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A bstract. In the articlc proposed an effective method estimating transfer function model of 

controlled plant including dead-time delay, based on slochatstic time series o f inpul-output 

signals. The model slmcture is modified with parameters optimized until the model error 

bccom cs ”w hitc-noisc” series that with inough srnal auto-corrclation function.

1. Propose

The Real signals w hich  occur in the control process always im lpy influences o f m any random 
factors, so the D irective O bject Identification Problem is often related to random process.

M athem atically, the Controlled Objcct Identification problem  is the problem  that predicts the 
trend o f Random  Proccss: y{t )  — f { t ^ ĩ i )  -ị- v{ t )  , where t  - tim e; u  - vector o f  non-random  input 
variables; / ( i ,  ĩi) - regressive function that reflects the trend o f  non-random  process or is the m odel of 
the identification problem ; v { t )  - random error.

The Theory o f  Prediction and Identification has been studied and developed w ith  thousands of 
scientific w orks m ade public since last century. We can find the fundam ental results o f studies o f 
statistics and prediction in [1,2], o f  kinetics system identification in detail in [3,4 .

To use linear algebra m ethods, wci often try  to changc the regressive models into linear com
bination fonns o f coefficients: f { t ^ u )  — 5 w here Ci - param eters, - given
com ponent functions. By using th is model, the Param eter Identification Problem  can be solved easily. 
However, th is  m odel is not used to solvs the analysis and synthesise problem  o f system s and we have 
to transform  this m odel into the fom i o f sets o f  state equations (sets o f Cauchy differential equations) 
or transfer function fom i. There is a  close, easy to exchange relation betw een set o f state equations and 
transfer function. The transfer function’s model o f controlled object is often in the follow ing form;

rT r \   Òq “h 5] 5 bjjiS —r s  ^  ^  /1 \
W { C ,  s)  =  ^ ^  ^  ^

w here Ó' - com plex num ber, r  ^  0 - the dead tim e delay; r a ^ n -  degree o f  num erators and denom inators; 
c  =  { r , 6o, 6i , bjrv̂  ao, a i , a-n} - vector o f  param eters to be determ ined.

In the classic w orks o f  identification, all the authors concentrated on developing identification 
methods based on pure polynom ial fraction models w ithout the dead tim e delay com ponents (i.e. set
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r  — 0). In fact, exists r  ^  0, w e norm ally  t iy  to  use approxm iate polynom ial fraction m odels w ith 
h isher degrees o f  m , n  to  increase the m odel accuracy. W ith th is approach, the object identification 
problem  w ithout dead tim e delay  is considered to  be com pletely solved in theory [1,4 .

In fact, however, app ly ing  the pure polynom ial fraction m ethods to the objects w ith  dead tim e 
delay is reluctant and ineffective in controlling  technology processes such as energy, metallurgy,... 
because m ost o f  the objects obviously  have the dead tim e delay. To have the necessary m odel accuracy, 
we norm ally increase the  degree o f  polynom ial fraction to  a great value, and therefore m aking the 
s}Tithesise problem  o f system s m ore com plex, even lose its essence.

D isregarding the characteristics o f  dead tim e delay o f  an object is one o f the reasons that leads to 
a great num ber o f  research d irections o f  control theory  im practically developed, even caused a ’’crisis” 
in the previous century  [5]. To accurately  reflect the controlled object, w e have to  consider dead time 
delay as an existing param eter included in the m odel. W hereas, clearly, the m odel is non-Iincar for the 
param eters. In this case, classic m ethods are e ither ineffective or inapplicable.

Because o f the above reasons, in order to increase the applicability, we recom m end a controlled 
object identification m ethod based  on using  d ircctly  m odel ( 1) along w ith  the dead tim e delay r  and 
other param eters. The fo llow ing  m ethod is based on considering the tim e response o f the object as a 
random data series.

2. Estimation of the object model from output response data series

Suppose the controlled  object has w eight fiintion w{t )  w ith  cfFect input u{t)~ predeterm ined, 
output response is m easured: y{ t )  — x{ t )  +  v{ t ) ,  w here v{ t ) -  additive noise (figure 1).
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Fig. 1. Linear control system under random effect.

W ithout loss o f  generality , w e restric t v{ t ) ^u{ t )  be ing  the non-intercoirelation scalars, where 
v{t)  is W hite N oise, u{ t )  is step pulse:

« { « ) = ( ' ’ " i ™  ( 2)
 ̂ '  [ 1  w hen Í >  0

Formerly [3,4], so as to  solve the moQol estim ation problem , w e based on popular relation 
between output response x { t )  o f  object and inpu t signal u{t)\

x{ t )  =  [  w { ^ u { t - Ẹ ) d ^  
Jo

(3)

where w{t )  is the w eigh t function.
From (3), w e estab lish  the Problem  o f  D efin ing  w eight fiintion w{i )  upon least square condition:

d t  m in  (4)
\  2

[  (y{t) -  [
Jo \  Jo



and then, define the transfer function i y ( 6) from the w eight fontion w{t ) .
If wc param eterize the funtion w{t )  in the fom i o f  linear com bination, the (4) problem will 

bccom c linear to coefficients and can be solved easily. However, in th is w ay  it is com plcx to sclcct 
com ponent functions and causes the problem  biiigcn and therefore m::kcs the problem  illconditioncd.

To avoid this draw back, we rccommcnd dircctly  using  the m odel o f  transfer function in fomi 
(.1) and salve the m odel estim ation problem  based on the inverse l.ap lace  transform ation. Indeed, if 
we consider argum ents in the L.aplace imatỉc dom ain, we obtain:

Vu Turn Viet /  m ư  Journal o f  Science, Mathematics - Physics 24 (2008) Ỉ0Ỉ- Ỉ09  103

. — rs
X (C , 6-) =  VK(C, s ) .U{s)  ^  ^0 +  +  ... +  ^  (5 ^

1 -Ị-' +  ... +  cijiS

w here x { s )  L { x { t ) }  , v y ( c . s )  ^  L { w { t ) }  , u { s )  = L{u{t )}- ,  s  - com plcx variable; L{.}
roo

- notation for Laplacc transform ation; G{s)  = L { g { t ) }  =  /  g{t)e~' ' ^dt  - Laplace transfom iation,
Jo

from  any g{t)  function in real domain (g{t) — ^  0) into corrcspondinơ imaac G{s)  in com plex
domain.

A ccording to the Inverse Laplacc transform ation, in [6 ] w e infcrcd a sim ple formula to computti 
tim e response x{ t )  from  its Laplacc imaac:

1 rgijoo
0  =  X ( C , s ) e ^ ^ d s = ^  P{C,Lo) cos{ujt)(Lj (6 )

27rj Jg-joo  7T 7 o

w here g '  converging abscissa o f Laplace integral ( if  objects are stab le, w e can select ^ >  0 small 
enough, for instance Q — 0.01); =  —1 , P (C ,o j i  =  R e { X (C ,c j  -\' j o c ) }  - the real part of
X{ C, cu  jo c ) .

Sclect the upper lim it (u m̂ ) o f the integral w hich  is b ig  enougli, then trasform  into approximate 
sum  fonn, w c obtain:

x{C,  t) =  —  V  P (C , LUr) COs{uJrt) 
7T  ̂r -̂ 1

-- (7)

w here M  “ the num ber o f discrete points in frcqucncy range: UJ =  0 ^  COM-
From here, w e obtain square error between output response and real data:

fT
ơ ‘̂ { C ) =  /  [y{t) — x{C, t ) ] ' ^dt

Jo
m m

c0

w here T  - the am ount o f  tim e to observe the random  output data series o f  real objects.
Regarding the discrete points o f tim e series, w e obtain m in im ization  objective function:

m in  (8)

where N  - the num ber o f discrete points in an interval o f observed tim e: Í =  0 ~  T .
Objective function’s value a^ (C ) is determ ined after a com puting  process in the following 

order: c  — > W { C ,  g - \ - j i o )  —  ̂ X ( C , Ơ + jc j)  —  ̂ P{C^uj )  — > x { C ^ t )  —  ̂ (J^(C). Therefore, 
a^ (C ) is a com putable function and is continuous and differentiable every'where. On the other hand, is 
obvious non-linear functions to  param eters and especially  have the com plex  cleft (ravine) characteristic. 
W ith these characteristics, the m ost effective m ethods to  solve the m inim ized  problem  (8) is to apply 
”c le ft-o v cf’ optim ization algorithm  [7,8 .



The solution to the (8 ) problem  w ith the selected structure (m ,n ,  q) o f model (1) give us an 
optim al estim ation a;(C*, t) w ith  ĩj{ti) series, and to se th sr w ith  the optim al transfer function W^(C*. s) 
respectively.

3. Determine the optimal estimation model

A s above, w ith  each selected struture ( m .n ,  q), an optim al solution is output response m odel 
a;(C*, t) and the W { C * ,  s) optim al transfer function, respectively. D epending on the selected (m , n , q) 
com bination, T here are infinite structures o f the m odel. So, the facing problem  is to find a (rn, n , q) 
struture so that the coưesponding  solution to the problem  (8 ) brings out the response x(C *, t),  w hich 
is the proper estim ation for the y{ti)  tim e series.

A ccording to  [1,2], the m odel is cosidered as a proper estim ation if  the obtained error series 
betw een the given m odel and tim e series becomo a radom distribution range in the fonn of "w hite 
noise” . A ssum e a a  significance level, the m odel is considered to  be accurate if  Goưelation coefticients 
value ri  o f  error series satisfy the followed condition;

n l  ^  u ^ / V N  (9)

w here U a - is the lim ited value obeying the norm al d istribution rules, N  - the num ber o f data sets o f 

series.
O n the o ther hand, the (1) mode] is fractional, so if  w e increase the (m , n)  degrees its accuracy 

w ill increase as a result. Particularly, q is the nonstatic degree o f  m odel, it depends on the behaviour of 
output response and is equal to the degree o f the asym ptote o f  output response. (J =  0 if  the asym ptote 
o f  output response is horizontal asymptote. <7 =  1 if  the asym ptote o f output response is oblique 
asym ptote, q > I i f  output has no asymptote. In fact, Ọ <  1 in m ost eases.

To define the global optim al estim ation m odel, the steps to solve the identification problem  arc

as follows:
1. Select the degree o f  q and fix it from the output response’s behaviour.
2. Exploratively select values o f denom inator’s degree n, and values o f nom inator’s degree 

m  = n  — I sim ultaneously.
3. For each selected {m,  n,  q) structure w e solve the (8) estim ation model problem.
4. W ith  the respective s) and x { c * ,  t) obtained, w e detcm iine error scries and check

the condition upon  m odel suitability.
5. I f  the  condition is satisfied, the obtained m odel is optim al and the respective W{C*,  s) 

transfer iunction  is the solution to the identification problem .
6 . I f  the m odel is not suitable, we w ill select other m odels w ith  m and n ’s degree gradually 

increased and reoeat from step 3.

4. E x am ple

Suppose the  output signal o f an im plem ent controlled object is the step pulse in form (2). A t
that tim e, from  the  output, the m easured response signal in form o f tim e series is as follows:
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i 1 2 3 4 5 6 7 8 9 10

ti 0.0100 0.2054 0.4008 0.5962 0.7916 0.9870 1.1824 1.3778 1.5732 1.7686

Vi -0 .0 0 2 3  0.0060 0.2540 0.6000 1.0641 1.3125 1.4700 1.4126 1.2500 1.2191
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i 11 12 13 14 IG 16 17 J 8 19 20

u 1.9G40 2.1594 2.3548 2.5502 2.7457 2.9411 3,1365 3.3319 3. r/2 73 3.7227
1.0800 1.0830 1.0127 1.0300 0.9900 1.0310 0.9407 0.9900 0.9600 0.9740

i 21 22 23 24 25 26 27 28 29 30

tr 3.9181 4.1135 4.3089 4.5043 4.6997 4.8951 Õ.0905 5.2859 5.4813 5.6767

in 0.9Õ00 0.9900 0.9560 0.9960 0.9539 1.0400 0.9680 1.0510 0.9900 1.0211

The G raph o f the tim e series y{t )  obtained from  cxperiem cnt is shown in figure 2

Ỉ I V  
\ i \

! \ị ị '•-> ị 
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: ị

Fig. 2. The curv'e o f output response data scries o f dircclivc object.

We identify  the transfer function o f objcct based on m odel (5) by solving the (8 ) problem  w ith 
diftcrcnt structures. The image o f input signal step pulse; u { s )  = 1/ s .  The behaviour o f the data 
series above is coưcsponding  to the nonstatic degree w here <7 =  0. Hence, w e only have to selcct the 
suitable degree o f  num erator and denom inator ( m , n )  o f  transfer function (5), H aving selected the 
( rn ,n )  structure, we solve the (8 ) problem  by the ”cleft-over” algorithm  [7,8'
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Fig. 3. The error series of models.



Strutnres o f  tested models'.

1. The first struture, we choose; 771 =  0, n  — 1. The rcspectivc optim al m odel is:

.e - 0 .3 6 4 .
 ̂ l +  1 + 0 , 1 6 7 5

The eư o r series betw een the output response X i(c* , t) and the m easured data is on flizurc 3-a.
The root-m ean-squarc E ư o r o f the model is ã  =  0, 1429. By using  this model, the estim ation IS
obviously incoưect because the condition \ri\ ^  >/]V is d e a r ly  not satisfied.

2. The second struture, w c choose: m  =  0, n  =  2. The optimal model is:

Wo(C* s) =  ______ - ______ _______________________________g - 0,108.,
’ ’ l + a i 5  +  a2s2'  l  +  0 , 2 3 9 s  +  0, 123s2'

The error series betw een the output response X2{C*^ t) and the m easured data is on figure 3-b. 
The root-m can-square E rror o f the m odel is Ỡ “  0, 0682. This m odel briniĩs out the incoưect estim ation 
because the condition \ri\ ^  U 2 . / \ / 7 ĩ  is still not satisfied.

3. W ith the third struture, we choose; m  — 1, n  — 3. The optimal m odel is:

,  6o( l  +  ?ii6') 0 , 9 8 5 ( 1  +  1,1666')

(1 -I- a i s  +  a 26'2 ) ( l  +  as s )  ■ (1 +  0, 3 6 5 s  +  0, 0986-^)(l +  0, 6836') ■

The error series betw een the output response ,X3(C*, t) and the m easured data is on figure 3-c.
The root-m can-squarc Error o f the m odel is Ỡ =  0, 0342. This m odel brings out the nearly correct
es tim a tio n , th e  cond ition  upon  m odel su itab ility  |r,;| ^  U ẹ . / \ Í N  is nea rly  satisfied .

4. The fourth struture, w e choose: m  =  2, n  =  4. The optim al m odel is;

(1 +  a i s  +  a2 S^){ỉ  +  aas  +  045^)

1, 001(1 +  0, 716s +  0, 37s2) . - 0,183.
“  (1 +  0, 202s +  0, 0 8 4 s2 )(l +  0, 545s +  0, 414s2)

The eư o r series betw een the output response a;4(c * , t) and the m easured data is on figure 3-d. 
The root-m ean-square E ư or o f the model is o' — 0, 0212. This m odel brings out the coưcct estim ation 
since the condition upon m odel suitability  Ir^l ^  U i y / \ / N  is com pletely satisfied.

W hile increasing the degrees o f  m,n o f  the m odel, the eư o r series is alm ost non-decrcasing. 
In the optim izing process, the old coefticients are alm ost invariable, w hereas the added coeftlcicnts - 
arising  w hile increasing the degree o f model - are always forced to zero by  the algorithm . The optimal 
solution is nearly at a stand still. A ccording to  these results, the transfer function model W 4{C*^ s) 
has error series w hich is sim ilar to ’’w hite no ise” , and sim ultaneously yields The root-m ean-square 
E rror m inim um . Therefore, w e can considered it as the global optim al m odel o f  object. The respective 
output response o f  the m odel is shown on figure 2.
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5. Conclusion

1. The objects w ith  dead tim e delay are popular class o f  objects in industrial control, its 
transfer function has non-linear property for param eters, therefore classic identification m ethods have 
low eftectiveness.



2. Recom m ending using the transfer function w ith  dead tim e delay as the basic m odel and by 
using the inverse Laplace transfom iation wc obtain the output response o f the model. On this basis 
wc solve the objcct identification problem in the fonn o f  the tim e series estim ation problem based on 
measured random data  o f  controlled objcct.

3. The rccom m cndcd method in this report enable us to solve the directive objcct identification 
problem licncrally and effectively under the random noise.

4. The optim al model of objcct dctcm iincd by the estim ation method for non-linear random 
model ensures the suitab ility  according to probability  and statistic’s point o f view.
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APPENDIX 

TESTED MODELS

Model 1: f v ^ ( c \ s ) =  °̂—
1 + a^s

The obtaúicd optimal coefficients: Òq =  1.065 Uj =  0.167 r  =  0.364 .

Coưesponding output response Xj(c\t)  computed by (6) on Oie basis of image function 

The eưor series ofoutput response model: ổyị =  is:

5 y i ô y .
0 . 0 1 0 0 - 0 . 0 0 2 3 0 . 2 0 5 4 0 . 0 0 6 0
0 . 4 0 0 8 0 . 0 4 3 0 0 . 5 9 6 2 - 0 . 2 0 0 3
0 . 7 9 1 6 0 . 0 8 0 7 0 . 9 8 7 0 0 . 2 7 3 0
1 . 1 8 2 4 0 . 4 1 2 4 1 . 3 7 7 8 0 . 3 4 9 9
1 . 5 7 3 2 0 . 1 8 5 2 1 . 7 6 8 6 0 . 1 5 4 3
1 . 9 6 4 0 0 . 0 1 5 0 2 . 1 5 9 4 0 . 0 1 7 8
2 . 3 5 4 8 - 0 . 0 5 2 7 2 . 5 5 0 2 - 0 . 0 3 5 2
2 . 7 4 5 7 - 0 . 0 7 5 4 2 . 9 4 1 1 - 0 . 0 3 4 1
3 . 1 3 6 5 - 0 . 1 2 4 6 3 . 3 3 1 9 - 0 . 0 7 5 4
3 . 5 2 7 3 - 0 . 1 0 5 1 3 . 7 2 2 7 - 0 . 0 9 1 2
3 . 9 1 8 1 - 0 . 1 1 5 2 4 . 1 1 3 5 - 0 . 0 7 5 1
4 . 3 0 8 9 - 0 . 1 0 9 1 4 . 5 0 4 3 - 0 . 0 6 9 1
4 . 6 9 9 7 - 0 . 1 1 1 3 4 . 8 9 5 1 - 0 . 0 2 5 2
5 . 0 9 0 5 - 0 . 0 9 7 3 5 . 2 8 5 9 - 0 . 0 1 4 3
5 . 4 8 1 3 - 0 . 0 7 5 2 5 . 6 7 6 7 - 0 . 0 4 4 0

Model 2: ỈVyiC ,s )  -
1 +  ^ 1̂  + « 2*̂

x e

The obtaine(toptimal coefficients; bọ = 1.033 ứị -  0.123 r  = 0.108.

Coưesponding output response X2(C*,l) computed by (6) on the basis of image function 

X , ( C  , s)  = ^ , ( C , s ) / s ,

Tlie eưor series = X 2 ( C \ t i ) - y ^ ( i  = l,...,3 0 )  ofthe sccond model is:

ô y . t i ôyi
0 . 0 1 0 0 - 0  . 0 0 2 3 0 . 2 0 5 4 - 0 . 0 3 1 4
0 . 4 0 0 8 - 0  . 0 3 0 5 0 . 5 9 6 2 - 0 . 0 4 1 8
0 . 7 9 1 6 0 . 0 7 9 6 0 . 9 8 7 0 0 . 0 8 1 5
1 . 1 8 2 4 0 . 1 2 0 3 1 . 3 7 7 8 0 . 0 6 1 3
1 . 5 7 3 2 - 0  . 0 2 2 5 1 . 7 6 8 6 c . 0 6 0 5
1 . 9 6 4 0 0 . 0 3 0 6 2 . 1 5 9 4 0 . 1 1 2 1
2 . 3 5 4 8 0 . 0 7 9 7 2 . 5 5 0 2 0 . 0 9 7 6
2 . 7 4 5 7 0 . 0 3 2 6 2 . 9 4 1 1 0 . 0 3 7 5
3 . 1 3 6 5 - 0  . 0 8 7 5 3 . 3 3 1 9 - 0  . 0 6 3 2
3 . 5 2 7 3 - 0 . 1 0 5 3 3 . 7 2 2 7 - 0 . 0 9 1 6
3 . 9 1 8 1 - 0 . 1 0 7 7 4 . 1 1 3 5 - 0 . 0 5 6 3
4 . 3 C 8 9 - 0  . 0 7 9 3 4 . 5 0 4 3 - 0 . 0 3 1 3
4 . 6 9 9 7 - 0 . 0 6 9 6 4 . 8 9 5 1 0 . 0 1 6 7
5 . 0 9 0 5 - 0 . 0 5 7 8 5 . 2 8 5 9 0 . 0 2 1 6
5 . 4 8 1 3 - 0  . 0 4 2 9 5 . 6 7 6 7 - 0 . 0 1 4 3
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—rsModel 3; ll';(6''\,s) =  --------- --------------------- : X e
(] +  Oj.s +  cir ŝ )(1 +  a^s)

The obtained optimal cocfficicnts: =  1.033, òj =  1.166, a ^ =  0.365, 0,2 =  0.098, a3 =  0.683,
r  0 .226.

Corresponding output response X3 (C*,t) computed by (6) on Oic basis of image function 

The error series ôy  ̂ =  — Ị...,3 0 ) of Ihc lliừd model is:

t a ôy , t . ô y ,

0 . 0 1 0 0 - 0  . 0 0 2 3 0 . 2 0 5 4 0 . 0 0 6 0
0 . 4 0 0 8 0 . 0 5 2 2 0 . 5 9 6 2 - 0 . 0 5 0 6
0 . 7 9 1 6 - 3 . 5 E - 0 4 0 . 9 8 7 0 - 0  . 0 1 1 3
1 . 1 8 2 4 0 . 0 5 1 2 1 . 3 7 7 8 0 . 0 1 8 6
1 . 5 7 3 2 - 0  . 0 5 6 6 1 . 7 6 8 6 0 . 0 1 5 2
1 . 9 6 4 0 - 0  . 0 3 5 0 2 . 1 5 9 4 0 . 0 3 1 3
2 . 3 5 4 8 - 0  . 0 0 1 5 2 . 5 5 0 2 0 . 0 3 3 5
2 . 7 4 5 7 - 9 . 8 E - 0 4 2 . 9 4 1 1 0 . 0 3 9 6
3 . 1 3 6 5 - 0 . 0 5 2 6 3 . 3 3 1 9 - 0 . 0 0 4 7
3 . 5 2 7 3 - 0  . 0 3 4 8 ' 3 . 7 2 2 7 - 0 . 0 1 9 7
3 . 9 1 8 1 - 0  . 0 4 2 0 4 . 1 1 3 5 - 1 . 7 E - 0 4
4 . 3 0 8 9 - 0  . 0 3 2 6 4 . 5 0 4 3 0 . 0 0 8 6
4 . 6 9 9 7 - 0  . 0 3 2 6 4 . 8 9 5 1 0 . 0 5 4 0
5 . 0 9 0 5 - 0 . 0 1 7 8 5 . 2 8 5 9 0 . 0 6 5 4
5 . 4 8 1 3 0 . 0 0 4 5 5 . 6 7 6 7 0 . 0 3 5 6

W ,{ C \ s ) 0^(1 +  bịS +  2̂'"’'^)
— . . 2\ / i  . _ _ .2x(1 +  Cí̂ ố' +  +  CLẑi +

The oblaincd optimal cocfficicnls: òy =  1.001 =  0.716 =  0.202 = 0.084 =  0.545
a, =  0.414 T  0.183.

Coưesponding output response X3(C*,l) compuícd by (6) on tlie basis of image function 

Thc eưor scries ỗy  ̂ = x A C \ t J  -  2/^ ĩ 1,...,30) o f the fourlli model is;

t , ÔYi 5 y ,

0 . 0 1 0 0 - 0  . 0 0 2 3 0 . 2 0 5 4 - 0 . 0 0 3 0
0 . 4 0 0 8 0 . 0 2 5 5 0 . 5 9 5 2 - 0 . 0 3 3 5
0 . 7 9 1 6 0 . 0 1 8 0 0 . 9 8 7 0 - 0 . 0 1 8 2
1 . 1 8 2 4 0 . 0 2 9 5 1 . 3 7 7 8 0 . 0 0 5 7
1 . 5 7 3 2 - 0  . 0 4 9 8 1 . 7 6 8 6 0 . 0 3 4 4
1 . 9 6 4 0 - 0  . 0 2 0 1 2 . 1 5 9 4 0 . 0 2 9 1
2 . 3 5 4 8 - 0  . 0 2 1 5 2 . 5 5 0 2 0 . 0 0 5 5
2 . 7 4 5 7 - 0  . 0 2 3 0 2 . 9 4 1 1 0 . 0 3 4 1
3 . 1 3 6 5 - 0 . 0 3 8 6 3 . 3 3 1 9 0 . 0 2 4 4
3 . 5 2 7 3 6 . 9 E - 0 4 3 . 7 2 2 7 0 . 0 1 3 2
3 . 9 1 8 1 - 0 . 0 1 7 9 4 . 1 1 3 5 0 . 0 1 2 7
4 . 3 0 8 9 - 0 . 0 3 0 1 4 . 5 0 4 3 0 . 0 0 3 3
4 . 6 9 9 7 - 0  . 0 4 3 0 4 . 8 9 5 1 0 . 0 4 0 7
5 . 0 9 0 5 - 0 . 0 3 2 4 5 . 2 8 5 9 0 . 0 5 0 0
5 . 4 8 1 3 - 0 . 0 1 1 3 5 . 6 7 6 7 0 . 0 1 9 7


