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Abstract. The oscillation and convergence of the solutions of neutral difference equation
i
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are investigated, where 1y € Ny Y . and /7 is a function mapping F to £
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1. Introduction

[t i well-known that difference equation

'

B, ¥ 08y ) 4 BRI U, (1)

where 1 € ML the operator A s detined as A, w0 — @y, the tunction a (i) 1s defined on Moo
is a constant, 7 is a positive integer and o s a nonnegative integer, was first considered by Brayton
and Willoughby from the numcrical point of view (sce [ 1]). In recent vears. the asymptotic behavior
of solutions of this cquation has been studied extensively (see [2-7]). In [4. 6. 7] the oscillation of
solutions of the difference cquation (1) was discussed.

Motivated by the work above. in this paper. we aim to study the oscillation and convergence of
solutions of neatral difference cquation

for n € N.n = a for some a € N, where romy.mna. - - g are fixed positive integers. the functions
o () are defined on I and the tunction /7 1s detfined on B

Put A max{7.0my. - e} Then, by a solution of (2) we mean a function which is defined
for n > — A and sastisties the cquation (2) tor € M. Clearly, 1f

VI W e I O S T ¢

arc given. then (2) has a unique solution, and it can be constructed recursively.
A nontrivial solution {r, },>, of (2) is called oscillatory af for any np 2= a there exists
1o 2 ny osuch that w0y, < 0.0 The difference cquation (2) is called oscillatory 1f all its solutions
arc oscillatory. Othenwise. 1t 1s called nonoscillatory.
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2. Main results

2.1. The Oscillation

Consider neutral difference equation

)
Alzn +0zn—r) + Zai(n)xn_m, = [, (3)
i=1
for n € Nyn = a for some a € N, where r,m,mg,---,m, are fixed positive integers and the
functions a;(n) are defined on N. It is clear that equation (3) is a particular case of (2). We shall
establish some sufficient criterias for the oscillation of solutions of the difference equation (3). First
of all we have

Theorem 1. Assume that

(ﬁi*% 1)ﬁv+l = o .
e 2 hnrig;lfal(n) = 1y (1)
where § =0, a;(n) 2 0,ne N 1<i<rand m= lxgin my. Then, (3) is oscillatory.
\1’\1‘
Proof. We first prove that the inequality
14
Axy -+ Zai(”)xn—mt <0, neN (5)

i=1
has no eventually positive solution. Assume, for the sake of contradiction, that (5) has a solution {r,,}
with z,, > 0 for all n > n;,n; € N. Setting v, = Eﬁl;— and dividing this inequality by x,,, we obtain

m;

1 r
—<1- g ai(n) I I Un—£ (6)
Un :

i=1 {=1

where n 2 n; +m, m = max m,.
1<Eigr

Clearly, {x,} is nonincreasing with n > n; + m, and so v, = 1 for all n. = n; +m. From (4)
and (6) we see that {v, } is a above bounded sequence. Putting liminf v, = 3, we get
x

n—

11 d “
. 11 1 vm ) .
IITI;H_’SOI;D o T3 S 1 1£{££f;a1(n) eI:Il'L -
or
=<1- liminf a;(n) - 57 (7)
I . n—oo
1=1
Since
g > %, vi=Tr,
we have
liminf o;(n)8™ 2 liminfa;(n)3™, Vi=1,r
n—0o0 n—oo
and

I T

1 ; » ms _ : : o A

1-— 5 : 1¥E£f01(n)ﬁ S E l lgggfal(n)d :
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From (7) we have

; g~ 1
lrglllll E (Y, H \W'

1=1

But

3-1 mm
- < — - "
}«)‘m+1 (HL L 1)m+l

SO ) ‘
i L
(—*7—2-* liminf oy (n) <1,
m’n N—=0G
=
which contradicts condition (4). Hence, (5) has no eventually positive solution.

Similarly, we can prove that the inequality

r
Az, + Zai(n)rn_,m >0, neN
i=1

has no eventually negative solution. So, the proof is complete.

Corollary.  Assume that

T ~m

[ ¢ ) 1 m
| iminf a; (n)] ™ > ——
n—o0 (i + 1)m+l?

1=1

where § =0, i(n) 2 0,neN, 1 <ig<randm= ]; iy mq. Then, (3) is oscillatory.

(8)

Proof. We will prove that the inequality (5) has no eventually positive solution. Assume, for the sake
of contradiction, that (5) has a solution {x,} with z,, > 0 for all n > n;,n; € N. Using arithmetic

and geometric mean inequality, we obtain

1
r T
Zliminfcn( » B 2 Hllm inf o; (n) 3™
n—oc n—oQ
i=1 i=1
which is the same as
1
Z‘ liminfay(n) - g™ > r Hllm inf az(n) | 8™
n—oo n—oo
1=1 1=1
This yields
r r ;
1~- E liminfa;(n) - g™ <1 —r H liminfoy;(n) | A,
n—o0 n—o0
i=1 i=1
By using the inequality (7) we have
, -
L m™
'y H liminfe ()| ——m——
[. 1( s 1( ))] = (’FfL T l)m-}-l’
1=

which contradicts condition (8). Hence, (5) has no eventually positive solution.
Next, we consider the equation (3) in case ¢ # 0. We have the following Lemma.

Lemma 1. Let «;(n) 2 0 for all n € N and let {x,} be an eventually positive solution of (3). Put

B = By + 08nes, WE have
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o (a)If =1 < § <0, then z, >0 and Az, <0 eventually.
o b)Ifd < —1andy ;o[> ci(0)] = o0, then z, <0 and Az, <0 eventually.

Proof. (a) Since a;(n) # 0, we have

Az, = — Z el n)Tn—m; <0

i=1
eventually, so z, cannot be eventually identically zero. If z,, < 0 eventually, then
2. L e 20, nz2NegN
Since —1 < § < 0, we get
By 52 By o BB 5 By By
which implies that
T € T b Brimr L BN F Brpers
Therefore,
IN+rn < ZN T+ TNfrn—-r = 2ZN T+ INyrn-1) < - <nzy +aInN.

Taking n — oc in the above inequality, we have 2y 4,, < 0, which is a contradiction to &, > (.
(b) We have

-
Az, = — Zai(n.).r“,,,,.,l < 0,

=
for n sufficient large. We shall prove that z,, < 0, cventually. Assume, for the sake of a contradiction,
that

Zn — Ip + (S.THAT 2 O’ n 2 N’

Tn 2 — 0Ly T2 N,
which implies that

1 154 R
O<aNn-r < (_S)IN L e (—5> Tn+G-1m J= 1 2,

On letting j — oo in the above inequality, we get x, — oc as n — 0. But
" .
Kgy = — Zcu(n);rn_mi < —-M Z ai(n), (9)
i=1 i=1

for n sufficient large, where A > 0. Summing (9) from N to n, we obtain

Tpi = 2y & =M Z[Z a:(£)],
(=N

N 1=l

which implies that z, — —oco as n — oc. This contradicts the hypothesis that z, = 0. n = .V.

Theorem 2.  Suppose that
1 (4 )™

14+d

. lim inf ag(n) > 1, (10)
m' n—od
=1
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where =1 < 0 < 0, m = min o, and oq(n) 2 0, a(n) > a(n — 7). for n sufficient large,

leasr
1 € i £r. Then, (3) is osciilatory,

Proof. Assume the contrary and let {r,, } be an eventually positive solution of (3). Let 2, = 1, +dr,
and w, = 2, + 0z,—-. Then, by the case (a) of Lemma 1, z,, > 0, Az, < 0 and w,, > 0. We have

Ay = Azy + 0Az

B

= 2 Oz(” In—m, -0 _Z (x; In~ T—1m,

t=1 1=1
# it
£ ~ E ”’i(”)l‘n~mi & § (11(7l)$1l—r—m,a
1=] =1
A“'n g - § “1(”)(-1"717'—171, = ()Inkr—m,)a
1=
T
Aw, € - E k) —m, & 0.
1=

Putting lim z,, = /3, we have 4 > 0 and
1n—0C

lim w, =34+63=(1+4)320.

n—oo
Therefore, w,, > 0 for n sufficient large. On the other hand,
Wn = 2Zn + (S:riwr < (l s 6)271;

which implies that

e
Wy —m,

1447

o
~N—=Tn; =

Hence, we obtain
"

-
1
A“"n 5 5 “‘z(”):vw—rnl < _1 " S § ai(”)“"n-—nlu
=1

1=1

or
T

I
Awy, + 2 o (n)wp—m. <0. 11

1'+-o; (1) tnm, (11)
By Theorem 1 and in view of condition (10), the inequality (11) has no eventually positive

solution, which is a contradiction.

Lemma 2. Assume that =1 < & < Q0 and 7 > m + 1, where mu = min m,;. Then, the maximum
I<igr

value of f(3) = 5,,“,(1 +837) on [1,00) is f(3*), in which 8* € (1,(=86)"Y7) is a unique real

solution of the equation

14667 + (B = 1)[§787 — (i + 1)(1 + 867)] = 0.

Proof. The equation f'(/3) = 0 is equivalent to

L4687 + (3= 1)[6737 — (i + 1)(1 + 637)] = 0. (12)
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Put
w(B) =1+ 687 + (B~ 1)[676" — (m + 1)(1 + 687)).
It is easy to check that
¢'(B) =6mB 4 687 [t — (m+1)] = (m+1)+ (B —1)6r37 1 — (h + 1)].
Since 7 > m + 1, we get ¢'(3) < 0. On the other hand, we have ¢(1) =1+ > 0 and

Jlim () = lim {14667+ (8= DIsF"lr = (i + 1)) = (i + D]} = —.

It implies that, ¢ is a decreasing function, starting from a positive value at 4 = 1, and hence (12)
has a unique real solution 3* € [1,00). Further, it is easy to see that 3* € (1,(—=4)"'/7) and
F(B) =20, V3e(1,(—8)7Y), which implies that f(3*) is the maximum value of f(i3) on [1. ).
The proof is complete

Theorem 3. Assume that ~1<d<07>m+1; a(n) 20 ai(n) > a(n - 1),
for n sufficient large, 1 <t <r, m= 112111 m; and
<igr
ﬁ* —1 ¢ oxrT—1 .
Zhﬁgl{gfm n) W(l + 43 ), (13)

where (3* € [1,00) is defined as in Lemma 2. Then, (3) is oscillatory.

Proof. Suppose to the contrary, and let {z,} be an eventually positive solution of (3). By the case (a)
of Lemma 1, we get z, > 0, Az, < 0 eventually. On the other hand,

Ay, = Alzg + 02p1) Z B P By, % U (14)

> 1 for n sufficient large. Dividing (14) by z,, we get

Putting v, = =1,

r

1 Zn—1 Zn—141 n—m;
<1+(5[ ~ i }-— o (n)—————-,
-3 )

771'1"1 Zn n =1 Zn
or
/ i my
<1+ 5['Yn—r+1 o Yn T Tn—r42 0 "Yn} . Z a;(n) H Tn—-¢ (15)
Tntl i=1 £=0

Setting lim inf v, = 3, we get § > 1. It is clear that 3 is finite. From (15) we have
n—oo

1 1
lim sup =2 £ 146871 thmfotZ (m) -~ B,

n—oo  Yn+l B

Zh,{‘_li.%fat( n) fT < 1+6ﬁ"1(6—1)—%:(ﬁ-1)[;};+5,af—‘].,

i=1

thmfal € gﬁ;i (14487) = f(B).

n—oo
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By Lemma 2, we have

- | | g —1
E B inf ax(n) £ f5*) = L2(1 +60°7),
el g

which contradicts condition (13). Hence, (3) has no eventually positive solution.

Theorem 4.  Suppose that

1 (T —m,)7 ™ .
o liminfa;(n) > 1,
0 + 1 (T = MW == 1)7_”1‘_1 z_; n—oo ( )

where a;(n) < ai(n — 7) for n sufficient large; 6 < —1, m, = max m;,

1<i<r

S e 2o, ai(€)] = oo. Then, (3) is oscillatory.

(16)

T > my + 1 and

Proof. Assume the contrary. Without loss of generality, let {z,} be an eventually positive solution of

(3). By the case (b) of Lemma 1, we have z,, < 0 and Az, < 0. Putting
'wn = zn + 537’1—7'7
we have
Wn = 2n + Oty & (1 F (S)Zn_-,—,

which 1s the same as

Therefore, it follows that

Ky = Aznﬂ—OA,m v

r
= B E az n 3r'n m; = 5 ai(n_ T):ETL—T*THZW

( N)Tn—m; 5 E Ofl In T—=1m;)

\Y%
|
tndal)
9

1=1
r
Awn 2 - Zal(n) (mn —my + 5In —— m,)
1=1
r
By 2 - Zai(n)zn—m{ = 0,
=1
SO we get
1 r
Au‘n Z (Yz ~n m; g A'wn + ‘6—*_—1 ; ; (n)u"”—mrf-T'
Setting v, = “2*L, we obtain

1 T—7n;

’7n21_6+ Z 71 H'TnanTé’

1=1

(17)
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Putting 8 = liT{n Lng vn, We have 8 > 1. Taking lower limit on both sides of (17), we obtain

8>21— —— Z liminfa;(n) - 877™,
or

g-12 6+ 7 thmf&I () « @7
Since

gz g, vi=Tor,

1 f ; F = m,,;
1 im inf o (n)B

From (18) we get

O0+1 n—oo

-1
Z liminf oy (n ﬁ

n—oo IBT—-m, '
But
,8 -1 < (7' — My — 1)T—m,—1
6?—771, = (7_ . m*)T“‘""* 1
SO
1 (T - m* T o
_5+1(T—m _1T My —1Zhnrg’ggfaz(n \1,

which contradicts condition (16). Hence, (3) has no evcntualiy positive solution.

Theorem 5.  Suppose that

1  lr—mm)™ ™

.
S5 (T — M — 1)Tmel Z:liv{l—l.golfai(n) =1,

Bmdstegln)d ~r Yi= 17

(18)

(19)

where § < —1, m, = max m;, T > m. + 1 and Y oo, [5o1_; ai(£)] = co. Then, (3) is osciilatory.

1<igr

Proof. Suppose to the contrary, and let {z,} be an eventually positive solution of (3). Put 2, =
T + 6x,_,. By the case (b) of Lemma I, we obtain z, < 0 and Az, < 0. On the other hand, we

have z, > dxp—r OF Tpp—r > %zn, which implies that z,,_,,; > ;1)'zn+7‘—m1-- Hence,

1 T
Nz, £ -5 ; ol 7) B g

Setting v, = “2** and dividing (20) by z,, we obtain

-

Entr—m;
Uy = 1 — 5 ai(n)——z—-’—,
% n

or

(20)
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Taking lower limit on both sides of (21) and putting 3 = lim infv,,, we have 3 > 1 and
o0

n—
1 T
B-12—= E liminf a;(n) - g7 ™,
d n—oo

1=]

We can prove

r

Zlim inf o, (n) <1
II! n—oo

similarly as the proof of Theorem 4, which contradicts condition (19). Hence, (3) has no eventually
positive solution.

1 (T B )Tk

S (r—m, — | -l

2.2. The Convergence

We give conditions implying that every nonoscillatory solution is convergent. To begin with
we have

3

Lemma 3. Let {x,} be a nonoscillatory solution of (2). Put z, = Ty + 6Tp—+.

e (a) If {x,} is eventually positive (negative), then {z,} is eventually nonincreasing (nonde-
creasing).
o (b) If {wy} is eventually positive (negative) and there exists a constant vy such that
-1 <y <, (22)
then eventually z, > 0 (z, < 0).

Proof. Let {x,} be an cventually positive solution of (2). The case {x,} is an eventually negative
solution of (2) can be considered similarly.

(a) We have Az, = —

1=

]

ai(n)F(zn_m,) < 0 for all large n. Thus, {z,} is eventually

=

nonincreasing.
(b) Suppose the conclusion does not hold, then since by (a) {z,} is nonincreasing, it follows

T
that eventually either z, =0 or z, < 0. Now z, = 0 implies that Az, = — 3" a;(n) F(zp-m,) = 0,
i=1

but this contradicts the fact that a;(n) # 0 for infinitely many n. If 2, < 0, then z,, < —6z,,_, so
0 < 0. From (22) it follows that —1 < v < 0 and x,, < —vyx,_,. Thus, by induction, we obtain
Tiir < (=) 2, for all positive integers j. Hence, z,, — 0 as n. — oo. It implies that {z,, } decreases
to zero as n — oo. This contradicts the fact that z,, < 0.

Theorem 6. Assume that
DD culf) = oo, (23)
and there exists a constant ) such that
=l<np&dgl. (24)

Suppose further that, if |x| > c then |F(x)| > ¢, where c and ¢, are positive constants. Then, every
nonoscillatory solution of (2) tends to 0 as n — oo.
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Proof. Let {z,} be an eventually positive solution of (2), say x, > 0,xp—7 > 0 and ay,,, > 0 for
n > ng € N. Put 2, = 2, +d8x,_,. We first prove that z, — 0 as n — oc. Note that (24) implies (22
with 5 replace by 1. By Lemma 3 we have {z,} is eventually positive and nonincreasing. Therefore.
there exists lim z,. Put lim z, = 3. Now, suppose that 3 > 0. By (24), we have z, < r,. Thus,

n—oe n—0Q0

there exists an integer n; = ng € N such that
5gzn—migmn——m,7 vnznp,i=1,---,7.

Hence,

- Zai(”)F(l"n«mi) <-M Zai(n), Vn > ny
i=1 i=1

for some positive constant M. Summing the last inequality, we obtain

n—-1 r

Somy =MD a(0),

f=n; 1=1
which as n — oo, in view of (23), implies that z,, — —oo. This is a contradiction.
Since lim 2, = 0, there exists a positive constant A such that 0 < z,, < A and so, by (24) we

n—oo
have
Tn & —NTn—r + A (25)
Assume that {z,,} is not bounded. Then, there exists a subsequence {nr} of N, so that A]im T, = 0
«—0Q
and z,, = max z;, k=1,2,---.From (25), for k sufficiently large, we get
ng<JEng

L, & — 1Ty, + A
and so
(1+n)zn, < 4,
which as kK — oo leads to a contradiction.
Now suppose that limsupz, = o > 0. Then, there exists a subsequence {ni} of N, with n,

n—00

large enough so that z,, > 0 for n > n; — 7 and x,, — « as k — oo. Then, from (24), we have
Zny Z Loy, + NTn—r
and so
By 2 —5(:1;,% — Zn, )

As k — o0, we obtain
«
@&z lm gy 2 ——
k—oo n
Since —n € (0, 1), it follows that « = 0, i.e. T, — 0 as n — oo The arguments when {z,} is an

eventually negative solution of (2) is similar.

Theorem 7. Suppose there exists positive constants M, a;,i=1,2,---,1r such that
ain) 2 a; 1=1,2,---,1, YneN, (26)
|F(z)| > Mlz|, Vz R, (&7
0= 0. (28)
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Then, every nonoscillatory solution of (2) tends to 0 as n — .

Proof. Let {x,} be an eventually positive solution of (2), say z, > 0,r,_» > 0 and 2,,_,,,, > 0 for
n = g€ N By Lemma 3, {z,} is cventually positive and nonincreasing, so there exists lim z,,.

H X
Put hhm z, = 4. Summing the equation (2) from n to oc for n 2 ngy, we obtain
20

o ¢ r
m=0+) > oi(O)F(xe-m,), 72 no.

= B |
Now by (20) and (27), we get
o0 T o0 r
all Z Z“i([)‘rf—ml % Z Z(ll(()17(;175_,n1) € 2z2,— 0 <o,
{=n1=1 b= a=l

which implies that r,, — 0 as n — oo. The proof is similar when {x,} is eventually negative.
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