VNU. JOURNAL OF SCIENCE, Mathematics - Physics. T.XIX, Ng1 - 2003

FORMALISING PRIORITY CEILING PROTOCOL
WITH DYNAMIC ADJUSTMENT OF SERIALIZATION
ORDER IN REAL TIME DATABASES

Doan Van Ban
Institute of Information Technology
Nguyen Huu Ngu
College of Science, VNU
Ho Van Huong

Governmental Cipher Department,

Abstract. In this paper, we apply a formal model of real time database systems us-
ing duration calculus (DC) to give formal specification of the Priority Ceiling Protocol
with Dynamic Adjustment of Serialization Order (PCP-DA) and a formal proof for the
correctness of the PCP-DA using the DC proof system. We devise a worst case schedula-
bility analysis for PCP-DA which provides a better schedulability condition compared to
R/WPCP. We then show that the number of priority inversion for transactions scheduled

by PCP-DA may be more than one in a multiprocessor environment.

1. Introduction

In recents years, a lot of reseach work has been devoted to the design of database
systems for real time applications. A real time database system is defined as a database
system when transaction are associated with deadlines on their completion times. In
addition, some of the data items in a real time database are associated with temporal
constraints on their validity [5,12]. Example applications include systems for avionic and
space, air traflic control, robotics, nuclear power plants, integrated manufacturing, stock
trading, and network management.

The main goal of this paper is to formalise some aspects of RTDBS, in particular
PCP-DA using DC. This will allow us to verify the correctness of PCP-DA formally using
the proof system of the DC. We shows that the number of priority invérsion for transactions
scheduled by PCP-DA may be more than one in a multiprocessor environment. We make
use of duration caleulus because DC is a simple and powerful logic for reasoning about
real time systems, and DC has been used successfully in many case studies, for example
(6,8,9,10,13], we will take it to be the formalism for our specification in this paper.

Our approach is summarised as follows: We apply a formal model of RTDBS pro-
posed by Ho Van Huong and Dang Van Hung (9] to specify and verify the Priority Ceiling
Protocol with Dynamic Adjustment of Serialization Order. The paper is organized as
follows: we give an informal abstract description of RFDBS and PCP-DA. Section 3 intro-
duces a review of DC. Section 4 presents a fomalization of PCP-DA in DC and a formal

Typeset by AMS-TEX

2 Doan Van Ban, Nguyen Huu Ngu, Ho Van Huong

proof of correctness of this protocol in section 5. Section 6 shows the Blocking of PCP-DA
in Multiprocessor Environment.

2. Preliminaries

We briefly recall in this section the main concepts of RTDBS and the integration
of concurrency control with priority scheduling, which will justify our formal model given
in later sections. We refer to [5, 9,12] for more comprehensive introduction to RTDBS.

A real time database systems can be viewed as an amalgamation of conventional
database management system and real time system (5. In RTDB, the transactions not
only have to meet their deadline, but also have to use the data that are valid during
their execution. Many previous studies have focused on integrating concurrency control
protocols with priority scheduling in RTDBS [5,12].

For example, the Read/Write Priority Ceiling Protocol (R/WPCP) is an extension
of the well-known Priority Ceiling Protocol (PCP) [12] in real time concurrency control,
adopts Two Phase Locking (2PL) in preserving the serializability of transactions execu-
tions. However, R/WPCP is too conservative in scheduling transactions to access the
shared data, resulting in unnecessary blockings.

Therefore, some studies (e.g., [3,11,12]) employed the notion of dynamic adjustment
of serialization order. For example, the Priority Ceiling Protocol with Dynamic Adjust-
ment of Serialization Order (PCP-DA) [11] shows that a higher priority transaction can
preempt a lower priority transaction on data conflicts by using the notion of dynamic
adjustment of serialization order, avoiding unnecessary blockings. The goal of designing
their new protocol is Lo give critical transactions high priority in accessing the shared data
so that they can complete their executions as soon as possible. The fewer the transaction
blockings, the better the schedulability conditions for a transaction set. By dynamically
adjusting the serialization order among conflicting transactions, PCP-DA allows a higher
priority transaction to preempt uncommitted lower priority transactions while it prevents
lower priority transactions from being restarted even in the face of data conflicts.

3. Duration calculus

The Duration Calculus(DC) represents a logical approach to formal design of real
time systems. DC is proposed by Zhou, Hoare, and Ravn, which is an extension of real
arithmetic and interval temporal logic. We refer to 7 for more comprehensive introduction
to Duration Calculus.

We give now shorthands for some duration formulas which are often used. For
an arbitrary state variable P, [[P]] stands for (f P = £) A (¢ > 0). This means that
interval is a non-point interval and P holds almost everywhere in it. We use [[]| to
denote the predicate which is true only for point intervals. Modalities {, O are defined
as: O D=true™ D true,

OD=-=D (we use = as a define). This means that ¢ D is true for an interval iff
D holds for some its subinterval, and OD is true for an interval iff D holds for every its
subintervals.

Formalising Priority Ceiling Protocol with Dynamic Adjustment of ... 3

DC with abstract duration domain is a complete calculus, which has a powerful
proof system. Here we give only some rules and axioms that will be used later in this
paper.

(ITL1)(Monotonicity)4 = B+ (A"C = B~C) A(CTA = C™B)
(ITL2)(Associativity)(A~™B)~C = A™(B™C)
(ITL3)(Unit)(A™[[) <= ([T74) < A

(ITL4)(Zero)(A™ false) <= (false™A) <= false

(ITLS) (2 2 0Ay 20) = (((=2 +y) & ((t=2)"(¢=Y))).

Forward Induction: Let #(X) be a DC formula schema containing the proposi-
tional letter X, and let P be any state expression.

If H([T) and H(X) FHX Y (XT[PT) V(X [-PT)

then H(true).
Backward Induction: Let H(X) be a DC formula schema containing the propositional
letter X, and let P be any state expression.

1f H([T) and H(X) FH&X V ([PI7X) v (T-PT| 7 X))

then H(true).

Using the proof system, we can easily prove the following theorems which will be used
later. Below, z and y are assumed to be non-negative real numbers.

Dt [PIP] <= [1P]]
DC2 PN ATQN <= [P AQ]
DC3 [P A [ATTBY <= ([TPT A TAT)~(TPT A TBT)
4((:c>y/\£=x/\”5ﬂ))
= (8T AL=y)"[sT))

4. Formalisation of Priority Ceiling Protocol with Dynamic Adjustment of
Serialization Order in RTDB

In this section, we adapt a formal model of Real Time Database System (RTDBS)
using DC [9] to specify PCP-DA.

As presented in section 2, PCP-DA is an extension of the well-known PCP in real
time concurrency control. PCP-DA use dynamic adjustment of serialization order to
redefine the semantics of the write/read conflicts between two transactions.

4.1 Formalisation of PCP-DA

In order to formalise the protocol, for each i, < n, z € O, we introduce no-
tations as follows. Let W PL(z) be constants and PN € N denote the set of priority

1 Doan Van Ban, Nguyen Huu Ngu, Ho Van Huong

numbers, T;.Rlocked — data , T;.NoRlocked — data, T;.sysceil be temporal variables.
In addition, we use some state variables below T;.request_lock(z), Ti.request_riock(z),
T;.request_wlock(z), T;.wait_rlock(z), Ti.wait_wlock(z), T;.hold_lock(x), T;.hold_rlock(z),
T;.hold_wlock(z), T;.committed, T;.period, T;.run, T;.ready which be specifed in [9] for
our model.

The write priority ceiling W PL(z) of data object z is equal to the highest priority
of transactions which may write .

W PL(z) = max{pi|z € WO;,i < n}.

T;.NoRlocked — data denotes a data object z that is not being read-locked by
transactions other than Ti when T; requests to lock z at time ¢.

T;.NoRlocked — data € [Time — 20]
T;.NoRlocked — data(t) = {x | =T}.hold_rlock(z)(t),T: # Tj}.

T;.Rlocked — data denotes a data object x that is being read-locked by transactions other
than 7; when T; requests to lock z at time ¢.

T.Rlocked — data € [Time = 2°)
T;.Rlocked — data(t) = {z | T.hold rlock(z)(t), T; # T;}-

T;.sysceil denotes the highest write priority ceiling of data objects read-locked by trans-
actions other than T at time ¢.

T;.sysceil € [Time — PN]|
T;.sysceil = 0 if at time ¢ object x is neither read-locked by
some transactions.

T;.sysceil(t) = max{W PL(z)(t)z € T;.Rlocked — data(t)}.

T* denotes the transaction holding a read-lock on a data object z whose write priority
ceiling is equal to T;.sysceil.

T* € [Time — 27]
T*(t) = {T.hold_rlock(z)(t) | WP L(z) = Ti.sysceil}.

WO* denotes the write set of T*.

A transaction T; is allowed to read-lock or write-lock a data object z if one of the
locking conditions is true.

Condition 1: T; requests a write-lock on z and z is not being read-locked by other
transactions at time ¢.

LC1= (T;.request_wlock(z)(t) = 1) A T;. NoRlocked — data.

Formalising Priority Ceiling Protocol with Dynamic Adjustment of ... 5

Condition 2: T; requests a read-lock on x and 7}’s priority is higher than the highest write
priority ceiling of data objects read-locked by other transactions.

LC2= (Ti.request_rlock(z)(t) = 1) A (ps > Ti.sysceil).

Condition 3: T; requests a read-lock on x and 7;’s priority is higher than the highest
priority of transaction that may write z and z is not in the write set of 7.

LC3= (T).request_rlock(z)(t) = 1) A (ps > WPL(z)) Az € WO*.

Condition 4: T, requests a read-lock on x and T,’s priority is equal to the highest priority
of transaction that may write & and 2 is not being read- locked by other transactions and
2 is not in the write set of T*.

LC4= ('I].reqlucsl_rlm'k(f)(t) = 1) A(p; = WPL(z)) AT,.NoRlocked — data Az ¢ WO*.

When a transaction 7; attempts to lock a data object z, T; will be blocked and the lock
on an object & will be denied, if onc of the locking conditions is false. Therefore, the
blockedby state expression is:

T;.blockedby(T,)=(LC1 = false) V (LC2 = false) V (LC3 = false) V (LC4 = false).

Using the framework presented above, we present DC formula schemas for specifing PCP-
DA. First, the formula schema for the preemptive priority scheduler is presented the same
way in [9,10] as follows:
Let HiPripep-pa(T:,T;) be 2 boolean-valued function for denoting which trans-
action between T, and T, has a higher priority.
(a) HiPripcp-pa is a partial order:
N HiPripcp_pa(T.T;) = ~HiPripcp-pa(Ty,T)))
TAT,€T
< HiPripep-pa(Ti, Te) A HiPripep_pa(Te, T;))
TAT #ThET = HiPripcp_pa(T:, Tj)
(b) HiPripcp-pa depends on the priority inherited by transactions:
(Ty .blockedby(T;))
nenener \ = (HiPripep_pa(Te,T;) = HiPripcp-pa(Ti, Ty))
)\ (=Tx.blockedby(Ts))
TeET
TATET \ = (HiPripcp-pa(Ti,Tj) = pi > p;)

The first formula expresses that when a transaction 7; inherits the priority of transac-
tion Ty, if HiPripcp-pa(Ti.T;) then HiPripep-pa(Ti, T;). The second formula shows

6 Doan Van Ban, Nguyen Huu Ngu, Ho Van Huong

that if a transaction 7; does not inherit any priority, then the relation HiPripcp-pa is
consistent with the original assigned priorities.
The preemptive priority scheduler can be expressed as:

pps= N\ o(Tirun]] A ([Tjready]] = [HiPripcp-pa(T:, T5)T).
Ti£T;€T

The Granting rule for PCP-DA can be expressed as:
Granting Rule used to decide if the lock data object requested is granted or not.

[[=T:.hold lock(z)]| ~ [[1;.hold_lock(z)]]
er= A Ao
retzeo \ = ((LC1 = true)V (LC2 = true)V (LC3 = true)V (LC4 = true))
The blocking rule for PCP-DA can be expressed as:

Blocking Rule used to decide whether a transaction is blocked on its request for
a lock data object or not.

Bi= /\ /\D

(((LC1 = true) vV (LC2 = true) V (LC3 = true)V (LC4 = true)))
TeT z€0 .

= [[~T;.wait_lock(z)]|
Then, the unblocking rule can be specified as:

Unblocking Rule used for deciding which among the blocked transactions is to
be granted the lock data object.

UnBiZ AD(U

[[T;.wait_lock(z) A Tj.wait_lock(z)]| ™)
TAT,€T 260

—T;.wait_lock(z)]] = HiPripcp_pa(Ti, Tj)
By combining these formula schemas together, the scheduler, PCP — DA, is obtained:
PCP — DA = (SERIAL ANPPS AGr ABL AUnBI).

For serializable condition, it has been proved in [11] that all executions of the
transactions system produced by PCP-DA are serializable i.e PCP — DA = SERIAL.

Properties:

The properties for the PCP-DA are blocked at most once and deadlock free like
R/WPCP, BAP in (9,10], we have:

BAO = N\oO([T\/ Tihold lock(z)T = [[A\ ~Tiwait lock(z)T)),

T €0 z€0
DLE 20~([N\ (Ticommitted v Tyavait lock(z)) A \/ \/ Tiwait lock()T)).
T.€T z€0 T:€T z€0

4.2 The schedulability condition of PCP-DA in RTDB

For schedulability condition, it has been proved in [14] that a set of n periodic
transactions using rate tonic priority assi t under R/WPCP can always meet

Formalising Priority Ceiling Protocol with Dynamic Adjustment of ... 4

their deadlines if the following conditions are satisfied: Y7 Ci/P, + B/ P; is no greater
than n(2'/™ — 1). Where B, denotes the worst case blocking time of transaction 7;.

It can be easily scen that the above schedulability conditions were also applicable
to PCP-DA. The schednlability condition for a transaction set depends on the value of
B;. The smaller the value of B, is the better the schedulability condition.

We now determine the value of B; in PCP-DA and compare it with that in R/WPCP
as follows.

In PCP-DA, since write operations are preemptable, only read operations of lower
priority transactions may block the write operations of higher priogity transactions. A
transaction T}, with a priority (p..) lower than p; may block 75 if T}, Temds a data object
z such that WPL(z) > p,. Hence, we can use BT'S; denotes the set of transactions that.
may block 7; (i.e a set of transactions with priorities lower than p, that may read a data
object z such that WPL(x) > p.. We have

BTS, = {1}, | pi, < p. and T, reads « and W PL(x) > p;}.
On the other hand, R/WPCP, as shown in [11] has BT'S;:

BTS, = {11 | pr < p. and (T}, reads = and W P L(x)
> p, or Ty writes © and APL(z) > pi)}

For both PCP-DA and R/WPCP, the worst case blocking time of transaction 7; is
determined as follows:

B, 2max{CL|T}, € BT'S;,i <n},

where (', denotes the excution time of 7. It can be observed that BT'S; in R/WPCP
is a superset of that in PCP-DA. If the worst case blocking time B; occurs in R/WPCP
when T, writes x and AP L(z) > p;, the value of B; can be reduced in PCP-DA because
Ty, will not be included in BT'S; in PCP-DA.

Let C! = C; + B,. For above conditions, we can formalise the schedulability condi-
tion for PCP-DA as:

(ENV NUsys APCP = DANYCr /P < n(2V/™ - 1))
i=1

= (/n\('l’.'-period = (/ Tyrun > C7)))

i=1

where SNV A Usys are the set of the formulas to capture the axioms for the state variables
introduced in a formal model of real time database systems in [9]. With limmited space
no detailed specify is included. We refer interested readers to (9] for details.

8 Doan Van Ban, Nguyen Huu Ngu, Ho Van Huong

5. Formal proof of the Priority Ceiling Protocol with Dynamic Adjustment of
Serialization Order

In this section, we will show how we can use a formal model of real time database
systems which proposed by Ho Van Huong and Dang Van Hung [9] to prove properties of
PCP-DA are blocked at most once and deadlock free and the schedulability condition of
PCP-DA.

In order to prove this properties, we need to make a distinction between a transac-
tion being in the preempted state and blocked state. We make the assumption that while
a transaction is preempted by a higher priority transaction, it is not blocked.

MTirun]) "1 V (Tyrun Ap; > p))

Ty#T€T
NB= Ao e
TiAT;€T 2€0 = [[Tirun]) [/\ ~T;.wait_rlock(z)]]
€0

We need to give definitions as follows:
Definition 1 ASS = PCP - DAAENV A Usys.
Definition 2

Rpcp-pa(Ti,z) = /\ (/\ (T}.hold_rlock(z) V Tj.hold_wlock(x:))
T;£Ti€T 2€0

= (LC1 = true) V (LC2 = true) V (LC3 = true) V (LC4 = true)).

5.1 PCP-DA is Deadlock Free

We prove this property by contradiction.
Theorem 1 NBAASS + DLF.
Proof the Theorem 1

(1)-0- (ﬂ /\ /\ (T:.committed V T;.wait_lock(z)) A V \/ T;.wait_lock{z)]]
T,€T z€0 TET €0 (Assidne)

/\ /\ [[(T;.committed v T;.wait_lock(z)) | A
TE€T z€0

(2)¢ (ITL)
V V [[T:.wait_lock(z)])
T.€T z€0
/\ (I V T;.wait lock(z)]]
@)oo hel =0 (PCP — DA, ENV)
=\ V 7;holdlock(z)T)
Ty€T z€0

TV V T.hold lock(z)T|

T.€T z€0
4o

=V (A ~Twait lock(z) A \/ Ti.hold lock(z))T] ((3), BAO,ITL)
T.€T z€0 z€0

Formalising Priority Ceiling Protocol with Dynamic Adjustment of ... 9

A (T Tiwait tock(z)T]

®) T.eT z€0
5
=\ (N ~Tywait lock(z) A \/ T}.hold lock(z))T]) ((3), (4), PL)
T,€T r€0 r€Q
/\ /\ ([T, .committed v T;.wait_lock(z)]]
o (@), (), PL)
A \/ ﬂ/\ =Tiwail_lock(z) A V Ty.hold_lock(z)])
T.ET 2€0 €0
(¢ (v \/ [[=7 avait_lock(x) A T;.hold_lock(x) A (Ti.committed v T,.u'ait_lock(z))ﬂ)
T.€T 2€0
((6), PL)
() false {(7), ENV, PL)
(9) DLF ((1), (8), PL)
o

5.2 Blocked at most once of PCP-DA

The property of PCP-DA where a transaction is blocked at most once can be ex-
pressed as follows:
Theorem 2

NBAASS + BAO

Proof the Theorem 2
We prove this by induction: First, assume:

H(X)=SX A V T;.hold lock(z)]] = H/\ =T;.wait_lock(z)]]

z€0 z€0

T=NBA ASS

Base case:

cER(T
= TNATY Tihold lock(x)T]
€0

= [\ ~T.vait lock(z)]] (false)
€0

= /\ =T,.wait_lock(z)]| (ITL)
z€0

= true (ITL)

10 Doan Van Ban, Nguyen Huu Ngu, Ho Van Huong
For the inductive step, we must establish:

D, H(X) - H(X V(X [[Rpep-pa(Ti, &)]1) V(X [~Rpcp-pa(Ti, 2)1)))-
We now consider two cases:

LT, H(X) F H(X " [[Rpep-pa(Ti,)TN),
2. I, H(X) - H(X ™ [[~Rpop-pa(Ti, 2)])-

Case 1:
H(X) FH(X T [Rpep-pa(Th2)]))
= X~ [[Rpcp-pa(T,2) AT\ Ti.hold lock(z)T]

z€O
= (XA V T;.hold_lock(z)1])
€0
“(TRpcp-pa(Ti, @) AT/ Tihold lock(z)T]) (DC3)
z€0

= [\ ~Tiwait tock(@)| (T Rpcp-pa(Ti)| AT\ Tihold lock(z)T)

2€0 z€0 (H(X))
= [A\ ~Tiwait lock(@)|~[[A\ ~Ti.wait lock(z)])

z/g\o o z/e\o e (PCP-DA, Def2)
= [\ ~Ti-wait lock(z)]. (DC1)

€0
Case 2: The proof this case can be done the same way as above and it is omitted here.
5.3 Proof Theorem: The schedulability condition of PCP-DA

In this theorem, we only need to consider the interval [0, P»], where as we recall,
P, is the largest period. An important concept used in Liu and Layland’s informal proof
is that of full ufilisation of the processor. They merely stated that the processor is fully
utilised if any increase of the required execution time C; will cause the scheduling to be
infeasible. We give a precise and simple definition of fully utilisation.

Definition 3 Transactions Ty, Tz, ..., T, with required execution time Cy, C3,...
and periods Py, P3,...,Pn, are said to fully utilise the processor, denoted as Fu(CY,-
Ch Pry+ Pn), iff for any 0 < & < P, Y1 [¢/B]C; > 2. At any time point z,
Sr i[x/P]C; is the maximal requested execution time, and only when it is less than
x, the processor is idle. Therefore, F, implies that the processor cannot be idle in the
interval [0, P,), and therefore any increase of C} will clearly make transaction 7}, miss its
deadline, causing the scheduling to be infeasible.

Denote (C7, - C‘) by C* and (P, -+, P,) by P, we shall abbreviate F,(Ct, -,
C}, Py, ..., P,) as F,(C*, P). Similarly, let C*' denote (C{, ..., C'), P’ denote (P}, ..., P;),
we shall abbreviate I" ((" vy G2 Py sy Pr) 8s F (Y, P) and Fy(CY, ..., Gy, Py, ..., B})
as F,(CY, P').

Formalising Priority Ceiling Protocol with Dynamic Adjustment of ... 11

Definition 4 lub(n)= min{}""_, C7 /P, | F,(C*, P)}.
Lemma 1

lub(n) = n(2"/™ ~1).

The proof of this lemma involves many technical details, and it will be omited here.
It follows that lub(n) < lub(k) if k¥ < n, and using this property, we can prove the
schedulability condition of PCP-DA theorem.

Theorem 3

(ASS A Z(?,‘/P. < lub(n)) = (/\(’]‘,.periadﬁ /T..run >Cy)).

=1 i=1

Proof: For any 1 < 7 < n. The proof is by contradiction. Suppose that there exists
1 <k <n, £ = Py such that the above does not hold.

AS'S/\Z(/P < lub(n V (T pET‘LOd=>/Tk run > C})
k=1

= ASS A Z C* P, < lub(n) A \/ (Typeriod = / Tprun < CY) (PL)

k=1

AS‘S/\Z(" /P; < lub(n) A (€= P) A nV Ti.run])
i=1

<=

= (5.1) A(Ty.period = /Tk.run < C})

x
il

A((Tx-period = /

run = 0) V (Tk.period = /Tk run > 0))
(PL,Usys)

We can divide the proof into two cases according to (5.1). In the first case. There exit
Cy{' such that 0 < C¢’ < Cy; and

ASS A Z C}/P; < lub(n) A (Ty.period = / Ti.run < Cf)
@ .
A= P) A HV T,.run]] A (Tx.period = /7k run > 0)
=1
ASS A Z C? /P, < lub(n)
= . = (PL)
A= Pu) AT\ Torun]] A (Teperiod = / Tyrun = Cy')

i=1

12 Doan Van Ban, Nguyen Huu Ngu, Ho Van Huong

n

Stci/p < lub(n)
i=1
k
Z:z:Z/T,.run
>V0<z< P =
i ek (DC4,ITLS, Usys)
<Y lpIc + oy
i=1
~(l=PF-x)
n
S Ct/P < tub(n)
sv<z<P| T il
re < Y [a/RICE + G
=1
. §
> Ci /Py < lub(n)
= i=1 (Def of Fu)
AF(CY,-, Ciy, G Py P)
%
S 6P < tub(n)
=30<Cy<C -

Alub(k) < Y C7 /P + C}' [Py
i=1

= lub(k) < lub(n) (Lemma 1)
= (false)

This completes the proof for the first case. In the second case, we have
n
ASS A ZC.‘/R < lub(n)
=1
® .
A= P) A ﬂv Ti.run]| A (Tk.period = /Tk.run =0)
i=1

3°C; /P, < tub{n)
=

k-1
é=z=2/7;.mn
=1

SV0<z< P,y
(DC4, ITLS5, Usys)

k=1
< fpic
i=1

~(=Pc 1)

Formalising Priority Ceiling Protocol with Dynamic Adjustment of ... 13

= false

The proof this case can be done the same way as above and it is omitted here.

(4)(ASS A i C /P < lub(n)) A *-(/n\('['..prriod = [Tirun 2 CF)) = false
= i=1 / ((1),(2),3)

(5)(ASS A Z €7 /P, < lub(n)) = (]\ (T2 period = /T,,run >C) ((4))
=1

i=1

6. Blocking of PCP-DA in Multiprocessor Environment

We shall show in the following example that PCP-DA in a parallel processing envi-
ronment may result in a large number of priority inversion. A graphical representation of
the example PCP-DA schedule in multiprocessor environment is shown in Figure 1.

W_tockxt Un_ W_lockxt

R_lockx;

Figure 1: The example PCP-DA schedule in multiprocessor environment

Let system consist of four transactions 77, T2, T3 and Ty in a two processor environ-
ment CPU, and CPU, where Ty, Ty and Ty, T executes on CPU,, CPUsy, respectively.
Let the priority of 7y, Ty, T3 and 7T} be 1, 2, 3 and 4, respectively, where 1 is the highest
and 4 is lowest. Suppose that 7 may write data object zy and T3 and 74 may read from
data object z,. T, can read data objects z3 and z3. T3 can read and write data objects z2
and 24. According to the definition ceilings, the write priority ceiling W PL(z;) is equal
to the priority of 7', i.e., 1. The write priority ceiling W PL(z,) is equal to 5. The write
priority ceiling WP L(x3) is equal to 2.

At time 0, T arrives and starts execution on CPU,. At time 1, Ty read locks z;
successfully and sets T;.sysceil(z,) equal to WPL(z,)(=1). Since, the priority of 7} is
higher than T}.sysceil(z,)(=0) (LC2 is true). At time 2, T arrives on CPU,. The read
lock request of 75 on data object x5 successfully at time 3 and sets 7;.sysceil(z2) equal to
WPL(z3) (=5), because the priority of T, is higher than W PL(z) and z; ¢ WO(T3)(LC3
is true). At time 4, 7 unlocks z;. At time 4, T3 arrives and starts execution on CPU;.
At time 5, the read lock request of 73 on data object z; is granted and sets 7T;.sysceil(z;)

14 Doan Van Ban, Nguyen Huu Ngu, Ho Van Huong

equal to WPL(z,) (=1), because the priority of T4 is higher than T;.sysceil(zz)(= 5)(LC1
is true). However, read lock of T3 creates a priority inversion for 73 at time 6 when T3
issues a read lock request on data object z3. It is because the priority of T is not higher
than T}.sysceil(z,) (= 1)(LC1,LC2 is false) and 23 € WO(T3)(LC3, LC4 is false). The
read lock request of T3 on data object z3 can not be granted until 73 and T; unlock z,,
although T3 may inherit the priority of T, when the blocking happens at time 6. We
must point out that if T3 later tries to issue another read-lock on some other data object
after at time 12, then 7 may another priority inversion again if some other lower priority
transaction happens to have read-locked z; at that time. The above example shows that
the number of priority inversion for transactions scheduled by PCP-DA may be more than
one when there are more than one processor in the system. It is definitely not acceptable
for many time critical systems. Therefore, we should improve PCP-DA to be suitable for
a multiprocessor environment.

7. Conclusion

In this paper, we apply a formal model of real time database systems in previous
our work to specify and verify formally the Priority Ceiling Protocol with Dynamic Ad-
justment of Serialization Order in Real Time Databases using the proof system of DC. We
devise a worst case schedulability analysis for PCP-DA which provides a better schedu-
lability condition compared to R/WPCP. We show that the number of priority inversion
for transactions scheduled by PCP-DA may be more than one in a multiprocessor envi-
ronment. These frameworks can be used in the future for specifying many other issues of
RTDBS, we easily can specify and verify for a set of the concurrency control protocols in
RTDBS.

Acknowledgements. The authors would like to thank Dr. Dang Van Hung for
his kind helps.

References

—

. Doan Van Ban, Ho Van Huong, Duration Calculus and Application. Proccedings
of Hanoi University of Sciences, National University of Vietnam, Nov, 2000.

. Doan Van Ban, Ho Van Huong. A Formal Specification of the Read/Write Priority

Ceiling Protocol in Real Time Databases. Proccedings of National Information

Technology, Hai Phong, June, 2001.

Doan Van Ban, Ho Van Huong, Serializability of Two Phase Locking Concurrency

Control Protocol in Real Time Database. - Jounal of Computer Science and Cyber-

netics, No 3(17), 2001.

4. Doan Van Ban, Nguyen Huu Ngu, Ho Van Huong, Concurrency control protocol
in Real Time Databases. Proccedings of Institute of Information Technology, Nov,
2001.

. Azer Bestavros, Kwei-Jay Lin and Sang Hyuk Son. Real-Time Database Systems:
Issues and Applications. Kluwer Academic Publishers, 1997.

. Philip Chan and Dang Van Hung. Duration Calculus Specification of Scheduling

[

@

=3

Formalising Priority Ceiling Protocol with Dynamic Adjustment of ... 15

o

o

©

for Tasks with Shared Resources UNU/IIST Report No. 44, UNU/IIST, P.O. Box
3058, Macau, June, 1995.

M.R. Hansen and Zhon Chaochen. Duration Calculus: Logical Foundations. Formal
Aspects of Computing, 1997, 9:283-330.

. Dang Van Hung. Real-time Systems Development with Duration Calculus: an

Overview. UNU/IIST Report No. 255, UNU/IIST, P.O. Box 3058, Macau, June,
2002.

. Ho Van Huong and Dang Van Hung. Modelling Real-Time Database Systems in

Duration Calculus UNU/IIST Report No.260 , UNU/IIST, P.O. Box 3058, Macau,
August, 2002.

. Ho Van Huong. A Formal Specification of the Abort-Oriented Concurrency Control

for Real Time Databases in Duration Calculus. Jounal of Computer Science and
Cybernetics, No 1(16), 2003.

. Kwok-wa Lam, Sang H.Son, Sheung-Lun Hung, and Zhiwei Wang. Scheduling

Transactions With Stringent Real Time Constraints. Information Sytstems, 2000,
25(6):431-452.

. Kam-Yiu Lam and Tei-Wei Kuo. Real-Time Database Systems: Architecture and

Techniques. Kluwer Academic Publishers, 2001.

. Ekaterina Pavlova and Dang Van Hung. A Formal Specification of the Concurrency

Control in Real Time Database UNU/IIST Report No. 152, UNU/IIST, P.O. Box
3058, Macau, January, 1999.

. Lui Sha ,Ragunathan Rajkumar and John P.Lehoczky. A Real Time Locking

Protocol. IEEE Transactions on computers 40(7):793-800, 1991.

