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Abstract. Let X be a topological Hausdorff space. For each k € N, by Px(X) we
denote the set of all probability measures on X, whose supports of no more than k points.
Then probability measure functors Py preserve some topological properties: compactness,
regularity, contractiveness...

I. Introduction

In [2] Fedorchuk introduced the concept of probability measure functors with finite
supports and proved that these functors preserve the ANR-property of compact metric
spacess Therefore by Torunczyk’s Theorem [4] they preserved the topology of Q-manifolds.

In this paper we study the action of probability measure functors on topological
spaces. Our results show that numbers of topological properties are preserved under
action of probability measure functors.

II. Probability measure with supports

Let X be a topological Hausdorff space. A probability measure with finite supports
on X is a function p: X — [0, 1] satisfying the conditions:

Suppy = {z € X : p(z) > 0} is finite, (1)
Z plz) =1 (2)
26Supp

foreach k € N. Let Pc(X) denote the set of all probability measures on X, whose supports
of no more than k points. Then every p1 € P (X) can be written in the form

q
p=y mide, g<k,
i=1

where 8, is Dirac function, that is

0 ify#z
6:(y) =
w {1 ify=z

q
and m; = p(z;) >0, Zm, = 1. m; called the mass of u at z;.

i=1
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Fedorchuk [2] introduced a topology on Pr(X) as follows:
q
Each point pg = Z 1!1?(\,4‘1 € P4( X) has a neighborhood of the form ()(yu, Uy, Uy, ... Uqg, E).
where € > 0, Uy, Uy, ..., U, are disjoint neighborhoods of 29,29, . .. ,r‘q' respectively (note

that U, can be taken from a fixed basic of topology of X). We have

O{po,Ur,Ua, ... \Ug, e

q+1
{]L €P(X): p= zun Suppp C Uy,

i=1

m =l <&, i=1,2,...,9+1;
q

U = X\ |J Ui, my, = 0}.
=1

Observe that g, is not necess:
Tt i
of Pe(X).

ily a probability measure, because in general ||| # 1.
sy to sec that the family {()(p. Uyl ,l/q,.s)} forms a basis of topology
This topology is called Fedorchuk topology.

III. The results

Our aim is to indicate topological invariants preserved under the action of Px. The
following example shows that not every topological invariant is preserved under the action
of probability measure functors.

3.1. Example. Let X be discrete space having more than one point, then Pi(X) is not
a discrete space for every k > 2.
Proof In fact let ), 29 € X and define G(z;,z2) by the formula

Gy, wa) = {pp = myde, +mgbe, :my +my =1},

Then it is easy to see that set
5 . L
Gxy, m) = A p € Gyxy, ) 1 p =My, +maby, 1my < 3

is closed but not open in £%(X) for every k > 2. Therefore /(X)) is not discrete space.
Thus the discrete property is a topological invariant which is not preserved under
the action of Px. However, we shall see that the functors Py preserve plenty of topological
invariant.
Namely, our results ar¢ the following.

3.2. Theorem. Let X be a topological HausdorfF space. Let Px(X) denote the space of
all probability measures whose supports consist of no more than k- points equipped with
the Fedorchuk topology. Then

( 1) Pe(X) is Hausdorfl space :

( 2) If X is completely regular then so is P(X);

( 3) If X is separable then so is P(X);



2 Ta Khac Cu

( 4) If X is compact then so is Pu(X):

( 5) If X is contractible then so is Px(X);

( 6) If X homeomorphic to Y then Pi(X) is homeomorphic to Px(Y):
( 7) If X path connected then so is Pe(X);

( 8) If X satisfies the first axiom of countability then so does Pi(X);

( 9) If X satisfies the second axiom of countability then so does Pi(X).

4. Proof of the results

Proof of (1). Let p,p' € Pi(X) with p # p'. Write p, g in the forms

» q
=3 mibe, 4=y mid, pq <k
i=1 i=1

We consider two cases:
Case 1

Suppy # Suppy'.

Without loss of generality we may assume that x; # z}. Since X is Hausdorfl space we
can choose a neighborhoods U, of z;, and U] of z such that U, NU{ = 0 and I/,N1/, =0
ifi#jij=1,.,pandU/NU;=0ifi#ji,j=1,.4q.

Let = < %min{m],1n2,...,7n,,,m’l,.4.,m;). Let us

0 =0(u,Uy,Us,... ,U,,,s),

O = O\ U, Us,... \Ube).

We shall show that 0N O’ = §.
In fact, if it is not the case then there exists

pweono.
Since p* € O(u, Uy, Us, ... ,Up, ), we have

P41

w=" e, Supp CUs, [fmll = mif <e, i=1,2,.p+ L. (1)
=1
On the other hand, since p* € O(p', U}, U3, ... ,Uj,¢), p* can be written in the form
P!
. ' , , , ' - .
po= Z“I' Suppp; C Uj, [yl =mj| <€, j=1,2,...,q+ L (2)
=1

Since Uy NUJ = @ for j = 1,2, ..., g, it follows that

Supppy C Supppigy ;-
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Therefore
sl < NIl < & (3)

On the other hand from (1) we have
[l > my — €. (4)

From (3) and (4) we get
my —& <eorm <26

Since € < }ml, we have m; < %mp a contradiction.

Case 2

Suppp = Suppy’.

Since p # p/, there exists at least an index i such that m; # m;. Without loss of generality
we may assume that my # m].

Let € < ﬂm; —m}|> 0, and choose disjoint neighborhoods U; of i, i =1,2,...,p
and put

O =0{u,U1,Us, ... ,Upe),
s Ol UL 0 U2

We shall show that ONO’" = 0.
In fact, assume on the contrary that O N Q' # @. Then there exists p* € ONO'.
Since p* € O, we have

Pt
pt=3" e, Suppps C U, [flpll —=mal <&, i=1,2,p 4 L. (5)
=1
On the other hand since p* € (', we infer that
P+l
Bt =3 m, Suppu, C Ui, |l - mil <&, i=1,2,.,p+ 1. (6)
=1
From (5) and (6) we get
fmy —mi| = |y = flall + | = ma] < Jme = o]+ i) = i
1 1
=2 Z|m1 —-mi|= §|m1 —mj|.
“This contradiction shows that
ono'=0.

Therefore (1) is proved.
Proof of (2) Assume that X is completely regular and let

»
o=y ml,0 € P(X),

i=1
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and let
0= 0(po, U1, Uz, ,Up,e)

be a neighborhood of 19, where € > 0. We shall show that there exists amap F : Pr(X) —
[0, 1) such that
F(uo) = 1 and F(Pu(X)\ 0) = 0. )

We may assume that ¢ < mm{m,,,mz, MMy } Since X is completely regular, for every
i=1,2,...,p there exists a map f; : X —= [0, 1] such that

fi(a?) =1land fi(X\U) =0, i=1,2,...p. ®)
Define f; : Pi(X) = [0,1)i = 1,2,..., p by the formula
ZmJ/-(Iz) for p= Zm;5x, € Pi(X) and
=1 (9)
/m(u) =1 for every p € Pe(X).

Let V, = (mQ —e,m +¢), i =1,2,..,p and let ¢; : [0,1] = [0, 1] be Urynsohn function
satisfying the conditions

ei(m?) =1 and ([0, 1]\V =0 forevery i=1,2,...,p and

(10)
ep+1(0) =1, gpri(le, 1)) =0.
Observe that for every u € Py(X) we have
p+1
p=
=1
P
where p, = ply, i=1,2,..,p+1, Upsy = X'\ U U .
=1
Define F: Pi(X) = [0,1] by the fcrmula‘
= ~
Fu) = =TT ea(lmll) Fi(e), (1)
=1

where m = m} - ~~m2.
Since ¢,, f;, 1 = 1,2, ..., p+1 are continuous functions, we infer that F is contimious.
It is easy to see that

F(u) € [0,1] for every p € Pe(X).

Observe that
P+l 14
Fluo) = — H% 9)fi (o) = ;H
_ m?n-mg i
Tmfeemg T
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Pl

On the other hand if y = Z[A, ¢ O(po, U, ... T, €), then there exists an index

i< p+ 1such that |m® — [|,]|| > =. If i < p then by (10) we have ¢,(||pm[]) = 0.

From (11) we infer that F(u) = 0.

Ifi=p+1 then |- > = Therefore from (10) we infer that @, (l1p—1]}) = 0.
Consequently from (11) it follows that F(u) = 0. Therefore (2) is proved.
Proof of (3). Now we shall prove the separability of Px(X).

Let A= {x,,}:;l be a countable dense subset in X.

Put

»
Q= peli(X): p= md,,, p <k, z; € A and m, rational
=Y

=1
»
numbers with Z m; =15%.

=1
It is easy to see that @ is countable. It remains to prove Q is dense in Pe(X).
»
Let po = Z m?ﬁ,g € Pi(X) and let O(po,Ul, ....U,,5> be an arbitrary neighbor-

=1
hood of pg. Choose z; € U; N A for i = 1,2,...,p and rational numbers m, such that

0<md—m < ——i=1 1
<m;-m, W+ i p+
and
p—1
my=1— Zm‘
=1
We shall show that
b
= Zm, 62, € O{po, Uy, ..., Up,e } neQ.
=1

Obviously i € Q. Observe that z; € U, i =1,2,...,p and

(i§m?77n.< <g i=1,2,...,p-1.

£
2(k +1)
For i = p we have

o | p-1 |
|nl,,—-nL2|: I—E m,vmg m?—Zm‘—mg =
=1 i =1 i

p=1 | P}
- 0 _ iyl 0 _ g e
= [Xm = m) < 3 = mi) < gy <

Morever

P p-1 =l
Zm, = zm‘- + (1 —Zm.‘) =1,
i=1 i=1 i=1
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It follows that p1 € O{po, Uy, ...,Up,€). Therefore Q is dense in Py(X) and (3) is proved.
Proof of (4). Let {u,,}ael 5 wherc I is a directed set, be an arbitrary net in Px(X). Hence

»
= mide.
=1

Since X is compact, we may assume that for every i = 1,2,...,p there exists a subnet
z:?" —zifori=1,2,..p.
By the compactness of [0,1], we may assume that m® — m; for i = 1,2,...,p

Therefore »
Hay = =Y My,

i=1

Observe that 5

zm, = thm = hmZm =

=1 i=1
Consequently p € Pe(X ) and hence P(X) is compact.
Proof of (5). Now we assume that X is contractible. Then there exists a map ¢ :
X x [0,1] = X such that
(i) ¢(x,0) =z forevery z € X;
(ii) ¢(z,1) =a forevery z € X,a € X is a fixed point.
We define a map ® : Pi(X) x [0,1] = Pe(X) by the formula

P 3
B(p,t) =P (Zmﬁx‘,i) = Zm‘éw(f‘_l)
=1

i=1

»
for every p = Z"HE:, € Pp(X).
=1
Then we have
B, t) € Pi(X),
for every p € Py(X),

P
(11,0) = Y mibp(e,0) = Zm‘ v =

=1
and
P »
(1) =D Ml = Y mube = 18, € Pu(X).
i=1 =1
It is easy to see that @ is continuous and therefore Py (X) is contractible.
Proof of (). Assume that X is locally contractible.
»

Let po = Em?&,g € Pi(X) and let O(uo,(ll,.w!/,,,e) be a neighborhood of

i=1
po- By the local contractibility of X, for each i = 1,2, ...,p there exists a neighborhood
U? € U, and map

et UD % [0,1) = Us
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such that

(z.0)=z forevery z€U?,

R

e 1) =a} forevery z¢€U?, where z; € UL

Denote @21 (2, t) = z for every z € X and ¢ € [0,1]. Put

P

€
/19:2#1?6,? and o“:(}<,‘0.1_}9 ..... Ug,,z(k—“))

i=1

Obviously O ¢ 0.
Define £ : 0% x [0, 1] = O by the formula

p1

Fu,t) = Z Z m, b, (z;,t)

=1, et?

q »
for every p = 211116 € 0° where !I,?YI =X\ U UP. Tt is easy to sce that

1=1 =1
F(u,t) € Opo, Uy, ey Upy£).
Observe that

p=1 Pl

»
F0) =373 mda(a,0) =Y Y myde, =Y m=p
=1 r;eU? i=1z,€U? =1
-1 pel
K =5 Y moe =5 3 m | 6,
=1 r,el? =1 \z,eu?
Pl
Therefore, denoting m; = Z m, and p* = Xm"d,: we obtain
7,€U0 =1

F(p,1)=p" €0

Therefore P(X) is locally contractible. This proved (6).

Proof of (7). Since X is homeomorphic to Y there exists a homeomorphism f: X — Y.
»

For every = Zm,é,‘. we define F(yz) by the formula

=1

P

F(p) = 211116/(1‘).

=1

It is easy to show that /" is a homeomorphism and (7) is proved.
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Proof of (8). Assume that X is path connected. Let
q
=y md,, € Pu(X),
=1

a
=Y miby, € Pi(X).

=1
Since X is path connected, for each i = 1,2, ..., ¢ there exists a map
g0 =z , @(l)=uy.

For every i = 1,2,...,q, let f; : [0,1] — [0, 1] be a map

O =mi , fi(l)=n.

Tet .
mi(t) ,q_fﬂ)v
S
i=1
fori=1,2..4q.
We define F : [0,1] = Pu(X) by the formula
q
Zm, o)
i=1

4
It is easy to see that F is continuous and Zm.(t) =1 for every t € [0,1]. Therefore

=t
F(t) € P(X).
Observe that

q ]
F(0) = Zm.«n&g.(m = an;( =,
Zm‘(l ﬂ‘“).-z:n 8y, = 2.

Therefore Px(X) is path mxme( ted.
Proof of (9). Let po = Zm 0,0 € Pi(X). We have to show that pg has a countable

basis of neighborhoods. Sinm X satisfies the first uxiom of countability for every z? € X,
there exists a countable basis of neighborhoods of ¥, denoted by (U }, i=12,.
We put

1 n
= o<uo.u,".,.,.u;. ;> e NUre{Ur}.
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It is easy to see that {()”} is countable b of neighborhoods of 19 and (9) is proved.
Proof of (10). Finally we mne that X satisfies the second axiom, infer X is separable
(see [1]). Thus by (5) Px(X) is separable
Let 8= {On}._, bea countable basis of X and {1}
Denote

be a dense set of Pi(X).

oo
n= m=1

oL = U<u,,..h’;‘.,...u;1> n,me N.
n

It is casy to see that {O]; }7:_":l is countable basis of topology of Py(X) and the theoren

is proved.
4.1. Corollary. If X compact metric space then Pr(X) is compact metrizable.

Proof. By (4) Pi(X)is compact. Being a compact metric space, X is separable. Therefore
by (3) Pe(X) is separable.
Therefore Px(X) is compact metrizable space.
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