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Abstract. A new procedure for calculation of the Morse potential parameters of hexag-
onal closed packed (hep) crystals has been developed using the energy of sublimation, the

compr ility and the lattice constant. The derived equation of state and the elastic
constants computed using the obtained Morse parameters agree with the experimental
ones. This shows that the Morse function can be applied validly to the problems involving

any type of deformation and of atomic interaction in the hep crystals.
1. Introduction

Morse potential is an anharmonic potential [1] which is suitable for describing the
atomic interaction and vibration in the crystals [2-9]. In X-ray Absorption Fine Structure
(XAFS) technique photoelectron emitted from an absorber is scattered in a cluster of
vibrating atoms (1, 2. This atomic thermal vibration contributes to the XAFS spectra
especially to the anharmonic XAFS [2 - 9] influencing on physical information taken from
these spectra. The parameters of this empirical potential are often extracted from the
experiment. The only calculation has been carried out for cubic crystals [10]. Its param-
eters have been used successfully for XAFS calculations [3-5,8] and agree well with those
extracted recently from XAFS data [11] using anharmonic correlated Einstein model [8].

The purpose of this work is to develop a method for calculation of the Morse poten-
tia] parameters of hep crystals using the energy of sublimation, the comprssibility and the
lattice constant. The obtained results are applied to the equation of state and the elastic
constants. Numerical calculations have been carried out for Zn and Cd. The calculated
Morse potential parameters agree with the experimental values [12]. The derived equation
of state and the elastic constants computed using the obtained Morse parameters agree
with the experimental ones [13]..

2. Procedure for calculation of Morse potential

The potential energy ¢(ri;) of two atoms i and j separated by a distance ry; is given
in terms of the Morse function by
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where a, D are constants with dimensions of reciprocal distance and energy, respectively;
o is the equilibrium distance of approach of the two atoms. Since ¢(r¢) = —D, is D the
disociation energy.

In order to obtain the potential energy of a large crystal whose atoms are at rest, it
is necessary to sum Eq. (1) over the entire crystal. This is most easily done by choosing
one atom in the lattice as an orgin, calculating its interaction with all the others in the
crystal, and then multiplying by N/2 , where N is the total atomic number in the crystal.
Thus the total energy @ is given by
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where r; is the distance from the origin to the jth atom. It is convenient to define the
following quantities

L=%ND;ﬂ:e"“’;r,=[m§+n§+l?]*a=Mﬂ, 3)

where m;,n;,1; are position coordinates of any atom in the lattice. Using (3) in (2), the
energy can be written

®(a) = LG? Ze—zaaM, _2LﬂZe—2rxaM,l ()
i 3 .

The first and second derivatives of (4) with respect to a are given by

a
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At absolute zero T = 0, ag is value of lattice constant for which the lattice is in equilibrium,
then ®(ap) gives the energy of cohesion,[d®/dala, = 0 , and [d?®/da?],, is related to the
compressibility [10]. That is,

®(ao) = Uo(ao), M
where ®(ag) = Ug(ao) is the energy of sublimation at zero pressure and temperature,
d®
&= #

and the compressibility is given by [10]
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where Vj is volume at T = 0, and kg is compressibility at T = 0 and pressure P = 0. The
volume per atom N/V is related with the lattice constant a by

— =ca’. (10)

Calculating the distribution of atoms in the cells we obtain ¢ = 2 for bee, ¢ = 4 for fec
and ¢ = ?}E for hep structure. Substititing (10) in (9) the compressibility is expressed by

1 1 [d® )
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Using Eq. (5) to solve Eq. (8) we obtain
PR L il (12)
=T, MyeTaatt;
From Eqs. (4, 6, 7, 11) we derive the relation
o—2aaM; _ —aaM;
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Solving the system of Eqgs. (12, 13) we obtain a,3 . Substituting them into the
second of Eq. (3) we derive ro . Using the obtained o, § and Eq. (4) to solve Eq. (7) we
obtain L. From this L and the first of Eq. (3) we obtain D. The obtained Morse potential
parameters D, a depend on the compressibility Koo , the energy of sublimation Up and
the lattice constant a . These values of about all crystals are available already [14].

3. Application to equation of state and elastic constant

It is possible to calculate the equation of state from the energy . If it is assumed that
the thermal part of the free energy can be adequately represented by the Debye model,
then the Helmholtz energy is given by [10]

F =& +3NkgTin(l — e ) — NkgTD (%‘7) . (14)
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where kp is Boltzmann constant, 8p is Debye temperature.
Using Egs. (14, 15) we derive the expression for presure P leading to the equation
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where ¢ is Gruneisen parameter, V is the volume. After some transformations the equa-
tion of state (18) is resulted as
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where
_Ww-Vv
=

z Vo = cad, R= Nkp, N = 6.02 x 10%. (18)
Hence, the equation of state (18) contains the obtained Morse potential parameters.

Elastic properties of a crystal is described by an elastic tensor contained in the
motion equation of the crystal. The non-vanishing components of the elastic tensor are
defined as elastic constants. They are given for hep crystals by [15].
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where
P = V2ro[109” (r3) + 169" (2r3) + 819" (3r3) + ...]
0= gm[sw"(rg) 43007 (202) + zﬁw"(&g) 4.
X = V2ro[+80" (r3) + 320" (2r) + 1120 (3r3) + ...]
Y = \/2/3ro[~20" (r3) + 169" (2r2) — 409" (3r3) + ... (20)
Z = V2rg 4P (r3) + 167 (2r3) + 12r5 ' U/(2r2) + ..
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=
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Hence, the derived elastic constants contain the Morse potential parameters.
4. Numerical results

Now we apply the above derived expressions to numerical calculations for hep crys-
tals Zn and Cd using the energy of sublimation [12], the comppressibility [16] and the

lattice constants [14], as well as, the values of 6 and D (97‘2) [17-19]. The obtained Morse
potential parameters are presented in Table I. The values of our calculated a agree well
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with the measured ones [12]. First application of our calculated Morse potential parame-
ters is to calculate the elastic constants. The obtained results for Zn and Cd are presented
in Table II in comparison with experimental values [13]. They show in many cases good
agreement. The second application of our calculated Morse potential parameters is to the
calculation of the equation of state of Zn and Cd. The calculated results are shown in Fig-
ures 1 compared to the experimental ones [12] represented by an extrapolation procedure
of the measured data. They show a good agreement between theoretical and experimental
results, especially at low pressure.

Table I. Morse potential parameters D, & and the related parameters B, L, r, of hep

crystals Zn and Cd in comparison with some experimental results [12].

Crystal B L(x 10"“eV) a (A" DeeV) (&)
Zn (Present) 117.140 5.11 1.7054 0.1698 2.7931
7n (Exp.[12]) 1.7000
Cd (Present) 330.500 5.04 1.9069 0.1675 3.0419
Cd (Exp.[12]) 1.9300

- 2
Table II: Calculated elastic constants (X 10 "N/m ) using the obtained Morse
potential parameters of hep crystals Zn and Cd in comparison with experimental

15

values [13].
Crystal Cu Cp Cis Css Cus
Zn (Present) 1.81 0.60 0.41 2.03 0.41
Zn (Exp. [13]) 1.64 0.36 0.53 0.64 0.39
Cd (Present) 1.51 0.50 0.36 1.67 3.55
Cd (Exp. [13]) 1.21 0.48 0.44 0.51 0.19
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Figure 1: Equation of state calculated by using our calculated Morse potential

parameters (solid line) compared to ex

tal results [12] (d

and Cd (” ). They show very good x'a‘greement especially at low pressure.

hed line) for Zn (9)
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5. Conclusions

A new procedure for calculation of Morse potential parameters, equation of state
and elastic constants have been developed. Analytical expressions have been derived and
programed for the calculation of the above physical quantities.

Derived equation of state Equation and elastic constants satisfy all standard condi-
tions for these values, for example, all elastic constants are positive.

Resonable b Icualted results and the experimental data show
the efficiency of the present procedure in calculation of parameters of atomic potential
which are important in the calculation and analysis of physical effects in XAFS technique
and in solving the problems involving any type of deformation and of atomic interaction
in the hcp crystals.
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