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Abstract. Within the framework of the Walecka model (QHD-1)[1] the renormalized effective
Dirac equation and the kinetic equation for fermion are presented. In fact, the fermion propa-
gator in the medium is dramatically different from that in the vacuum. The main feature is the
treating of the fermion distribution in non equilibrium, which depends on the interaction rate
involving temperature.
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1. Introduction

At present the theoretical study of quantum fields at finite temperature and density turns out
to be more and more important for description of wide variety of physical effects in medium: in
condensed matter [2.3], in stellar astrophysics [3,4], in a QED or QCD plasma [5.6]. The effective
real-time Dirac equation in medium and the kinetic equation not only may provide an approximation
beyond two-loop calculations, but also can be treated the correlation effects- those that are extremely
important for physical processes near equilibrium [8].

In this paper we focus on the QHD-I model of non-zero density. We investigate in detail the fermion
propagator and its relaxation and thermalization through the interaction with scalar and neutral vector
mesons in the matter. Furthermore, the kinetic equation for fermion in the real time is shown the
relation between the fermion distribution and the interaction rate.

The paper is organized as follows. In Sec. Il the QHD-I and the real time formalism are presented. Sec.
HI is devoted to considering the renormalized effective Dirac equation. In Sec. IV we carry out the
quantum kinetic equation for fermion in the QHD-I. The discussion and conclusion are given in Sec. V.
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2. Formalism

2.1. The Quantum Hadrondynamics (QHD-I)
We start with the Lagrangian density
L, =¥ (iv*0, — My — g® — g4"V,) ¥
* % (0" 20, @ — m5®) — —):1—2@1 + ém‘?yV“V“ - %F"“F,l,,. ™

where ¥, @ and V, are the field operators of fermion, scalar and vector meson, respectively, and
FAY = g . gV,
In the medium of finite density (the nuclear matter), the symmetry of the ground state |F) vields

(F |®|F) =0 (F|¥|F) =0,

(F || Fy = w; (F |V, F) = bppwy,

where v and w are the independent of space - time coordinate owing to the homogeneity of nuclear
matter.

Adding to (2.1) a term, for example
Lo—L=Ly+ cP,
which leads to an explicit chiral symmetry breaking.
By shifting the scalar and vector ficlds ® and V, respectively
®=v+ P V,= 0w, + W, (3)
the Lagrangian density (1) in the presence of external sources now takes the form

L=V (iv'0, — My — g® — g A"W,) T

1 1 , T ,
+ 5 {(Q,(I?)Q —m?®?| - \d(d? +0?) — T((I)l + o)
< (il)
1 = 1
+ §m%‘,w“w# — 9o WS, W — TFME
+ 7%+ U0+ Js® + JFW, +c(v + D),
where
My = My + gv; m% = mg + 32%2 (5)

are the masses of nucleons and scalar meson in the medium. The QHD - I is a renormalizable model.
In the exact chiral limit, the parameter ¢ = 0.

Now, we write the bare fields and sources in terms of the renormalized quantities (referred to a subscript
r by introducing the wave function renormalization constants Zy,, Z, Z,, the vertex renormalization
Zg, Zgu, Z and the mass counter-terms M, dm, dmyy) as follows

v =29, ®=2"%,
_ _ (6)
0 =20, (WH,wh) = ZH2(WE,wh),
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the external sources

~1/2 ~1/2

=257 ey Jo=Z5 " Gy,

. -1/2_ L = L

=y 4 s LF = Zul/QJ;,

the coupling constants
1/2 r

gr :gZ¢/ Zy[Zg, 9o = ng;,“/,Q)

)\3 :/\QZQ%/Z)\, Cr = C‘Z;)/Qa

and the masses
My = (M + §M)/Zy,m3 = (m? + 6m?)/ Z,, m2 = (m%, + 0m3,)/Z.,

where M, m? and m? are the renormalized masses.
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(9)

With the above definitions, the Lagrangian (4) can be rewritten as (we have suppressed the subscript

r for notational simplicity)

2QHD~1 = Lwr + L1+ Lsource + L£58,

where

1 2+ 6m?

L =T [iZyv"0, — (M +8,) — gZ,P] ¥
2 2
- 5+ Om
= GuZg, Y (wp + W) ¥ — M—Z_——W(w”
1
T 3 [Z(p(a/l(b)z e (7712 £ § 577?/2)@2] — )sQZ)\vq)((I)Q =+ 1)2)

wy +2WHW )

1 ( 1
- Z)\QZ,\(tbl +ot) - 7 ZoF* Fpy + (@ +0)
Ssource :ﬁ\Il + ‘i'n + qu(I) + J'LLW,_L
or, equivalently
= o o 1
Loup-1="¥ (70, = M) ¥ + o [(0,®)? — m*®?]
= - 1
—gUPY + g, Uy (wu + W) ¥ — im%v(w;u + Wu)Q
1 2 1 4 1 v
- Z,\% ~ = S — 1P Fou
I -
+5 [6,(0,@)2 — 6m*®?] + ¥ [i6yy"Dy, — 6M| @
- 1 1 1
— g0, BT — va? = quf* +ot) - 0 FF
= 1
— Gulg, TV (wp + W)W — 55“,,(% +W,)?
7Y+ + Jy® + JFW, 4 (@ +v),

(10)

(13)

(14)
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where g, g, and A are the renormalized Yukawa couplings, and the terms

Op = Zy — 1, bp=24—1, 6,=2,-1, (15)
M = ZyMy — M, 6m? = Z¢m§ ~m?, om¥, = Z,m2 - m¥, (16)
8 = Z4 — 1, Og, = Zg, — 1,  r=2x—1, (17)

oM (5777,2 (5m
Zo=14+—, Z = —. 18
g + M ) G — ( ‘IZ ( )

The renormalization conditions for the self - energies
(k) =Z(k) + M — ekt (Zy — 1) = Z(k) + 6M — 8,4k, (19)
(k) =II(k) + 6m? — k*(Zy — 1) = TI(k) + 6m? — 6,k2, (20)
M (k) =T1, (k) — gudmdy — (kuk, — k2g,,)(Z., — 1) (21)
- IW(A) 9#1/6m%1’ - 6w(kuku - kzguu)a

where &, 11, flp,, are “unrenormalized” self-energies the (spinor) fermion, scalar meson and vector

meson, respectively, and in (18) we introduced
- Z
B =kt — g, e WH, 22
w2 (22)

The renormalization conditions are imposed on the self - energies as follows

0% -
Sk = pn) =0, (F = pn) =0, (23)
ok
oIl | . y
(k* = u3) =0, ok = 1g) =0, (24)
. oIl
2 _ 2 - HY 02 2y Ie
HFW(A - #w) =0, WU" = #’w) =0, (20)
here uuy, g and p, are the renormalization points.
The set of Dyson equations for propagators take the form
S =, & 8,005, (26)
G =G, + GLlIG, (27)
D,, =Dt + DL I DY, (28)
where
kDM (k) = (29)
g my, + om2,
koM (k) = — k¥6miy,, K IM(k) =0 (30)
2.2. The equation of motion for scalar and vector mesons
From the Lagrangian (1), one gets
0L by
5% [Z¢,D ¥ (m¢ ¥ 6m¢)] ®=Jy=7—18,, (31)
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where
0L _
o= e T
‘55314 7 I 27 (4 2 2 3
iBy = % — = gZ, ¥ + A°Z5 (209" + v° + ®°),
and
oL
= Z,0+ (m? + 6m2 wt = J4 = —jb + 455,
dwy
where
25 y - oLer
b =WH(mpy, +omiy) = SR
0L
B -
155 = SWH = 9uZg, VY.
Eqs.(31) and (34) determine “unrenormalized” source J, and JE. The conditions
(FI®|F) =0,  (Flw*|F)=0
imply
Jo = 4p — 18y =10, —JE =38 —iS5 =0
or, equivalently
BB, i
—JF = WH(mdy, + omiy,) — = ZJ Jg =0,

where Ji; = (p, jp) is the baryon current in the medium

6mM

1 (1+55)
g "\/ + 177-H/ ],Ll . &—.J“

W = J¢ —
Zy (m}, +6m2,) B p2vB

2.3. The free real-time Green’s functions in momentum space
1. Scalar propagators in the real-time formalism are defined as

GIH(k, t, ) =G2 (k,t,t)0(t — ') + G5 (k, 1, £)0(t' - t),
G (k, t, ) =G2 (k,t, Y8 — t) + G5 (k, 1, t)8(t — 1),
Gyt (k,t,t) =G (k,t,t),
G (ke d,t) =Gk, 1, 1),

G2 (k,t,t) -—z/ Jre T (B(x, 1) (0, t))

:-227{[1+n3(wk)]c_i”k(t )t g (wy) et }
k

Gk, t,t) :i—/dgxe e ((0,1)B(x,1))

i —dwp (E—t) Jwy (t—t")
2wk {nB( k)e” +[1 +np(w)e }

where wp = Vk? + m?, and np(w) = c—gj—‘_l is the Bose - Einstein distribution.
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2. Fermion propagators (zero fermion chemical potential) are defined by

Sk, t,t') =52 (k,t,£)8(t — ') + SZ(k, t, t)6(t — 1), (47)
“(k £, 1) =82k, 1, £360 — ) + 5[k t.£)8(t— ), (48)
> Tk, t, 1) =57 (k, t, 1), (49)
o (kt,t) =55 (k, ¢, 1), (50)
Sk td)=—1 /dSIe—ikx (¥ (x,t)¥(0,t))
= = 521 (%8 = 7k + M) 1~ mp (@) e ) (51)
+ (1@, + 7k = M)ngp(@)ex= |
55064, =i / Pae (5(0, )0 (, 1))
2; {(’y B+ 7k — M) np (@ )e i@kt (52)

+ (Yoor + 7k — M) [1 — np (@) Cia;k(g_t’)}

where @y = vk? + M2, and np(w) = g;,v}-ﬁ is the Fermi - Dirac distribution.

These free propagators given in Egs.(45), (46) and (51), (52) are thermal because the initial state in
chosen to be in thermal equilibrium and the interaction in assumed to be turned on adiabatically.

3. The renormalized effective diracequation

We aim our effort at the relaxation of inhomogeneous fermion mean field ¢(x,t) = (¥(x, 1))
induced by external source that is adiabatically switched on at t = —cc. At usually, the fermion fieid
is shifted by

UE(x, 1) = ¥(x,t) + oF(x, 1), (53)
with (p*(x,1)) = 0.
3.1. The Initial Value Problem The effective real time Dirac equation for the mean field of momentum
k reads

[(£7°8% — 7k = M) + 8y (i7°0: — k) — ua] ¥ (k, 1)

: o (54)
- [ dtmi -0y utt) = a0k,

where 9; = %, Y(k,t —t) is the retarded fermion self - energy and
T(k, 1) = / Bre= 1y (x, 1) (55)
The source is taken to be switched on adiabatically from ¢ = —o0 and switched off at ¢ = 0 to provide

the initial condition
U(k,t=0)=¥(k,0); Yk i« 0=, (36)
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Intreducing an auxiliary quantity x(k, ¢ — t") defined as
Yk, t—t) = Oux(k,t—t), (57)
and imposing n(k,t > 0) = 0, we obtain the following equation of motion for ¢ > 0

(170, — vk — M) +6y (i7°0 — vk) = x(k, 0) — dar| Wi (t)
t (58)
+/ dt’){k(t — tf)‘lfk(tl) =0,
0

This equation of motion can be solved by Laplace transform as befits an initial value problem. The

Laplace transformed equation of motion is given by

[i7°s — vk — M + 8y (i7°s — vk) = épr — x(k, 0) + sx(s, k)] ¥ (s, k)

o e oo (59)
= [17° +16p7° + x(s, k)| ¥(k, 0),
where - -
\ir(s,k)z/ dte "W (k, t); i(s,k)z/ dte™* x(k, 1), (60)
0 0
with Res > 0.
We can write y(k,t —t') as
x(ket — ) = dy"x Ok, t — 1) + vkl t ~ 1) + 3P, t - 1), (61)
A straightforward calculation leads to the ultraviolet divergences
Z A M, A g A
1) (k I 1=, xP(k,0) = ~ L in=, 3O, k) = Tin— 62
XO,0) & gEtn” 3k, 0) 2~ gt X6, 1) = fgin, (62)

where v (s, k), (i = 0,1,2) are the Laplace transform of x()(k,t), A is an ultraviolet momentum
cutoff, w is an arbitrary renormalization scale.

From Eq.(59), one gets

2 A ¢*M, A -
[iv"s — vk — M+40y4i7v°s — Syvk — dnr — fykg—ln— In— 4 sx(8; k)]\ll(s, k)
L T

1672 812 (63)
= (9% + i6yp7° + X(s, k)] ¥ (k, 0).
The counter-terms &, and dp; are chosen as
) g
A M, A
6y = — 1gﬁ2m; + finite, 6pr = 87T ln’u + finate, (64)
and the components of the self-energy are rendered finite
x(k,0) + vkdy + dpr =finite,
(k,0) v (65)

X (s, k) + i7°6y =finite.
3.2. Renormalized effective Dirac equation

Hence, we obtain the renormalized effective Dirac equation in the medium and the corresponding
initial value problem for the fermion mean field

iv°s — vk — M — Z(s, k)| T(s, k) = [i7° + %(s, k)] ¥ (k, 0). (66)
Compare with (59), it is easy to derive the form of (s, k)
5 (s, k) = x(k,0) — s¥%(s, k), (67)
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This is the Laplace transform of the renormalized retarded fermion self-energy , which can be wriitten
in its most general form

%(s, k) = iv°s8 0 (s, k) + ykéW (s, k) + MEP (s, k). ((63)

The solution of Eq. (66) is given by

) s
B(sk) = - {1 +5(s, k) [«/k + M+ 50, k)] } Uk, 0), ((69)
where S(s, k) is the fermion propagator in terms of the Laplace variable s
. -1
S(s,k) = [mos — k= M - 5(s, k)]

s {1 - E0(s, k) — vk [14+ 6N (s, k)] + M [1 + £ (s5,k)]} ((70)
s2 [1 = EO(5,1)]* + k2 [1 4 £D(s,K)]* + M2 |1 + &0 (s, K)]*

The square of the denominator in eq.(70) is being
det [mos k= M - 5(s, k)] . ((71)

The real-time evolution of W(k,?) is obtained by performing this inverse Laplace transform in. the
complex s-plane along contour parallel to the imaginary axis.

The denominator can be rewritten in the form (w? — w? — P(w, k)), where

Plw,k) =-2 [wgs(o)(w, k) + k2eM (w, k) + M2®)(w, k)}

1 ((72)
=51 [("°w — 7k + M) £(w, k)] .

It is just the lowest order term of effective self-energy imaginary part of I’(w, k) evaluated on: the
fermion mass shell.

4. Quantum kinetic equation for fermion in QHD - I

Let us denote the distribution function for fermion of momentum k and spin s by n, x(t). Siince
for a fixed spin component the matrix elements for transition probabilities are rather cumbersome., we
study the spin - averaged fermion distribution function as ng(t) = 3 3 flsx(t).

For a small departure from thermal equilibrium, one can approximate (®2) and (W?) by their therrmal
equilibrium values

&k
(9°) :/mnzz(wk)a ((73)
31.
(W?) = 6 (WFWY) =6, Q—:ylg-u;n%”(wk). ((74)

To two - loop order, the Feynman diagrams that contribute to the kinetic equation is shown in Figg.]
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The kinetic equation can be derived directly basing on [6]

d _ o [ d*q &y —kq-— M?_ _
—ng(t) = m¢ , Ol + Wy — W
dt () . / (27)3 20040k Wp (@ 0~ )

< [n(p) (1= (1)) (1 = g t)) = (1 4 na (1)) (1) (1) (75)

+ [()'Wn‘;'/(wp) (1 —nx(t) (1 = ng(t)) — (1 + 6unty (wp)) ik (H)Rg (1)) },

where p = k + q.

i f
7 ® N\t kv t t” k t
-’ig\_/-?ig — 19,7 —1gu7"

f f

Fig. 1. The Feynman diagrams contribute to the kinetic equation for fermion’s interaction
up to two loop order. The bold solid line is the fermion propagator S,
the only solid line is the scalar propagator G and the dashed line is the omega propagator I,

It is easy to find that the above equation has an equilibrium solution given by 7. (t) = np(@x)
for all momentum k

np(t) = np(@g) + one(t), (76)
where f—;'t% << 1. Retaining linear terms in 67, (¢t) from Eq.(75), one obtains the equation for
onk(t)

%5ﬁ,k(t) = —T'(k)nk(t), (77)
where I'(k) is the interaction rate, whose inverse characterizes the time scale for the fermion distribution
to approach equilibrium [11]

dq @piw, — kq — M?
(k) =mg’ - Ok + @g — wp
( ) g f(zﬂ)g QJ)thkwp (S(UJk +(JJ(] (.d‘,)

x {[”B(Wp) = nF(@q)] T [5/11/7173‘/(“)19) + nF(@q)]}

=) +
gm2T [ AMZ\ | 1= e Pt 78
= — [ 1—- In - (78)
16 ki, m?2 1 4 eFva
7=q~
.
g*m2T AM2Y | 1— e P@gtan) |7
| ] = In = )
167k, m%v 1+ e=Poq =
q=qyy
where
B 2 12
L m 2M ,_ 4 M
=—|k{1l—-—"—" |+ f(E24+MH[{1- 7
LEEYYE ( m? ) \/( Pl ( m2 /|’ (79)

m2 2M? 4 M2
g =3 k(l— 2>j: (k2+M?)(1— 2), (80)

myy
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with ¢ € (¢7,¢%), gw € (ay, 43) are the support of § (@x — wy + @) for fixed k.

The kinetic analysis is implemented directly in real-time and clearly establishes the relation
between the interaction rate in the relaxation time approximation and the damping rate of the mean
field.

5. Discussion and conclusion

In the above mentioned sections the real time formalism was used to study the fermion propagator
in the matter modeled by the QHD-I model. It could eventually be used in other problems and non
equilibrium processes in the medium of finite density and temperature.

We have presented and solved the renormalized effective Dirac equation by Laplace transform. The
formulation of the initial value problem yields unambiguous separation of the vacuum and in-medium
effects. We obtained the kinetic equation for fermion in the QHD-I model, including the fermion’s
interaction with the neutral scalar and vector mesons. The fermion distribution in non equilibrium
is investigated. It is proportional to the interaction rate, whose inverse characterizes the time scalar
for the fermion distribution to approach equilibrium. Our next paper is intended to be devoted to the
quantum kinetic equation for scalar, pseudoscalar and vector meson in the QHD.II model.
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