0
Then since g G and ^ 5„pp(,)) is a concept, w e have {(?} X c  R. Note
that the vector V corresponding with an element m  o f M  and moreover m  E A'g y  Therefore 
( g , m)  e  R  and so that g e  Asupp{v), a contradiction. Hence =  Asupp(v) as required.

Let V =  {xi ,  . .  . ,Xk)  and w = { y i , ---- yk) be two vectors in R*". Then we denote by v'  ̂ =
x Ị  + .. , + x ị  aná v w  = X i y i  + . . .  + XkVk-
Proposition 3.3. Let X  be a subset o f  coatom o f  a concept lattice C{R) .  Assum e that a vector 
Vi satisfies the condition v f  =  m ax {Vj I Supp{vj )  2  I n { X )  =  IJ A) .  Then the concept

{ A - B ) e x
{A; B) corresponding with Vi is a coatom o f  C{R).  Proof. A ssum e that {A\ B )  is not a coatom. 
Then there exists a concept {A ị \ B i)  such that A  c  A ị . Let m t e  B i .  Since [Ai] B ị )  is a concept, 
we get that A ị  X { m t }  c  R . Then A \  c  Asupp{vt) so that A  =  Supp{v i )  c  Supp{vt ) .  Since 
Supp{vi) g  I n { X ) ,  we have Supp{vt) Ễ  I n { X ) .  Hence, Vị < v f  and S u p p {v t) % I n { x )  in 
contradiction by v f  =  m ax { v j  I Supp{vj )  g  I n { x ) } .  Thus {A\  B )  is a coatom o f  C{R) .

Theorem  3.4. We use the above notation. Then the fo llow ing  two statem ents are equivalent.
(Ỉ) A concept [A] D) is a coatom o f  C{R).
(ii) Vector y  = satisfies the condition Supp( v )  2  S u p p {v i) fo r  a ll vectors Vi such that 

v ị  >  v^.
Proof, ( i ) ^  (ii) A concept [A] B )  is a coatom. Let V =  vrj. Then A  % A ị  for all A \ Ỷ ^  and A ị  is 
a extent o f any concept. By Lemma , if  a vector Vi satisfies v f  > v'^, then Su p p {v i)  g  Supp{v) .

(ii)=> (i) Let be a vector such that Supp{v)  2  S u p p {v i)  where a vectors Vi satisfies <  Vị .  

Assume that a concept {A\ D) where A  = Asupp(v) is not a coatom. Then there exists a concept 
( Ai ' , Bi )  such that A  c  Ai .  Let mt  e  Bi .  Since A i  X B ị  is a  concept, we have A i  X { mi }  c  R. 
Therefore A] c  Asupp{vi)- Then we obtain Supp{v)  c  S u p p {v i) , and so that v ‘̂ < V ị ,  a contradiction. 
Hence {A-, B )  is a coatom.
C orollary  3.5. Let ( A \ B ) be a coatom o f  lattice C{R) .  Then we have

=  max{t;^ I Supp{v)  g  Supp{vị) for all v f  > an d  V €  V { K ) } .

Proof. Put c  =  {v  \ Supp{v)  g  Supp{vi) for all v f  > v ^ , v  E V { K ) } .  Since { A - B )  is a coatom
by Theorem , we obtain S u p p { v j)  <Ị- Supp{vi) where a vector Vi satisfies v f  > v ^ . Therefore
v^r < m axu^. For all V E c ,  < v \ ,  we have m axti^  <  v \ .  Hence — m ax iu ^  Su vn (v )  2■4 -  v e B  ’ -  A’ ' ^ -4 >■ i'i'K J ^

Supp{vi) for all v f  > and  V € V { K ) } ,  as required.
Note that a vector V e V { K )  corresponds with a concept which is coatom or without. Moreover,

two vectors Vi  and V j  are dififerent but they correspond with a sam e concept.
C oro llary  3.6. Let V and w be two vectors in V { K )  such that and Asupp(w) extents
o f  any coatoms. Then the fo llow ing  two statements are equivalent.

(i) Vectors V and w correspond with a same coatom.
(ii) Supp{v )  =  Supp{w ).
(in) =  up' = vw.

Proof. ( i ) o  (ii) and (ii)=4> (iii) are trivial.
(iii)=» (i): Since entries o f vectors V and w  are 0 or 1 if  Supp{ v )  <Ị- S u p p { w)  then v'  ̂ > vw.  Therefore
Supp( v )  = Supp{w) .
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L e t V { R )  =  {'U e V { K ) \  =  {(^Stxpp^; ^ 5„pp(v))l^ e  V{ỉ^)}-
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ie[i,k]

C orollary  3.7. A set Xf z  is a subset o f  coatoms o f  the lattice C{R).
Proof. Let {A; D) E X a  . Then a vector V j  satisfies the condition =  m ax v f } ,  and thus there

dosen’t exists a vector w  such that >  v^.  By Theorem , a concept {A; B)  is a coatom as required.
Exam ple 3.8. Let K  =  (G ;Ẳ Í;i? )  be as in Example . Then we have ~  (1 ,0 ,0 ,1 ,1 )  and so
that (p('6’4) =  ({ ổ i ,ổ 4,P 5}; {7713, 7714}) is a concept o f lattice C{R)  by Lemma . Moreover, we have 

=  v ị  =  2, v ị  ^  4 and v ị  =  3. Then by Theorem , we get that is not a coatom of this
lattice since S u p p { v ^ )  c  S u p p { v ^ ) .  On the other hand, ^ { v 2 )  =  { { 9 1 , 9 2 } ]  { m 2 } )  is a coatom  because

S i L p j ) { v 2 )  %  S u p p { v ‘̂ )  and S u p p { v ‘2 )  2  S w p p { v ị ) .
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