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On stability of Lyapunov exponents
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Abstract. In this paper we consider the upper (lower) - stability of Lyapunov exponents of
linear differential equations in /2. Sufficient conditions for the upper - stability of maximal
exponent of lincar systems under linear perturbations are given. The obtained results are
extended to the system with nonlinear perturbations.
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1. Introduction

Let us consider a lincar system of differential equations
&= A(t)w; t >t > 0. (1)

where A(£) is a real nxn - matrix function, continuous and bounded on [tg; +oc). It is well known that
the above assumption guarantees the boundesness of the Lyapunov exponents of system (1). Denote
by

Ayj Agj ondf Ay, (B £ Ag o £ )

the Lyapunov exponents of system (1).
Definition 1. The maximal exponent X, of system (1) is said 1o be upper - stable if for any given
€ > 0 there exists 0 = d(e) > 0 such that for any continuous on [tg; +00) n X n - matrix B(t),
satisfying || B(t)|| < 6, the maximal exponent ,, of perturbed system
B = [A(Z) + B(t)]z, (2)
satisfies the inequality
. (3)
IFIIB()|| <9 implies puy > A\ — ¢, we say that the minimal exponent N\ of system (1) is lower -
stable.
In general, the maximal (minimal) exponent of system (1) is not always upper (lower) - stable
[1]. However, if system (1) 1s redusible (in the Lyapunov sense) then its maximal (minimal) exponent
is upper (lower) - stable. In particular, if system (1) is periodic then it has this property [2,3]. A
problem arises: In what conditions the maximal (minimal) exponent of nonreducible systems is upper
(lower) - stable? The aim of this paper is to show a class of nonreducible systems, having this property.
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2. Preliminary lemmas

Lemma 1. Let system (1) be regular in the Lyapunov sense. The maximal exponent X,, is upper -
stable if only if the minimal exponent of the adjoint system to (1) is lower - stable.
Proof.  We denote by
€01 0 oo Dl 100 & 08 & o & 06,
the Lyapunov exponents of the adjoint system to (1):
y=-4"By (4)
According to the Perron theorem, we have

M+a =0, A\, +a,=0. (5)

[f the maximal exponent A,, of system (1) is upper - stable then the mmimal exponent «,, of system
(4) is lower - stable. In fact, denoting by

/81; :‘82; ey /[j)n (/81 2 /62 2 2 /Bn)
the Lyapunov exponents of adjoint system to (2), we have
ﬁl T A = 0: /Bn + fn = 0. (())
Hence
Bn= —tn > =A, —€=a, —¢ if ||B*(t)] <. (7)
Conversely, suppose that the minimal exponent «;, 1s lower - stable, then if (7) is satisfied we have
/Bn > Gy — €.

Then
M = —IBIL < =¥ 4 € = ’\T’L ..{_ €.

Which proves the lemma.

Consider now a nonlinear system of the form
2= Atz + fll e (8)

Lemma 2. (Principle of linear inclusion) [1] Lef x(t) be an any nontrivaial solution of system (8).
There exists a matrix F(t) such that x(t) is a solution of the linear system

= [AQ) + F()ly.
Moreover. if f(t, ) satisfies the condition
I, ) < g@l=ll; vt > to; Vo € R™,
then matrix F(t) satisfies the inequality
IE@ < g(t); V¢ 2 to.

The proof of Lemma 2 1s given in [1].
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3. Main results

3.1. Stability of system with the linear perturbations

In this section we consider systems of two linear differential equations in R%:
&= Alt)z (9)
e Albie 4 Bl (10)
We denote by giq; e and A A2 (1 < po; A1 < Ag) the exponents of systems (9) and (10) respec-

tively. Let:
a11(t) au(’f)) bra(t)  biz(t)
") (@1(15) azz(t) (¥ ba1(f)  baa(2)
We suppose that A(t), B(t) arc real matrix functions, continuous on [to; +00) and sup,s [|A(8)|| =
M < 4.
Theorem 1. Let system (9) be regular and there exists a constant C' > 0 such that

: Vaza(t) — ann(D)]? + [az1(t) + ara(t))? dt < C < oo,

to
then the maximal exponent Xy of system (9) is upper - stable.
Proof. Let

W(t) = Vlag(t) — a1 (D)]? + [a21(8) + a12(t)]*.

According to the Perron theorem [1,4] there exists an orthogonal matrix function U (%) (i.e. U ¥(L) ==
U~1(t), Vt > to) such that by the following transformation

z=U(t)y (11)
the system @ = A(f)z is reduced to

y=P(t)y (12)
where P(t) is a matrix of the triangle form:

pii(t)  pia(t)
PiL] = .
(*) ( 0 p22(t)

The matrix P(t) is defined as P(t) = U~ () A())U (1) — U~ U(1).
Now we show that if matrix A(t) is bounded on [to; +00), then matrix P(¢) is also bounded
on this interval, i. e. exists a constant M, > 0 such that || P(t)|| < M, Vt > to. Indeed, let:

W) = (a5(0) = U (QA@U®); V() = (u5(0) = U (0.
It is casy to show that V*(¢) = —V/(¢). This implies v;;(¢t) = 0, Vi = 1,2. Thus, we get
ﬂ&ji(t) if ¢<y
Uij(t) =1 0 if ¢ :j
Lag(t) i >4
Since A(t), U(t), U71(t) are bounded, matrix P(t) is also bounded on [tg; +oo). Let ||P(¢)[ <
M, Vt > to. Taking the same Perron transformation to system (10), we obtain

c=Ut)y+Ut)y= A(t)z + B(t)z
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e Ut)y = A(t)z + B(t)z U(t)y
& U(t)y = AUty + BYU )y — U(t)y
Sy = U OAQUE) —U T OU®)]y + U () BRU @)y,
Denoting Q(t) = U~ 1(t) B(t)U (1), the last equation is in the form
y= Py +Q)y. (13)

Writing triangle matrix P(t) as follows:

p(t)z(p i pfifm (p”(i)ng?tJ ' (8 m(é)>

: omee o Bkl O N, A ames 0 pia(l)
and punlnc P(‘) - ( 0 PZ?(L)) ) Q(f) CQ(L) + ( 0 0 5
we have

9= P(t)y + Q(t)y. (14)

Taking the lincar transformation y = Sz with

M
=l 0
S = (0 M, )
6 ¥

from (14) we get the following equivalent equation
2= 871P(t)82+ 857 1Q(t)Sz = P(H)z + §71Q(1) 5> (15)

Denoting by Q(7) the similar matrix of matrix Q(7), we have

B(r) = 565 = 505 + 5 (g Wé”) s
which gives
QNI < (T)S|| + IS (?) 7”‘20(7)) S (16)

The solutions of the homogeneous system z = P(t)z is defined as follows
4
- ; 1) = C J‘fto Pll(T)dT
z=Pt)z e (zl> - ( Igll(t) Ot> (fl) &5 z1(1) lcj‘ o
22 p22(t) ) \ 22 2(t) = CoeltoPntrIdr,

Therefore
f¢OP11 s)ds— [, pi(s)ds 0
<D(t3 T) = 0 ft poa(s)ds— ft po2(s)ds

is the Cauchy matrix of this system.
The solution satisfied the initial condition 2(Zy) = zo of nonhomogencous system (15) is given

by [5] t
z(t) = ®(t, to) 20 +/ ®(t,7)S™IQ(7)Sz(7)dT,

to
t

which is the same as ®71(t, t0)z(t) = 2o +/ & (¢, t0)®(t, 7)STIQ(T)S2(7)dT

o

t
or ®71(t, to)z(t) = z +] ®(to, 7)ST'Q(T)SPB(T, t) D~ (7, to) 2(7)dr.

to
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Then
10" (L. to) / @ (to, 7)S ' QUT)SB(r, o) |2 (7, to) 2(7) || dr (17)
(232 i)
Denoting by ¢;5(t) the clements of matrix Q(t) and let
L) = (I-)(t(): T)‘S“ }Q(T)S(D(T: f’O);
we have
011 (s)ds . = D ds
B faf P T 0 i (111(7) qu(T) & frﬁlu s) 0
[ 0 (_}'ﬁ f"O pfzg(s)ds q~21(7-) @22(7-) 0 (3‘[;(-) pgg(s)ds
- i (7) | Q]Z(T)efmjmz(é*)“?m(«*‘)Jd-*‘
o1 (7)o () plelids dn(r) )
We can verify that
5
3 {0 pwlr)) 0 7)) — ~
N RGUEE H p)yf 37 ) | < V3T,
0 0
Since
1Q(T)| = U (m)B@OU@I < I (OINIBENUT)I £ 1.6.1 =4,

denoting max{1 4 !\1 14+ VM } = M, and chosing § small enough such that 0 < ¢ < 1, we have

Smax{d(l%—\/]\;)ole\ =Ly

= max{V(V? 1/ \/-\/_+\/[V—T}<\/—ma‘<{l+«/ 1|—\/1\/T}—\/_M2

Conscquently, applymg thc above inequalities to (16), we have ||Q(T)|| < 2My V.
Now, we establish the norm of matrix D as follows:
It is known that in R? orthogonal matrix U(¢) has just one of two the following forms:

, _( cosg(t)  sing(t) . . [cos p(t) — sin ¢(t)
A W) e (sinqﬁ(t) —cosq/)(t))’ b) U{t) = ( sin ¢(t) cos ¢(t) )

Without loss of the generality we suppose that matrix {/(t) has the form a). In this case, we have

B [ cos¢(t) sin ¢(t)
U] = (Sin H(1) — cos qb(t)) .

Since in Perron transformation z = U(t)y, where U (%) is a orthogonal matrix, the diagonal clements
of matrix P(t) and matrix U~ (t) A(t)U(t) are the same p;1(t) and pao(t). Therefore we obtain that

pa2(t) — pu1(t) = [aza(t)] — a11(t)] cos2¢(t) — [az1(t) + ar2(t)] sin2¢(1).
It is easy to see that, there is a function v (t) such that
p22(t) — pu(t) = Vl]aza(t)] — an ()] + [a21(2) + a12(t)]? cos[24(t) +4(t)]
= W(t) cos|26(1) + w(2)].

IS~ Q(r

H (hl

f]zl
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SinCC ”qu(t)” S ”Q(t)“ S 2]\/[2\/53 we haVe
( q11(7) qu(T)eﬂ; [p22(s)—p11(s)]ds
q21

= (7’)6‘[‘;[?“ ) P?Z( )]d“ 522(7')

< ZMZ‘/—IQ 3 eftg[mz(S)—Pu(S)]dS ftgipn (s)—p2z2(s )]d‘l
_ 2M2\/5[2 . Cft W(s) cos[2¢(s)+(s) + efto W(s) c0512¢(s)+1/)(s)—7r]ds].

1Dl =

From the assumptions fto W(t)dt < C < +oc, we have
D]l < 2M2V8(2 4 2€) = MsV'§ where My := 2Ms(2 + 2¢°).
Applying the last mequality to (17), we get

t
[271(2, to)z(2) | < |20l +/ M3V/o||@ (7, o) 2(7) | dr. (18)

to
(t=7,52>1)
According to the Gronwall - Belman inequality [1, 4, 5], we have

t
1B (L, to) 2()] < J20]l™2YVi0 4T = || 29| MaVlt—t0)

™o P (1) < aglleMeveta) (t) < [laoll VBl to)lig Pt

<]

é £ t T T
e o P 25 1) < ||z eMaVElE-to) 22(t) < |Jzpl|eMavli—to)ello P

Using propertics of Lyapunov exponents, we get

x[21] <X”|ZO”€ B m)] + xle LOPH } MsV/§ f‘hmt—-*—kootft p11(7)dr
xlzal < xlllzoleM¥30=10)] 4 ylelto P2 — Mo /G 1 lim 4o 1 [} poa(r)dr.
It is clear that in Perron transformations the Lyapunov exponents are unchanged [1,4]. Thus, for any
small enough given € > 0, chosing 0 < 0 < (ﬁa)z, we obtain that
{X[xl]:x{zll SALTE {.U] SAite
Xlza] = x[z2] <Az +e pa < Azt e

The same result is proved for the case, when matrix U(t) has form b).
The proof of theorem is completed.

Corollary 1. Suppose that all assumptions of Theorem | hold. Then the minimal exponent of system
(9) is lower - stable.

Proof. From Lemma 1 it follows that minimal exponent of system (9) is lower - stable if the maximal
exponent of adjoint system & = —A*(¢)z to this system is upper - stable. According to Theorem 1,
the last requirement will be satisfied if the following inequality holds

- \'/[—azg(t) + all(t)lz -+ [--agl(t) et alz(t)]z dt S C < +0o0

to

= [w \/[agg(t) = CLH(t)P + lagl(t) + al‘z(t)lz dt S C < 0.
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This proves the corollary.
3.2. Stability of systems with nonlinear perturbations

We consider the following linear system with nonlinear perturbation in ™
z = Al)x + f(t, x). (19)

Since the system (19) is nonlinear, it is dificult to study its spectrum [S]. However under the suitable
conditions we can obtain some results on it, for example, to study supremum of its all exponents. Let
us denote this supremum by pgp.

Definition 2. The maximal exponent X, of homogeneous system & = A(t)x is said to be upper -
stable under the nonlinear perturbation f(t,z) if for any given € > 0 there exists ¢ = 6(¢) > 0 such
that if following inequality holds || f(t,z)|| < dlz]|, then

/-Lsup < )\n 1= & (20)

We consider now the system (9) and (19) in R?. For this space the following result is obtained:
Theorem 2. Suppose that:
i) System (9) is regular and there exists a constant C > 0 such that

7 Vlaw® = an O T Tean® el d € € < oo

ii) Function f(t,z) is continuous on [ty; +oc) and there exists a function g(i) > 0, Vi > lo,

salisfying the condition:
1 @) < g)llll, vE=to
Then maximal exponent Ay of system (9) under perturbation f(t,x) is upper - stable.
Proof.  We denote by 2 (t) = (to, zo, t) the solution of system (19), which satisfics initial condition
zo(to) = xo. Denote by Fy (t) the function matrix corresponding to this solution in the sense of
Iemma 2, i.c. for this solution there exists a function matrix F,(t) such that zq(t) is a solution of
the following lincar system
&= A(t)x + Fypy(t)z, (20 € R?), (21)

where ||Fyo (8[| < g(t), ¥Vt > to. We denote by u7° < p3° the elements of spectrum of nonlinear
system (19). According to Theomrem 1, for every given € > 0 there exists > 0 such that

F ()] <6 implies u2° < Ay+ =, Vag € R
6] 2 2
From || Fy, (¢)|| < g(t) < J, we have
P2 < Mg + % Vao € R2.

Therefore, we obtain that

€
Hsup = SUp ugOSA2+—<)\2+E-
zoER? 2

The proof is therefore completed.
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Corollary 2. Suppose that conditions i) and ii) of Theorem 2 hold and the function g(t) in condition
i1) satisfies the condition
U gilz) = 0,

t—+o0
Then maximal exponent Ay of system (9) under perturbation f(t,x) is upper - stable.
Proof. For every given € > 0 there exists 6 > 0 such that

| Feo ()| <6 implies  p3° < Ap + %, Yay € R?.
Since limy— 100 g(t) = 0, for § > 0 there exists T = T'(d) > to such that 0 < g(¢) < 4, vt > T.
Thus, if t > T then || Fy,(t)]| < g(t) <. Taking to limit as ¢ — +oo, we have
jis” & Xyt %, Vg € R?.
Taking to supremum over all zg € R?, we have

€
Psup = Sup p° <Az + = < Az +te.
IOEH2 2
The proof is therefore completed.
Example. Consider the system

. 1

. V3 2 29
g = t—z’El + (1 e -L—z‘):b‘g ( )
B3 1.

It is easy to sce that this system is nonredusible and nonperiodic. We can show that for this system:
1 t
Al =Xz =1and lim _/ SpA(s)ds = 2.
t—dee By
Therefore, system (22) is regular. We can see also for this system:

V3., 2
7

12

W) = \/[<1+§2—)—<1+§2~>12+(

Therefore, we get
t
2
/ W(s)ds:Q—ngz, ¥t > 1.
1

Thus, system (22) satisfies all conditions of Theorem 1. Its maximal exponent is upper - stable.
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