
VNU Journal of Science: Mathematics – Physics, Vol. 32, No. 3 (2016) 64-75 

 64 

Almost Sure Exponential Stability of Stochastic Differential 

Delay Equations on Time Scales 

Le Anh Tuan* 

Faculty of Fundamental Science, Hanoi University of Industry, Tu Liem, Hanoi, Vietnam 

Received 16 August 2016 

Revised 15 September 2016; Accepted 09 September 2016 
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1. Introduction

 

The stochastic differential/difference delay equations have come to play an important role in 

describing the evolution of eco-systems in random environment, in which  the future state depends not 

only on the present state but also on its history.  Therefore, their qualitative and quantitative properties 

have received much attention from many research groups (see [1, 2] for the stochastic differential 

delay equations and [3-6]  for the stochastic  difference one). 

In order  to unify the theory of differential and difference equations into a single set-up, the theory 

of analysis on  time scales has received much attention from many research groups.  While the 

deterministic dynamic equations on time scales have been investigated for a long history (see [7-11]), 

as far as we know, we  can only refer to  very few papers [12-15] which contributed to the stochastic 

dynamics on time scales. Moreover, there is  no work dealing with the  stochastic dynamic delay 

equations. 

Recently, in [14], we have studied the exponential p -stability of stochastic  -dynamic equations 

on time scale, via Lyapunov function. Continuing the idea of this article [14], we  study the almost 

sure exponential stability of stochastic dynamic delay equations on time scales. 

Motivated by the aforementioned reasons, the purpose of this paper is to use Lyapunov function to 

consider the almost sure exponential stability of  -stochastic dynamic delay equations on time  

scale T . 

The organization of this paper is as follows. In Section 1 we survey  some basic notation and 

properties of the analysis on time scales.   Section 2 is devoted to giving definition and some theorems, 

_______ 

Tel.: 84-915412183 

  Email: tuansl83@yahoo.com 



L.A. Tuan. / VNU Journal of Science: Mathematics – Physics, Vol. 32, No. 3 (2016) 64-75 65 

corollaries for  the almost sure exponential stability for   -stochastic dynamic delay equations on 

time scale and some examples are provided to illustrate our results. 

2. Preliminaries on time scales 

Let T  be a closed subset of ¡ , enclosed with the topology  inherited from the standard topology 

on ¡ . Let ( ) inf{ : }, ( ) ( )t s s t t t t      T   and 

( ) sup{ : }, ( ) ( )t s s t t t t      T  (supplemented by sup inf ,inf sup T T ). A point 

tT  is said to be right-dense if ( )t t  , right-scattered if ( )t t  , left-dense if ( )t t  , left-

scattered if ( )t t   and isolated if t  is simultaneously right-scattered and left-scattered. The set k T  

is defined to be T  if T  does not have a right-scattered minimum; otherwise it is T  without this right-

scattered minimum. A function f  defined on T   is regulated if there exist the left-sided limit at every 

left-dense point and right-sided limit at every right-dense point. A regulated function is called ld-

continuous if it is continuous at every left-dense point. Similarly, one has the notion of rd-continuous. 

For every ,a bT , by [a,b], we mean the set { : }t a t b  T . Denote { : }a t t a  T T  and by 

( . )resp R R the set of all rd-continuous and  regressive (resp. positive regressive)  functions. For 

any function f   defined on T , we write  f   for the function f  ; i.e., ( ( ))f f tt
   for all t 

k
T  and  lim ( )

( )
f s

s t 
 by ( )f t  or ft

 if this limit exists. It is easy to see that if t  is left-scattered 

then f ft t



. Let 

I ={ t: t is left-scattered}. 

Clearly, the set I  of all left-scattered points of T   is at most countable. 

Throughout of this paper, we suppose that the time scale T  has bounded graininess, that is 

sup{ ( ): }
*

t t
k

   T . 

Let A  be an increasing right continuous function defined on T . We denote by A  the Lebesgue 

 -measure  associated with  A . For any A -measurable function :f ¡T  we write 
t

f Aa    for 

the  integral of f   with respect to the measures A   on ( , ]a t . It is seen  that the function 

t
t f Aa     is cadlag. It is continuous if A  is continuous. In case ( )A t t  we write simply 

t
fa   for 

t
f Aa   . For  details, we can refer to [7].  

In general, there is no relation between the  -integral and  -integral. However, in case the 

integrand f  is regulated  one has 

( ) ( ) , , .
b b kf f a ba a         T  

Indeed, by  [7, Theorem 6.5], 
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( ) ( ) ( ) ( )
[ ; )

( ) ( ) ( ) ( ) .
( , ]

b
f f d f s sa a b a s b

b
f d f s s faa b a s b

    

    

    
 

       
 

  

Therefore, if pR  then the exponential function ( , )
0

e t tp  defined by [2, Definition 2.30, pp. 

59] is solution of the initial value problem 

( ) ( ) ( ), ( ) 1, .
0 0

y t p t y t y t t t      

Also if pR ,  ( , )
0

e t tp!  is the solution of the equation 

( ) ( ) ( ), ( ) 1, ,
0 0

y t p t y t y t t t     

where 
( )

( )
1 ( ) ( )

p t
p t

t p t





! . 

 

Theorem 1.1 (Ito  formula, [16]). Let 1( , , )dX X X L   be  a d  tuple of semimartingales,  and 

let  : d dV ¡ ¡   be a twice continuously differentiable function. Then ( )V X  is a semimartingale  

and  the following  formula  holds 

( ( )) ( ( )) ( ( )) ( )
1

d Vt
V X t V X a X Xa ixi i

 


         

21
( ( )) [ , ]

2 ,

Vt
X X Xa i jx xi j i j
 


   

                          

*( ( ( )) ( ( ))) ( ( )) ( )
( , ] ( , ] 1

d V
V X s V X s X s X sis a t s a t xi i


      

21 * *( ( ))( ( ))( ( )),
( , ]2 ,

Vt
X s X s X sa i js a t x xi j i j


      

 

where * ( ) ( ) ( ).X s X s X si i i     

3. Almost sure exponential stability of stochastic dynamic delay equations 

Let T  be a time scale and with fixed aT . We say that the rd-map   ( ):  T T  is a delay 

function if  ( )t t    for all tT   and  sup{ ( ): }t t t  T . For any sT , we see that  

: min{ ( ): }b t t ss   .  Denote { ( ): } [ , ]t t s b ss s    . We write simply   for s  if there 

is no confusion. Let ( ; )d

sC  ¡  be the family of continuous functions from s  to d¡  with the norm 

sup | ( ) |.ss
s s

 


‖ ‖  Fix 
0
t T  and let ( , ,{ } , )

0
t t t




P
T

F F  be a probability space  with filtration 

0

{ }
tt tTF  satisfying the usual conditions (i.e., { }

0
t t tT

F  is increasing and right continuous while 
0
tF  
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contains all P -null sets). Denote  by 2M  the set of the square integrable tF -martingales and by 2

rM  

the subspace of the space 2M  consisting of martingales with continuous characteristics. Let 2MM  

with the characteristic tM   (see [5]). We write  ([ , ], , )
2 0

dt T M¡L  for the set of the processes 

( )h t , valued in d¡ , tF -adapted such that 

2( ) .
0

T
h t Mt t  E

 

 For any ([ , ], , )
2 0

df t T M ¡L  we can define the stochastic integral 

( )
0

b
f s Mst   

(see [5] in detail). 

       Denote also by ([ , ]; )
1 0

dt T ¡L   the set of functions :[ , ]
0

df t T ¡  such that 

0

( ) .
T

t
f t t   

We now consider the  -stochastic dynamic delay equations on time scale 

( ) ( , ( ), ( ( ))) ( , ( ), ( (
(2.

))) ( ),
0

( (
)

)
0

1
,

d X t f t X t X t d t g t X t X t d M t t t

X s s s t

 









     

  

T

 

where : ;d d df   ¡ ¡ ¡T   : d d dg   ¡ ¡ ¡T  are two Borel   functions and  and 

{ ( ): }
00

s b s tt     is a ( ; )
0

dC t ¡ -valued, 
0
tF -measurable random variable 

with 2

0
E t ‖ ‖ . 

Definition 2.1. An stochastic process { ( )}
[ , ]

0

X t
t b Tt

, valued in d¡ ,  is called a solution of the 

equation (2.1) if 

(i) { ( )}X t  is  tF -adapted; 

(ii) ( , ( ), ( ( ))) ([ , ]; ) and 
1 0

df X X t T    ¡L ( , ( ), ( ( ))) ([ , ], , );
2 0

dg X X t T M    ¡L  

(iii)  ( ) ( )
0

X t t t t    and for any [ , ]
0

t t T  and there holds the equation 

( ) ( ) ( , ( ), ( ( ))) ( , ( ), ( ( ))) , [ , ], (2.2)
0 00 0

t t
X t t f s X s X s s g s X s X s M t t Tst t          
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The equation (2.1) is said to have the uniqueness of solutions on [ , ]
0

b Tt  if  ( )X t  and ( )X t  are 

two processes satisfying (2.2) then 

{ ( ) ( ) [ , ]} 1.
0

P X t X t t b Tt     

It is seen that ( , ( ), ( ( )))
0

t
g s X s X s Mst     is tF -martingale so it has a cadlag modification. 

Hence, if  ( )X t  satisfies (2.2) then ( )X t  is cadlag. In addition, if tM  is  rd-continuous, so is ( )X t . 

  For any   
2

MM , set 

ˆ .
( , ] ( )

0
M M M Mst t s t t s

 
 
 

  


 It is clearly  that 

ˆ . (2.3)
( , ] ( )

0
M M M Mst t s t t s

 
 
 

         


 

Denote by B  the class of Borel sets in ¡  whose closure does not contain the point 0 . Let 

( , )t A  be the number of jumps of  M   on the ( , ]
0

t t  whose values fall into the set .AB  Since the 

sample functions of the martingale M  are cadlag, the process ( , )t A  is defined  with probability 1  

for all 
0
, .tt A T B  We extend its definition over the whole   by setting ( , ) 0t A   if the sample 

( )tt M   is not cadlag. Clearly the process ( , )t A  is tF -adapted and its sample functions are 

nonnegative, monotonically nondecreasing, continuous from the right and take on integer values. 

We also define  ˆ( , )t A  for ˆ
tM  by a similar way. Let 

~
( , ) { ( , ]: }

0 ( )
t A s t t M M As s




   é . 

It is evident that  

~
ˆ( , ) ( , ) ( , ). (2.4)t A t A t A   

 

Further, for fixed t ,  ˆ( , ), ( , )t t    and 
~

( ,.)t  are measures. 

 The functions ˆ( , ), ( , )t A t A   and 
~

( , ),
0

t A t t T  are   tF -regular submartingales for fixed A . 

By Doob-Meyer decomposition, each process has a unique representation of the form 

ˆ ˆ ˆ( , ) ( , ) ( , ), ( , ) ( , ) ( , ),t A t A t A t A t A t A           

~ ~ ~
( , ) ( , ) ( , ),t A t A t A   

 

where ˆ( , ), ( , )t A t A   and 
~

( , )t A  are natural increasing integrable processes  and 

ˆ( , ), ( , )t A t A  , 
~

( , )t A  are martingales. We find a version  of these processes such that they are 

measures when t  is fixed. By denoting 

ˆ ˆ ˆ ,c dM M Mt t t 
 

Where 
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ˆˆ ( , ),
0

tdM u dutt    ¡
 

we get  

2ˆ ˆ ˆ ˆ ˆ, ( , ). (2.5)
0

tc d dM M M M u dutt t t t            ¡  

Throughout  this paper, we suppose that tM   is absolutely continuous with respect to Lebesgue 

measure  , i.e., there exists tF -adapted progressively measurable process tK  such that 

. (2.6)
0

t
M Ktt    

 

      Further, for any 
0

T tT , 

{ sup | | } 1, (2.7)

0

K Nt
t t T

 
 

P
 

       where N  is a constant (possibly depending on T ). 

The relations (2.3), (2.5) imply that ˆ cM t   and ˆ dM t   are absolutely continuous with respect to 




 on T . Thus,  there exists tF -adapted, progressively measurable bounded process ˆcKt  and ˆdKt  

satisfying 

ˆ ˆ ˆ ˆ, ,
0 0

t tc c d dM K M Kt tt t          
 

and the following relation holds 

 ˆ ˆ{ sup } 1.

0

c dK K Nt t
t t T

  
 

P
 

 Moreover, it is easy to show that  ˆ( , )t A  is absolutely continuous with respect to   on T , that 

is, it can be expressed as 

ˆ( , ) ( , ) ,(2.8)
0

t
t A At  


  

 

with an tF -adapted, progressively measurable process  ( , )t A


 . Since B  is generated by a 

countable family of Borel sets, we can find a version of ˆ ( , )t A  such that the map ˆ ( , )t t A  is 

measurable and for t  fixed, ˆ ( , )t   is a measure.Hence, from [2.5] we see that 

2ˆ ( , ) .
0

tdM u dutt  


     ¡  

This means that 

2ˆ ( , ).dK u t dut


 ¡  

The process  
~

( , )t A   is  written in the specific form as following 



L.A. Tuan. / VNU Journal of Science: Mathematics – Physics, Vol. 32, No. 3 (2016) 64-75 

 

70 

( , ) [1 ( ) | ].
( , ] ( ) ( )

0
t A M MsAs t t s s


 

 


:
E F

 

Putting

[1 ( ) | ]
( ) ( )

( , )
( )

M MtA t t
t A

t

 




 
: E F

 if ( ) 0t   and 
~

( , ) 0t A   if ( ) 0t   

yields 

~ ~
( , ) ( , ) .(2.9)

0
 

t
t A At    

 

Further, by the definition if ( ) 0t   we have 

|~ ( ) ( )
( , ) 0,(2.10)

( )

M Mt t t
u t du

t

 



 
  


  ¡

E F

 

and 

2
|

( ) ( )~ ( )
( , ) .

( ) ( )
2

M Mt t t M Mt t
t du

t t
u

 


 

 
   
  
 


  



 
 ¡

E F

 

Let  
~

( , ) ( , ) ( , )t A t A t A


   .  We see from (2.4) that 

( , ) ( , ) .
0

t
t A At    

 

Let 
1,2( ; )

0

dC t ¡ ¡T  be the set of   all functions ( , )V t x  defined on 
0

d
t ¡T ,  having 

continuous  -derivative in t  and continuous second derivative in x .  For any 

1,2( ; )
0

dV C t ¡ ¡T ,  define  the operators :
0

d dV t   ¡ ¡ ¡TA  with respect to (2.1)  is 

defined by 

( , , )V t x yA ( , )
(1 1 ( )) ( , , ) ( ( , ( , , ) ( )) ( , )) ( )

1

d V t x
t f t x y V t x f t x y t V t x tixi i




     
 I

 

21 ( , ) ( , )ˆ( , , ) ( , , ) ( , , ) ( , )
2 , 1

dV t x V t xcg t x y g t x y K g t x y u t duti j ix x xi j ii j i

 
    

 
¡

( ( , ( , , ) ( ) ( , , ) ) ( , ( , , ) ( ))) ( , ),(2.11)V t x f t x y t g t x y u V t x f t x y t t du      ¡  

where  

0 if left-dense

( ) 1
  if left-scattered

( )

t

t
t

t
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Theorem 2.2  (Ito  formula, [13]). Let 1( , , )dX X X L   be  a d  tuple of  semimartingales,  and 

let  : d dV ¡ ¡   be a twice continuously differentiable function. Then ( )V X  is a semimartingale  

and  the following  formula  holds 

( , ( )) ( , ( )) ( , ( ), ( ( ))) .(2.12)
0 0 0

t
V t X t V t X t X X Ht t        LV

 

Where 

( , , ) ( , ) ( , , ),(2.13)tt x y V t x V t x y


 LV A  

and 

( ) ( , ( ) ( , ( ), ( ( ))) ( ) ( , ( ), ( ( ))) )

( , ( ) ( , ( ), ( ( ))) ( )).

V X f X X g X X u

V X f X X

            

       

     
  

·
~( , ( ))

( , ( ), ( ( ))) ( ) ( , )
0 01

( , ( )) ˆ( ( ) ( , ( ), ( ( )))) ( , ).(2.14)
0 1

d V Xt t
H g X X M dut tt ixi i

d V Xt
u g X X dut ixi i

 
      

 
      

        

      


¡

¡

 

Using the Ito  formula in [13], we see that for any 
1,2( ; )

0

dV C t  ¡ ¡T  

( , ( )) ( , ( )) ( ( , ( )) ( , ( ), ( ( )))) (2.15)
0 0 0

t
V t X t V t X t V X V X Xt

       


     A
 

is a locally integrable  martingale, where tV


 is partial  -derivative of ( , )V t x  in t . 

We now give   conditions guaranteeing  the existence and uniqueness of the solution to the 

equation (2.1).  

Theorem 2.3. (Existence and uniqueness of solution). Assume that there exist two positive 

constants K  and K  such that 

( )i  (Lipschitz condition) for all , 1,2dx y ii i ¡  and [ , ]
0

t t T  

2 2( , , ) ( , , ) ( , , ) ( , , )
1 1 2 2 1 1 2 2

f t x y f t x y g t x y g t x y  ‖ ‖ ‖ ‖

2 2( ).(2.16)
2 1 2 1

K x x y y   ‖ ‖ ‖ ‖  

( )ii  (Linear growth condition) for all ( , , ) [ , ]
0

d dt x y t T  ¡ ¡  

2 2 2 2( , , ) ( , , ) (1 ).(2.17)f t x y g t x y K x y   ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖  

Then, there exists a unique solution ( )X t  to equation (2.1) and this solution is a square integrable 

semimartingale.  
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 We suppose  that for any 
0

s t  and ( ; )dC s  ¡ , there exists a unique solution  

( , , ),X t s t bs   of the equation 2.1 satisfying ( , , ) ( )X t s t   for any t s . Further, 

( ,0,0) 0; ( ,0,0) 0, .(2.18)f t g t t a   T
 

Definition 2.4. The trivial solution ( ) 0X t   of the equation (2.1) is said to be almost surely 

exponentially stable if for any  
0

s t T  the relation 

log ( , , )
sup 0(2. )lim 19

X t s

tt






‖ ‖

 
holds for any ( ; ).dC s  ¡  

 

Theorem 2.5. Let , , ,
1 2 1

p c   be  positive numbers with 
1 2
  . Let   be a positive number 

satisfying 
31 ( )t








 and let   be  a non-negative ld-continuous function defined on  

0
tT  such 

that  

( , ) . ..
00

e t t t a st t


    

Suppose that there exists  a positive definite function 
1,2( ; )

0

dV C t  ¡ ¡T  satisfying 

( , ) ( , ) ,(2.20)
1 0

p dc x V t x t x t   ¡T‖ ‖
 

and for all ,
0

t t  

( , ) ( , , ) ( , ) ( ( ), ) . .,(2.21)
1 2

tV t x V t x y V t x V t y a st   


   A
 

for all dx¡  and .
0

t t   Then, the trivial solution of equation (2.1) is almost surely 

exponentially stable. 

Proof. Let 
3 1 2

     . By (2.12), (2.21) and calculating expectations we get 

( , ) ( , ( )) ( , ( )) ( , )[ ( , ( ))
0 0 0 00

t
e t t V t X t V t t e t V Xt                    

(1 ( ))( ( , ( )) ( , ( ), ( ( ))))] ( , )
0

0

t
V X V X X e t H

t
          


       A   

( , ( )) ( , )[ ( , ( ))
0 0 00

t
V t t e t V Xt         

(1 ( ))( ( , ( )) ( ( ), ( ( ))) )] ( , )
1 2 0

0

t
V X V X e t H

t
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[1 (1 ( ))( )]max ( , ( ))
0 00 0 00

t b t b V s st t b s tt
     

 

( , )[ ( , ( )) (1 ( ))( ( , ( )) ] ( , ) .
0 3 00 0

)
t t

e t V X V X e t Ht t
                          

Using the inequality 
31 ( )t








 gets 

( , ) ( , ( )) [1 (1 ( ))( )]max ( , ( )) ,
0 0 00 0 00

e t t V t X t t b t b V s s F Gt t t tb s tt
        

 
 

where 

(1 ( )) ( , ) ; ( , ) .
0 00 0

t t
F e t G e t Ht tt t              

In view of the hypotheses we see that 

lim .F Ftt
    

Define [1 (1 ( ))( )]max ( , ( )) for all .
0 00 0 000

Y t b t b V s s F G tt t t t t tb s tt
        

 
T  

Then Y   is a nonnegative special semimartingale. By Theorem 7 on page 139  in  [17], one  sees 

that 

{ } { lim exists and finite} . ..F Y a stt
    

By { } 1P F   . So we must have 

{ lim exists and finite} 1.P Ytt


  

Note  that 0 ( , ) ( , ( ))
0

e t t V t X t Yt    for all  . ..
0

t t a s  It  then  follows  that 

{ sup ( , ) ( , ( )) } 1.
0

limP e t t V t X t
t

  
  

So 

sup ( , ) ( , ( )) . ..(2.22)
0

lim e t t V t X t a s
t


 
 




 Consequently, there  exists a pair  of random  variables 
0
t   and 0   such that 

( , ) ( , ( )) for all . ..
0

e t t V t X t t a s     

Using (2.20), we have 

( , ) ( ) ( , ) ( , ( )) for all . ..
1 0 0

p
c e t t X t e t t V t X t t a s    ‖ ‖  

Since the time scale T  has bounded graininess, there is a constant 0   such that 

( )
0( , )

0

t t
e t t e





  for any  t T . Therefore,  
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ln ( )
lim 0 for all . ..

X t
p t a s

t t
   


‖ ‖

 

 Thus,  

ln ( )
lim for all . ..

X t
t a s

t t p


 


‖ ‖

 

  The proof  is completed. 

We now consider a special case where 2( , )V t x x‖ ‖ . Using (2.13) we have 

2 2( , , ) 2(1 1 ( )) ( , , ) ( ( , , ) ( ) ) ( )Tt x y t x f t x y x f t x y t x t     
I

LV ‖ ‖ ‖ ‖

2 ˆ( , , ) 2 ( , , ) ( , )c Tg t x y K x g t x y u t dut


  ¡‖ ‖

2 2( ( , , ) ( ) ( , , ) ( , , ) ( ) ) ( , ).x f t x y t g t x y u x f t x y t t du      ¡ ‖ ‖ ‖ ‖
 

 

We have  

2 2 22(1 1 ( )) ( , , ) ( ( , , ) ( ) ) ( ) 2 ( , , ) ( , , ) ( ).(2.23)T Tt x f t x y x f t x y t x t x f t x y f t x y t       
I

‖ ‖ ‖ ‖ ‖ ‖

Paying attention that ( ) ( , ) 0t u t du

 ¡  and  

~
( , ) ( , ) ( , )t du t du t du


    yields  

2 2( ( , , ) ( ) ( , , ) ( , , ) ( ) ) ( , )x f t x y t g t x y u x f t x y t t du     ¡ ‖ ‖ ‖ ‖

2 2( , , ) ( , ) 2 ( , , ) ( , )(2.24)Tg t x y u t du x g t x y u t du


    ¡ ¡‖ ‖
 

Since 
~

ˆ ˆc dK K K Ktt t t    and  
~ 2ˆ ( , )dK K u t dutt   ¡ , we can combine (2.23) and (2.24) to 

obtain 

2 2( , , ) 2 ( , , ) ( , , ) ( ) ( , , ) .(2.25)Tt x y x f t x y f t x y t g t x y Kt  LV ‖ ‖ ‖ ‖  

We can impose  conditions on the functions f  and g  such that there are  

 positive numbers  ,
1 2
   with 

1 2
   and  a non-negative ld-continuous function   satisfying 

2 2 2 22 ( , , ) ( , , ) ( ) ( , , )
1 2

Tx f t x y f t x y t g t x y K x yt t       ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖  

Example 2.6. Let T  be a time scale  0
1 0 1

t t t tn    


L L  where tn  . Consider the 

stochastic dynamic equation on time scale T  

1
( ) ( ) ( ( ( ))) ( ),

2 (2.26)
( ) , (0) ,

1

d X t X t d t X t d W t t

X t a X d

 





    

 


T
 

where  ( )W t  is an one dimensional  Brownian motion on time scale defined as in [9]. We can 

choose  
1

1, , 0,
1 2 4
      By directly calculating, we obtain 
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12 2( , , ) ( ( ) 2) ,(2.27)
4

t x y t x y  LV  

where 
1

( , , ) , ( , , ) .
2

f t x y x g t x y y   If ( ) 1; .t t   T  By Theorem 2.5, the trivial solution of 

equation (2.26) is almost surely exponentially stable.  
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