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Abstract: Uphill diffusion is a process of mass transmission in which the diffusion flux goes up to 

high concentration region and the mass flux of osmotic diffusion is not vanishing, when 

concentration gradient is equal to zero. Most of the uphill and osmotic diffusion takes place in 

multicomponent systems and the cause of uphill diffusion is the diffusion flux of any species is 

coupled with that of its partner species. In this paper, the uphill and osmotic diffusion in single 

component systems (single uphill and osmotic diffusion) are presented and simulated. Results 

showed that: i) The uphill and osmotic diffusion can take place for single component systems; ii) 

the cause of single uphill and osmotic diffusion is thermal velocity of molecules in low 

concentration region is greater than that in high concentration region; iii) simulated results agree 

with the theory.   

Keywords: Single uphill and osmotic for single component systems. 

1. Introduction

 

Based on direction and value of diffusion flux, diffusion can be divided into four types (Fig.1) [1]: 

i) Downhill diffusion (normal diffusion): the diffusion flux goes from a high concentration area to a 

low concentration area; ii) Uphill diffusion: the diffusion flux goes up to higher concentration area; iii) 

Diffusion barrier: concentration gradient is not equal to zero, but diffusion flux is vanishing; iv) 

Osmotic diffusion: although concentration gradient is equal to zero, diffusion flux is not vanishing. 

 

 

  

 

                                

 

 

Figure 1. The diffusion classification.  
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Uphill and osmotic diffusion is an interesting phenomenon of the diffusion, which is studied since 

1949 by L. Darken [2]. Up to now, uphill and osmotic is still being studied and applied [3-13]. Most of 

the uphill and osmotic diffusion occur for quadratic and ternary systems (two and three components) 

and cause of the uphill and osmotic diffusion is the diffusion flux of any species is coupled with that 

of its partner species [1, 5, 11, 13]. However, the uphill and osmotic diffusion can take place in single 

components (there is only species that diffuses) [14, 15].  

2. Single uphill diffusion 

Assume that the diffusion process take place in the two region 1 and 2. Based on kinetic theory of 

gasses, in the general case, the thermal velocity (u1) of particles in low concentration region 1 is 

different to the thermal velocity (u2) in high concentration region 2, the mass flux J1 goes from region 

1 to region 2 and J2 goes from region 2 to region 1  are determined by:  

Table 1. The classification of diffusion by the kinetic theory of gases. 

 

 

C = C2 – C1 > 0 

(C2 = αC1) 

u1 and u2 diffusion flux Diffusion type 

u1 = u2 J < 0 Fick’s 

u1 < αu2 J < 0 downhill 

u1 = αu2 J = 0 barrier 

u1 > αu2 J > 0 uphill 

                                                                                                                                             (1a) 

                                                                                                                                               (1b) 

where C1 and C2 are concentration in region 1 and 2. The total of mass flux is: 

                                                                                                                                               (2) 

The equation (2) is the formula of general diffusion flux. Direction of diffusion flux is dependent on 

the difference of concentration and thermal velocity in two regions (u1, C1 and u2, C2). When the 

concentration gradient is greater than zero with C2 = αC1 (α > 1), based on equation (2) the diffusion 

process can be classified to four types: i) if the thermal velocity u1 in low concentration region is not 

equal to α times that u2 in high concentration region, the diffusivity is positive and mass flux goes to 

the lower concentration region (J < 0), that is downhill diffusion; ii) when u1 is α times more than u2 

the diffusivity is negative and diffusion flux goes to the higher concentration region (J > 0), that is 

uphill diffusion; iii) if u1 is α times larger than u2, diffusion flux vanishes (J = 0), that is diffusion 

barrier; iv) when u1 equals u2, the downhill diffusion becomes Fick’s diffusion.  

However, according to Lars Onsager the driving force in diffusion is the gradient of chemical 

potential (). Based on the irreversible thermodynamic theory, diffusion flux J is directly proportional 

to the gradient of chemical potential  and can be written by following form [16]:   

                                                                                                                                                 (3) 

in which L is phenomenological coefficient. Chemical potential is determined by:        

                                                            (4) 

0 is the standard chemical potential. We have:       

0μ= μ +kTlnC

2 2 2J = C u

1 1 1J = C u

 1 2 1 2 2 2J = J - J = u C u C

μ
J = -L

x

∂
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                                                                    (5) 

where diffusivity D is:   

                                                                  (6)  

For macroscopic description the approximation can be used:  

                                                             (7)  

Chemical potentials 1 and 2 are: 

                                                           (8a)  

                                                      (8b) 

Suppose that the diffused particles are similar to the ideal gas molecules, so the temperature (T) is 

directly proportional to the square of thermal velocity (u):  

                                                                                                                                             (9) 

where m is molar mass and k is Boltzmann’s constant. Combining (9) with (8a), we have:   

 

                           (10) 

Based on equation (5) and (10), when the concentration gradient is greater than zero with lnC2 = 

β
2
lnC1 (β > 1), the diffusion can be classified also to four types (Tab. 2) 

Table 2. The classification of diffusion by the thermodynamic theory. 

        
 

C = C2 - C1 > 0 

(lnC2 = β
2
lnC1) 

u1 and u2 diffusion flux Diffusion type 

u1 < βu2 J < 0 Fick’s 

u1 < βu2 J < 0 downhill 

u1 = βu2 J = 0 barrier 

u1 > βu2  J > 0 uphill 

Both the kinetic theory of gasses and thermodynamic show when thermal velocity of molecules in 

the low concentration region is greater than that in the high concentration region, the uphill diffusion 

can occurs.    

3. Random walks theory and diffusion 

A random particle in a one dimension [17, 18], which begins at x = 0 and the length of all steps are 

l (Fig. 2).  

 

 

Figure 2. Random walk modeling in one dimension  
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After each time interval τ the particle has an equal probability of moving left or right. The direction of 

each step is independent of the previous one. We can denote the displacement at each step by si:  i)  si 

= +l with 0.5 probability;  ii)  si = -l with 0.5 probability. Then after N steps in the random walk, the 

displacement x of the atom is: 

                                                              (11) 

and the displacement squared is: 

                                       (12) 

 

The average distance the particle has moved, which is immediately obvious that with the equal 

probabilities to go left and right: 

                                                               (13) 

that is, the average position will always be at the origin. But this does of course not mean that 

the particle always is at zero. It means that the probability of finding the particle somewhere is 

centered at x = 0, but naturally the probability distribution gets wider with increasing numbers of steps 

N. To get a handle on the broadening, let us consider the squared displacement, Eq. 13. We can 

rewrite this as: 

 

                                                              (14) 

 

Then consider the pair sisj for a given pair i, j (j  i). This quantity will be: 

 i)   si = +l with 0.5 probability;  

 ii)  si = -l
2
 with 0.5 probability.  

So on average the sum over sisj will be zero. But on the other hand: 

                                                              (15) 

independently of whether si is +l or −l. Hence the average after N steps will be: 

                                                              (16) 

From the atomistic point of view, diffusion is considered as a result of the random walk of the 

diffusing particles [17, 18].   

4. Program and results of the simulation   

Simulations of the uphill and osmotic diffusion were executed in the two dimensions.  Diffusion 

process is done on the two regions 1 and 2 of diffused space. The number of particle N1 and N2 are 

chosen deliberately and the positions of particles are chosen randomly in region 1 and 2. A particle can 

jump to one of the allowed directions by a displacement xi = xi + x and yi = yi + y. The walk 

probabilities of every particle from a position to a nearest position are the same and equal to 0.25 in 
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both parts. The velocities of a random walk are differently in part 1 and part 2 (u1 and u2) and which 

can be changed. We choose that the time of a random walk in the regions 1 and 2 are the same and 

equal to 1 ms (τ1 = τ2 = τ = 1ms), so the length of the random walk step in part 1 and 2 are: x1 = y1 = 

u1τ and  x2 = y2 = u2τ. 

The program of simulation is written by the Processing language. Simulated results are presented 

by the motion pictures on the monitor of the computer. Fig.3a shows the positions of particles in 

regions 1 and  2 at the initial time t = 0, the number of particle in two parts are the same and equal to 

100 (N1 = N2 = 100). Fig.3b presents the pictures of the positions of particles after the 10 minutes of 

diffusion, the number of particle in regions 1 and 2 are 74 and 126 (N1 = 74 and  N2 = 126). Fig.3c 

shows the number of particles after the 20 minutes of diffusion are 67 and 126 (N1 = 67 and  N2 = 

143). Results show: 

i) At the initial time (t = 0):  although gradient of concentration is equal to zero, the diffusion 

process occurs with a diffusion flux goes from region 1 (where the velocity of particles are higher) to 

region 2 (where the velocity of particles are lower). That is the osmotic diffusion process;  

ii) After initial time (t = 0): the concentration in part 2 is greater than that in part 1, but there is a 

diffused flux that goes from region 1 (low concentration region) to region 2 (high concentration 

region). That is the uphill diffusion. 

   

 

Figure 3. Result of the simulation at the simulated time of t: 

a) t = 0, b) t = 10 minutes and c) t = 20 minutes 

5. Conclusion 

Simulated results have shown in single component systems, when thermal velocity in low 

concentration region is greater than that in high concentration region, uphill and osmotic diffusion can 

take place.  Results of the simulation agree with theory, both have shown that: although the uphill and 

osmotic diffusion for single component is contrary to Fick’s laws, which can occur.       
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