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ANALOG OF “ABC” CONJECTURE FOR
P-ADIC HOLOMORPHIC FUNCTIONS
Nguyen Thanh Quang, Phan Duc Tuan
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Abstract. By using the Wronskian technique we proved the theorem, which is an analog
of “abc” conjecture for p-adic holomorphic functions.
Keywords: "abc”-conjecture, p-adic entire function.

1. Introduction

Let f(z) be a polynomial with coefficients in an algebraically closed field F' of
characteristic 0 and let 7(1/f) be the number of distinct zeros of f. Let us start by
recalling Marson's theorem :

Marson’s theorem. (see [4]) Let a(z),b(z),c(z) be relatively prime polynomials in F'
and not all constants such that a + b= c. Then

max{deg(a),deg(b),dcg((:)} < i(;}(}) -1

Influenced by Marson’s theorem, and considerations of Szpiro and Frey, Masser and
Qestrelé formulated the “ abc ™ conjecture for integer as follows:

"abe” conjecture. Let g be a non-zero integer. Define the radical of q to be

v()=Tl»

rla

i.e. the product of the distinct primes dividing q. Given € > 0, there exists a number C(¢)
having the following property. For any non-zero relatively prime integers a,b, ¢ such that

a+b=c, we have .
max{}a[,|b],|cl} < C(()N(i) .

Julie Tzu-Yuen Wang in (8] also gived a generalization of function fields version of
abc-conjecture due to Mason, Voloch, Browanawell and Masser.

In (2], Hu and Yang shows that the analogue “abc”conjecture for one variable non-
Archimedean holomorphic functions is true. In (7], An and Manh proved a similar result
for non-Archimedean holomorphic function in several variables. In this paper by using
the Wronskian technique we give a lization of the Hu and Yang’s theorem in p-adic
case.
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2. The main results

Let p be a prime number, @, the field of p-adic number, and C, the p-adic com-
pletion of the algebraic closure of Q,. The absolute value in @, is normalized so that
lp| == p~!. We further use the notion v(z) = —log|z| for the additive valuation on C,
which extends ord,,. We first recall some standard notations and definitions in-p-adic
Nevanlinna theory. Let ¢ = i be a meromorphic function on C,. The counting function
of ¢ is defined as following N(<p t) = N(f,t) ~ N(g,t), where N(f,t) is counting function
of holomorphic function f (see [lj)

The following results ate well-known in p-adic Nevanlinna theory.

Lemma 2.1. Let ¢,v be meromorphic functions on C,. Then

N(p +¢,t) < max {N(f,t), N(g,t)} + O(1)
N(py,t) = N, t) + Ny, t),

where O(1) is bounded when t — —co.

Lemma 2.2. Let ¢ be a meromorphic function on C, and let k be positive integral
number such that ¢*) # 0. Then

ol
N(T,L) <kt40(1).

Note that we use some notations and definitions of p-adic Nevanlinna theory as in
[1]. Recall that for every entire function  we use the notation Ni(f,t) to denote the k-
truncated counting function. The necessary properties of counting functions can be found
in [1]. Here we will use the symbol N(f,t) to denote Ny (f,¢).
Theorem 2.3. Let fi, f2, .., fa (n > 3) be entire functions on C, without
common zeros on C,. Assume that fy, fa, ..., fu_y are linearly independent and fi +
fo+ -+ fn=0. Then

1<5<n

max N(f;,t) < (n» *> ZN(/} —Mt +0(1),

where k := min #{f; : [;(a) =0} and O(1) is bounded as t — —oo.

a is a zero of some f;

Proof. We set,

P(z)
and ifof
NP 1fofn
UL It
where
| f foo oo fam
|8 & « B

1, fayoee s Sl = ; .
fl(n‘—Z) fz(n‘_z) f(vi-lz)
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is the Wronskian of function fi, f2,... , fa-1.
By the hypothesis fi,f2,...;fan—1 are linearly independent, we have
| fi, f2,- -, fa=1ll # 0. On the other hand, from the equation

fitfat ot fa=0,

we obtain
[far fags- - s fan il = 8l 1 f2r ooy Sl (8= £1),

where ay,az,... ,an_; are the distinct numbers of the set I = {1,2,... ,n}.
We first prove that

M@ < (n- ’“—*3) L0

Indeed, let a be a zero of Q(z). Then a is a zero of some f;. By the hypothesis the
functions fi, f2, ..., f» have no common zeros, there exists a number ig, (1 < ig < n) such
that fi,(a) # 0. Let ay,0,... ,an-1 be (n — 1) distinct numbers of the set I'\ {ip}, we

S fifoeet -
et iy
S i il A v
s s gy S
SR A Sy
Now we have
I 1 1 f’l
fa £ an 1
B Tons
Rz)=| . .
N =)
| o for T fan |

This determinant is a summa of following terms

(n—2)
(TR
fooofina’
where 1 <1iy,...,i,2 < nand y = £1.
We set g := #{f; : f;j(a) =0}. Then g > k. Assume that for every term in (1),
there are ! functions f; such that f;(a) = 0. Then we have the following inequalities

: (n=2)
%) + - tordy (f—j_—;‘"’; )
-n-2)-(n=3)--=(n-1-1)

“Y)-(-3) - -(a-1-9)

n-q—;—:})qz—(n—¥)q,

oy 1)
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where ord,(f) is the order of f at a.
It follows that
1 (n-2) q
avey [Tt Yo f R4SV,
foeofinsy 2

orda (R() > - (

Hence

Therefore

k4
orda (Q(2)) = —orda (R(2)) < (n = %5) L.
Consequently from the definition of the counting function, we have
: k+3) =
@< (n-552) S

Now, we will show that
NP < &)E"'—lﬂ +0(1).

Indeed, we have

I 1 T
e & 7 fs
| A J2 /nfl
P(z)=| . :
Fin ey /(n 1) ‘
i 2 T
This determinant is the summa of the following terms
f(" 2)

/j_’l‘# 3= +1).

e Al

For every term, from lemma 2.2, we obtain

e I (n-2)
N[ In-2 = I In-2
(f! "> v () +N</," . t)
St+2t+--+(n—-2)t+0(1) =
_(n=2)n-1)
= t+0(1).

By the lemma 2.1, we still have

N(P1) < ("—‘%LUHO(H.
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Therefore inequalities (2) and (3) imply that
N(P,t)+ N(@Q,t) < (n - —> Z N(fi,t) #"‘—)(1~—)n +0(1).

Thus, we have

N(fn,t) = N(PQ,t) = N(P,t) + N(Q,t)
& (n— ——)ZN fit) ¢—1+O(1).

Therefore, similar to fy, f2,..., fu—1 we conclude that
n
- (n -2)(n—1)
s (N0 < (2= 550) SR+ Bk o).

This completes the proof of the theorem.
By theorem 2.3 we have the following corollary, which is another statement of Hu-
Yang’s theorem ([2]).

Corollary 2.4. Let a(z),b(z),c(z) be entire functions on C, and without common zeros
and not all constants such that

a(z) + b(2) = c(z).
Then
max{N(a,t), N(b,t), N(c,t)} < N(abe,t) + ¢+ O(1).
Proof. Indeed, it suffices to take in theorem 2.3, fi = a(z), f2 = b(2),
fi=c(z), k=1 and n =3, we obtain
max{N(a,t), N(b,t), N(c,t)} < N(a,t) + N(b,t) + N(c,t) + t + O(1).
On the other hand, we have
N(a,t) + N(b,t) + N(c,t) = N(abc, ).

This completes the proof of our corollary.

By using theorem 2.3, we give a generalization of Borel's lemma in the p-adic case
(see [6]).
Corollary 2.5. Let fi, fa,..., fa, (n > 3) be holomorphic functions without common
zeros on C,, such that

Rtlot st fa=0.

Then the functions fy,fa,...,fa—y are linearly dependent over C, if, for
.,n, every zero of f; is of multiplicity at least d; and the following condition

1
Zd‘ k;a'

g=1
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where

k= min #{f;: f;(a) = 0}.

a is a zero of some f;

Proof. We have N(f;,t) > d;N(f;,t). Therefore

whence

Then by theorem 2.3, we have

max {N(5,0) < (n— %) ZN(f], )+ wuom

j=1

Therefore

<l~t X ) vt < B o),

=1

we obtain a contradiction as t — —oo.

n
; 1

By hypothesis E E; o
3=1 2

Definition 2.6. Let M; = z;’ -z ;‘1*‘ 1 € j < s be distinct monomial of degree d
with non-negative exponents. Let X be a hypersurface of degree d of P"(C;) defined by
XM+ 4c,M, =0,
where ¢; € C are non-zero constants. We call X a perturbation of the Fermat hypersurface

of degree dif s >n+1land M =2¢, j=1,...,n+ 1
Theorem 2.7. Let X be a perturbation of the Fermat hypersurface of degree d in P*(C,)

such that
s
dz(s—u) ntlt > ki,
j=n+2
where k:=minicmenst #{a;,, >0:5=1,...,s},

and lc,::#{a,"_>0:m=1,..,,n+1},]=n+2,4..,s.
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Then every holomorphic curve in X is degenerate.
Proof. Let f = (f1,f2,... , fa+1) : C, = P"(C}) be a holomorphic curve in X. Then
Myof+- +Mupof+Mpsp0f+--+Mof=0.

We first claim that Mjo f, 1 < j < s —1 are linearly dependent over Cp. Assume that
they are linearly independent over Cp. Then by using theorem 2.3, we have

max N (Mo f,t)< (s——)ZN(M o f,t)+ (_“2);_"_’.)”0(1).

1<5<s

On the other hand, we have

N(Mjo f,t)=N(fi,t) =dN(f;,t),(j=1,... ,n+1).

For j=n+2,...,s we still have
s n+l
N(Myofit) =N (. foi ) = 3N (Y
< (an +-+ag,) Km(M(N(fm, =

=d_ max N(fm,t).

1<m<n+1
Therefore
max N(Mjof,t)=d _max_ N(fm1).

1<7<s 1<m<n+1
Moreover, we have <
N =Nt (G=1,...,n+1),

and
N pmr) s Y Fimt)
r<sEnt
a0
<ky, max N(fmt), (G=n+2,9).
From the above it follows that
ZN(M,of,L)< n4+l4 Z ki) | max N(fmt) <
P araio <m<n+
< (u+1+ Z k]) (8K N (fms)-
j=n+2
Hence
k43
< e
4, o, Mmt < (5= 55 )(”“* %k)laszx“’vﬂm

+ —-—(3_2)2(5_ Y4 oq).
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Therefore

(d— (s - kzﬁ) (n+l+ i k,)) 153‘12}‘“ N(fm,t) < Wt+0(l).

j=n+2

By the hypothesis d > (s - kzﬁ) n+1+ ij , we have a contradiction ast — —o0.
j=1

2.9 Example. Here we give a hyperbolic hypersurface in P3(Cj).
Xz 442 2 (n zgzgz4)d =0, d>4 (degX =4d > 20), t € Cj.

In the complex case, Masuda and Noguchi proved that if d > 6 then X hyperbolic ([5]).
Put k = 2, s = 5, ks = 4. Then.X satisfies the hypothesis of theorem 2.8 and every
holomorphic curve in X is degenerate. Therefore in p-adic case, by using Masuda and
Noguchi'’s method we prove that if d > 4 then X is hyperbolic.
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