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Abstract. The ground field k is assumed to be infinite. We denote by K a field ex-
tension of k. Let * = (21,... ,Zn) be indeterminates and u an indeterminate, which is
considered as a parameter. The specialization of an ideal I of R = k(u)[z] with respect
to the substitution u — « was defined as the ideal I, which is generated by the set
{f(e,z) | f(u,z) € INk[u,z]}. The theory of specialization of ideals was introduced by
W. Krull. Krull has showed that the ideal I, inherits most of basic properties of I and it
was used to prove many important results in algebra and in algebraic geometry. In this
paper we introduce and study specializations of an inverse system of finitely generated
S-modules over directed set N and of its inverse limit. Some basic properties of special-
izations of inverse limits and of completion of modules by specializations are developed.

Introduction

The purpose of this paper is to give the definition of specializations of modules
which are inverse limits of a inverse system of finitely generated modules over directed set
N of all non-negative integers and to show that the preservation of the index of reduibility
of modules through specializations. First of all we fix some of notations that will be used
throughout this paper. The groundfield k is always assumed to be infinite. We will refer
to denote by K a fixed field extension of k. Let 2,... ,Zn O a1,... ,am, where Vo, € K,
will often be dnoted by  or a. Accordingly, the ring or field extensions k[z),... ,Za] or
k(ai, ... ,am) will be written k[z] or k(a), with evident variants of these designations. Let
u=(uy,... ,um) be a family of indeterminates. We denote by R and R, the polynomial
rings k(u)(z] = k(u)(@1,. .., Tn) and k(a)(z] = k(a)[z1,... ,zn]. In this paper we shall
say that a property holds for almost all a if it holds for all a except perhaps those lying
on a proper algebraic subvariety of K™.

The theory of specialization of ideals was introduced by W. Krull [4]. Following (8]
and [10] the specialization of an ideal I of a polynomial ring R = k(u)[z] with respect
to the substitution v — o was defined as the ideal I, generated by elements of the
set {f(e,x)| f(u,x) € INklu, ]} For almost all substitutions v — a, the ideal I,
inherits most of the basic properties of I. Using specializations of finitely generated free
modules and of homomorphisms between them, we developed in (5], [6], 7] the theory
of specializations of finitely generated modules, and we showed that basic properties and
operations on modules are preserved by specializations. So far we have concerned oursolves
only with specializations of finitely generated modules. We turn now to describe definition
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only with specializations of finitely generated modules. We turn now to describe definition
of specialization for modules which are not finitely generated. We also propose in this
paper to give the definition of specializations of modules which are inverse limits of an
inverse system of finitely generated modules over directed set N. For the purpose of present
paper, a more limited assumption of the ground-field k and the number of indeterminates
u; is used. Throughout this paper we shall restrict ourselves to the case k is an arbitrary
infinite uncountless field and m = 1.

This paper is divided into three sections. In section 1 we want to give the definition
of specializations of an inverse system of finitely generated S-modules over directed set N
and of its inverse limit. Here, some basic properties of specializations of inverse limits are
developed. Section 2 is devoted to the discussion of completion of modules by specializa-
tions. In section 3 we shall see that the index of reducibility of modules are unchanged
through a specialization.

1. Specialization of an inverse system of modules

We propose in this section to describe the definition of specialization of an S-module
which is an inverse limit of an inverse system of finitely generated S-modules indexed by
N of all non-negative integers.

Given a indeterminate u and a element a of an extension K of k. Set R = k(u)(z]
and R, = k(a)[z]. Let P be an arbitrary separable prime ideal of R. By [4, Satz 14|, Pa
is a radical ideal of R,. Assume that p is an arbitrary associated prime ideal of P,. For
short we will put S = Rp and S, = (Rq)p. We denote PS and pS, by m and m,. An
arbitrary element f € R may be written in the form

1= 285, ptu0) € ko, o) € ki \ 01

In (7], for any a such that g(a) # 0 we define f, := p(a, z)/g(a). For every element

I

a==
g

€S, f,geR, g#0,
we define an := fa/ga if ga # 0. Then a, is uniquely determined and belongs to Sq for
almost all a, (see [6]). First we will recall the definition of specialization of a finitely
generated S-module.

Let L be a finitely generated S-module. Let §* £+ §* —s L —» 0 be a finite free

presentation of L, where ¢ is represented by the matrix A = (a;;(u, z)) with a;;(u,z) € S.
Set A, = (ai;(a,z)), and the homomorphism

Pa: Sy — S,

is represented by the matrix A,. The specialization of L, which is denoted by L, is defined
as Lo = Coker ¢q,. '
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Let ¢ : L — M be a homomorphism of finitely generated S-modules. Consider a
commutative diagram

S Ny R en—Y

[er J"w lw
G —t Gy —— M —— 0,

where the rows are finite free presentations of L, M. There is an induced homomorphism
©a : Lo — M, which makes the diagram

(F)a =225 (Fo)a — La —— 0

Jena Jore Lo

(G1)a =22 (Go)a — Mo —— 0

commutative for almost all a. The homomorphism ¢, is called a specialization of ¢ :
L — M with respect to (¢,7), see [6]. To establish basic properties of specializations of
S-modules the following theorem is often used.

Theorem 1.1. [6, Theorem 2.2] Let 0 — L — M — N — 0 be an exact sequence
of finitely generated S-modules. Then 0 — Lo — My — N, —> 0 is exact for almost
all a.

The definitions of L, and of ¢ depend on the chosen presentations of L and M. From
Theorem 1.1 it follows that that L, and ¢, are uniquely determined up to isomorphisins.

Modifying the definition of specialization of finitely generated S-module, we can
give the definition of specialization of an S-module which is an inverse limit of an inverse
system of finitely generated S-modules indexed by N. Now we will recall the basic facts
about the inverse limits [1].

Let (L;)ien be a family of finitely generated S-modules indexed by N. For each pair
1,7 € N such that i < j, let fy; : Lj — L; be an S-homomorphism, and suppose that the
following conditions are satisfied:

(1) fi is the identity mapping of L, for all i € N,
(2) fin = fij o fin whenever i < j < h.

Then we have an inverse system (L;, fi;) over directed set N. An inverse system (L, fi;) is
called a surjective system if every homomorphism d; 1 : L;+; — L; is an epimomorphism
for all i € N, where diy) := fi; with j =i + 1, see [1].

We consider an inverse system (Ls, fi;) of finitely generated S-modules indexed by
N. By definition of specialization of a finitely generated S-module, there is a’ polynomial
ti(u) € k[u] such that if t;(a) # 0 then we have a specialization (L;)a; and there are
polynomials ;(u), ¢;(u), ti;(u) € k[u] such that if t;(a) # 0,¢;(a) # 0, £;;{a) # 0, then we
have

(Li)as(L;)a; and a homomorphism (fi;)a : (L;)a — (Li)a

for each pair 7, j € N with i < j. By Theorem 1.1, it is easy to show that if (Li, fij) isa
surjective system, then ((L;)a, (fi;)a) is also a surjective system. Basing on the fact that
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the set {ti(u),t;;(u) | i,j € N} is countable, and therefore the collection A of all solutions
of ti(u) = 0 and of ¢;,(u) = 0 for all 7, j € N is countable, one can obtain an inverse system
((Li)a, (fi;)a) over the directed set N for all a € k\ A # 0.

From now on, we shall say that the property 7' is true for almost a, that is, there
exists a countable set A such that T is true for all a ¢ A. But, for the sake of simplicity,
the phrase "for almost a” will be deleted in the proofs of all results.

Definition. Let (Li, f,,) be an inverse system of finitely generated S-modules over di-
rected set N. The invers: em ((Li)a, (fij)a) of finitely generated Ro-modules (Li)a
over the directed set N is called a specialization of (L, fi;), and it will be denoted by
(L fij)a- We call m (Li)a a specialization o[yxx_n L;, and denote by Ql“ Li)a.

i i

In the case, an S-module L is finitely generated, we can construct the inverse system
of the form (L, fi; : L — L is an identical map). There is L = yx_n L,and Lo = gn_n L,.
i

Thus, the above definition is of course an extension of the definttion in [6].

The definition of an inverse system ((L:)a, (fi;)a) of finitely generated S,-modules
(Li)a over the directed set N depends on the chosen presentations of L; and f;;. To show
that (L, fi;)a is uniquely determined up isomorphisms we need to define the specialization
of a homomorphism of inverse systems.

Let (Ly, fi;) and (M,, gi;) be inverse systems of finitely generated S-modules over
the same directed set N, and {g; : L; — M;} a family of homomorphisms which define
a homomorphism

¢ (L fi) — (Mo, g,)

such that there are commutative diagrams

P P O

l\") l'ﬂn
M; 2 M,
for all i, j € N with 7 < j. For almost a we have a family of S,-module homomorphisms
{(#1)a : (Li)a — (M,)a} and commutative diagrams
(B 2 (L)a
[ e1)a [ (eide
(My)a E22 (Moo,

Definition. Let (L, fi;) and (M;, gi;) be inverse systems of finitely generated S-modules
over the same directed set N, and {y; : L; — M;} a family of homomorphisms determine
a homomorphism ¢ : (L, fi;) — (M, gi;). We call the family of Sq-module homomor-
phisms {(#:)a : (Li)a — (M;)a} a specialization of ¢, and denote by ¢q.

Now we want to prove the main theorem about specializations of inverse systems
of finitely generated S-modules over the directed set N.
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Theorem 1.2. Let (Li, fi;), (Mi,gi;), (Ns, hi;) be inverse systems of finitely generated
S-modules over the directed set N. If the sequence

0 — (L, fi3) 5 (M3, 9i3) 2 (Niyhi) — 0
is an exact sequence, then the sequence
0 — (Lis fs)aa — (Miygis)a 22 (Ney hig)a — 0
is exact for almost .
Proof. Assume that the sequence
0 — (Li, fiy) 55 (Miy9i5) = (N hig) — 0

is an exact sequence of inverse systems of finitely generated S-modules over the same
directed set N. Then the sequences

0— Li 25 M, B N, — 0
are exact and the diagrams
0— L, & M B
0— L & M 5 N — 0
are commutative for all i, j € N with i < j. By Theorem 1.1, the sequences
0 — (La B (M) 26 (N)a — 0
are exact and by the above definition the following diagrams

0= (L)a W ) U Nga — 0
L (fis)a 1 (i)a 1 (hij)a
0—  (Lda 2 ) Y M. — 0
are commutative for all 7, j € N with i < j. Therefore the sequence
0 — (L fig)a 25 (Mo, gis)a 22 (Niy hig)a — 0

is exact for almost . As the immediate consequences of Theorem 1.2 we have some
following corollaries.

Corollary 1.3. Let (L;, fi;) and (M;, gi;) be direct systems of finitely generated S-
modules over the same directed set N. Let

@ (Li, fi) — (M;, gi5)

be a homomorphism. Then ¢, is injective (resp. surjective) if ¢ is injective (resp. surjec-
tive) for almost a.
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Corollary 1.4. Fhe specializations (Li, fij)a of (Li, fi;) is uniquely defined up to an
isomorphism.

The following proposition follows from applying Theorem 1.2.
Proposition 1.5. Let (L, fi;), (Mi,gi;), (Ni, hi;) be surjective systems of finitely gen-
erated S-modules over the directed set N. Set L = l& Li,M= l+1£1 M;,N = h‘}_l} N;. If the

sequence ) ' '
§ v
0 — (Li, fi5) 5 (Mi, gi5) = (N, hi) — 0
is an exact sequence, then the sequence
0— Lo — Mq — No — 0

is exact for almost .

2. m-adic letion by specialization

As an application, we shall restrict ourselves to the specializations of m-adic com-
‘pletion of modules. From now on the ground-field k will be assumed perfect.

Let L be a finitely generated S-module. We proceed to establish the fundamental
result about a specialization of the m-adic completion of L. Denote by L the m-adic com-
pletion of L and by (I:),, a specialization of L.Let Lobea specialization of L. The m,-adic
completion of L, will be denoted by i,: We shall see that completion and specialization
are commute.

Theorem 2.1. Let L be a finitely generated S-module. Then, for almost a, we get
La 2 (L)a.
Proof. By definition of the m-adic completion of L we have L = k—“-l L/miL. By

[6, Proposition 3.2 and 3.6], we have L,/m}L, = (L/m’L) for ever)y j € N. Let
dj4y ¢ L/m’*'L — L/mIL be the natural map induced by identity map on S. Then
(dj+1)a * La/mi Lo — Lo /m Lq is the natural map induced by identity map on S,
and (La/m) La, (d;41)a ),LS a specialization of (L/m7L,d;..). By Proposition 1.5, we get
(D)o = 14’3‘ La/m3, Ly = L, for almost a.

|

Corollary 2.2. Let L be a finitely generated S-module. Then, for almost a, we have
dim(L)a = dim L, and depth(L)q = depth L.

Proof. By [3, Corollary 2.1.8], there are di dim L = dim L and dim I, = dim Lq. In view
of Theorem 2.1, there is dim(L), = dim Lu Since dim Lo = dim L by [6, Theorem 2.6],
dim(L), = d.lmL The equality depth(L), = depth L will be proved in the same way as
in the proof above.
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Corollary 2.3. Let L be a finitely generated S-module of positive dimension. If L is
Buchsbaum, so is (L)q for almost a.
Proof. Assume that I is a Buchsbaum module. Then L is Buchsbaum by [9, Chapter 1
Lemma 1.13]. Since Lq is again Buchsbaum by [6, Corollary 3.8], La is Buchsbaum by (9,
Chapter 1 Lemma 1.13]. Hence (L), is a Buchsbaum module by Theorem 2.1.
Corollary 2.4. Let L be a finitely generated S-module. For almost ,

(L®s S)a ™ La ®s, 3:
Proof. There are L ®s 5 = L and Lq ®s. 9 L by (1, Proposition 10.13]. Since
(L®s 8)a 2 (L)a, we have (L ®s S)a X Lq ®s, Sa by Theorem 2.1.

3. Preservation of index of reducibility of modules by specialization

The present section will be devoted to proving the preservation of indexes of re-
ducibility through a specialization. The module Soc(L) = 0 : m is called the socle of
L. In [2], for an ideal q of S such that the length £(L/qL) of L/qL is finite, the indez of
reducibility of q relative to L is defined as

Ns(q, L) = dimg/m Soc(L/qL).
The type of L is defined as the number
rg(L) = sup{Ns(q, L) | q is a parameter ideal for L}.

We note that, for an m-primary ideal q, Ns(q, S/q) is the number of irreducible ideals that
appear in an irredundant irreducible decomposition of q. The following lemma shows that
the index of reducibility of q relative to L is preserved through specialization.

Lemma 3.1. Let L be a finitely generated S-module and let q be an ideal of S such that
the length €(L/qL) of L/qL is finite. For almost , we have

Ns(a, L) = N5, (da; La)-
Proof. By [6, Lemma 2.3 and Lemma 2.5}, we get (L/qL)q = La/qaLa. Then
(Soc(L/qL))a = (Or/qL : M)a 2 01, /quL., : Ma = S0c(La/daLa)-
Since the length £(L/qL) of L/qL is finite, by using [6, Proposition 2.8] we obtain £(La/qaLa) =

4(L/qL). Hence £(La/90Lo) is finite. Since Soc(L/qL) is a submodule of L/qL, the length
£(Soc(L/qL)) is finite. Because

{Soc(La/daLa)) = €(Soc(L/qL))
by [6, Proposition 2.8], there is Ns(q, L) = Ng, (9a, La) for almost a.
. Let H} (L) denote the ith local cohomology module of L with respect to m. Recall
that L is called a quasi Buchsbaum module if mH} (L) = 0 for all i # d = dim L. Put
K, = Homg(H3(L), E(S/m)),

where F(S/m) denotes the injective hull of the residue field $/m. This module K, is again
a finitely generated S-module and is said to be the canonical module of L, see [2].



Specialization of inverse limits 45

Lemma 3.2. Let L be a finitely generated S-module. For almost a, (Kp)a = KL,

Proof. By [6, Theorem 2.6], dim Lo, = dimL = d. Let r = dimS§ = dme Since S
and S, are reg\dar nngx they are Gorenstein rings. Therefore K7, = Ext3 %(M, S) and
Kp. = Ext3%(La, Sa) by Matlis duality. Since Exty "L, S)a Exty "(LQ,SO) by [6,
Proposition 3 3], we have (K)o = Ky, for almost a.

We now will prove that the type of a quasi Buchsbaum module is preserved through
a specialization. In our proof, the minimal number of generators for L will be denoted by
u(L).
Theorem 3.3. Let L be a finitely generatea S-module. If L is a quasi Buchsbaum
module, then rs, (La) = rs(L) for almost a.

Proof. Assume that L is a quasi Buchst module of di ion d. By (2, Theorem 2.5],
we have

d-1

et = Y () At + (k).

i=0

By [6, Lemma 3.5], L, is again a quasi Buchsbaum module. Since
K; =Ext5%L,5) ®s §=K.®s S,

it follows that .
(Ki)a 2 (KL ®s S)a-

Since (K, ®s S‘),, o~ (K, )a ®s. S /'\ =~ Kj,, ®s, SA,, by Corollary 2.4 and Lemma 3.2,
it holds that (K)o = Kr- We hiave u(K7) = n(K1..) = u(Kz) = p(Kp). Because
Y(HL(La)) = £(HL(L)) for all i # d by [6, Theorem 3.6), we get g, (La) = rs(L).
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