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Abstract: The scattering amplitude of polarized nucleons has been found within the framework of 

the Klein – Gordon with the phenomenological spin - orbit potential. It has the Glauber type 

representation. The differential cross sections of polarized nucleon are considered and discussed. 

The Yukawa potential is applied for this problem to determine the polarization of high energy 

scattering nucleons.    
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1. Introduction

 

In two papers of  H. S . Köhler, Cern, Geneva [1, 2], he pointed out several measurements, which 

have been made of differential cross-sections and polarizations of protons inelastically scattered by 

nuclei. Such experiments have been made at 220 MeV in Rochester, at 155 and 173 MeV in Uppsala 

and at 135 and 95 MeV in Harwell. A striking feature of these results is the similarity between the 

angular dependence of the polarization of particles scattered inelastically by exciting a low-lying level 

and the elastic polarization. Even more striking is the agreement between polarizations of protons 

scattered inelastically by nuclei of different masses. 

In the paper [3], the basic element for an evaluation of the complex spin-orbit part of the optical 

potential is the calculation of the complex effective internucleon spin-orbit interaction was considered. 

Pervious investigators concerned with the real part of the spin-orbit potential, have taken this effective 

spin-orbit force as shortratige in comparison with the effective forces which give rise to the central 

part of the optical potential. The reason behind this assumption is the short-range behaviour ofthe spin-

orbit component entering in the free internucleon interaction, for example the Hamada-Johnston force. 

The difference between the effective and the free spin-orbit internucleon force appears mainly near 

and inside the core region and is due to the presence of the tensor and higher order components in the 

realistic internucleon force and the Pauli principle. The extrapolation of these results to the nuclear 

scattering case which we consider does not seem to be straightforward. Similar effects can also be 

expected to influence the spin-orbit effective interaction. 
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The calculation of the real part of the spin-orbit part of the optical potential for spin saturated 

nuclei has usually followed the procedure given by Blin-Stoyle. He found that exchange effects 

account for about half the strength of the spin-orbit component of the potential and therefore cannot be 

neglected [3]. 

Moreover, the polarizations which result from the elastic scattering of protons by spin-zero nuclei 

are discussed by means of the multiple-diffraction approximation. They are found to depend largely on 

the elementary proton-nucleon central-force and spin-orbit scattering amplitudes and, at least for 

heavy nuclei, to depend very little upon the remaining proton-nucleon amplitudes which are 

proportional to the spins of the target nucleons. In particular, the values of the polarization measured at 

small angles can be used to determine the imaginary part of the forward proton nucleon spin-orbit 

scattering amplitude. The real part of that amplitude, on the other hand, is much less sensitively 

determined by the polarization distributions. Its evaluation will probably require more detailed 

measurements on the proton spin distribution. The effects of the Coulomb field on the polarization 

distributions are significant at all scattering angles. Included among these electromagnetic effects is 

the relativistic interaction of the proton magnetic moment with the Coulomb field. [4] 

Scattering of particles included spin s = 1/2 considered in some papers [5-7], but methods were not 

complete, or could not be applied for various potentials. In the paper of Kuleshov et al [8] used two – 

components method to study scattering of particle with spin 1/2, but the affection of spin to scattering 

amplitude was not clearly.     

In recent our paper [9], we have used the Dirac equation in an external field to investigate the 

Glauber representation for scattering of Dirac particles (spinor particles) in the smooth potential after 

using the Foldy – Wouthuysen transformation. 

The aim of this paper is to generalize the eikonal representation for the scattering amplitude of 

spinor particles at high energy. We used Klein – Gordon equation in non-relativistic approximation in 

the form “two-component formalism” to study the scattering of nucleons with spin. But Klein – 

Gordon is the second order differential respect to time also it can be transformed into two coupled first 

order differential equations after using “two components formalism. We gain several advantages from 

of this reduction. First, the equation is now first order equation in the time, so that the time 

dependence of the two-component wave function is uniquely determined by its initial value, in 

agreement with the rules of quantum mechanics. Second, the interaction of nucleons with spin 1/2 will 

be tied to the 2 x 2 Pauli matrices so the use of the two - component formalism will comment 

accordingly with spinor matrix structure as in quantum mechanics phenomenology.         

Nonrelativistic approximation is used here to separate the classical contribution and the 

contribution of the spin into the scattering amplitude, from which we can compare with the previous 

results [9]. Also due to the inclusion of virtual potential phenomenology related to the absorption of 

virtual nucleon, we consider the more is the polarization of the nucleons in the scattering process. 

The paper is organized as follows. In the second section, we obtain the Klein – Gordon equation in 

an external field in the non-relativistic approximation by using “two-component formalism”. In 

Section 3, we get the scattering amplitude of high energy nucleons with phenomenological spin - orbit 

potential. Section 4 is devoted to compute the analytical expressions of the differential cross section 

and polarization of nucleons in the Yukawa potential. The results and possible generalizations of this 

approach are also discussed in section 5. 
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2. Klein – Gordon non-relativistic equation in the external field 

The Klein – Gordon equation in the external field with  A x  - 4 components potential (q – 

electric factor included, m is mass of the particle) has form 

    2 0i A i A m x 

         
 

                                                                                  (2.1)                       

We will now discuss how above equation can be cast into a “two-component” form. This will help 

to understand the equation and to study its nonrelativistic limit. 

Above equation will be cast into two equations in the Schrodinger equation form 

i H
t








                                                                                                                         (2.2) 

where   is a vector in a complex two – dimensional space and H is a 2x2 matrix [10]. 

The transformation to two – component form can be carried out by introducing two new wave 

functions ( , )r t , ( , )r t , which are more symmetric linear combination of ( , )r t and 
( , )r t

t




.                                 

  

0

0

1
( , ) ( , )

2

1
( , ) ( , )

2

r t i V m r t
tm

r t i V m r t
tm

 

 





 
   

 

 
    

 

                                                                                 (2.3) 

The choice (2.3) is not unique. It was chosen because it is simple and gives equations with some 

features suggestive of the Dirac equation. 

With the choice (2.3), now we go into defining a new wave function. It will be organized into a 

two – component column vector 

     
( , )

( , )
( , )

r t
r t

r t










 
  
 

.                                                                                                          (2.4)                             

This vector satifies the first order diffential equation (2.2) with Hamintonian is [10]                                    

  

2 2
0

2 2
0

2 2
0

3 2

( ) ( )

2 2

( ) ( )

2 2

( ) ( )

2 2

V V
m V

m m
H

V V
m V

m m

V V
m i V

m m
 

  
  

 
  

    
 

  
    
 

p p

p p

p p

                                                                           (2.5) 

where -ip = is the energy momentum opeartor. The generalized “potential” interaction consists 

of a vertor part V  and a scalar part 
0V  and i  are the Pauli matrices. 

In our present study, we obtain explicit relations for the scattering of a non-relativistic particle, 

while we plan to consider the corresponding relativistic problem in the future. Therefore, we assume 

that the solution of eq.(2.2) has form 
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1 1 ( )

2 2

( , ) ( ) ( )
( , )

( , ) ( ) ( )

iEt i m T t
r t r r

r t e e
r t r r

  


  

   



     
       
     

                                                                 (2.6) 

where  T  is the kinetic energy of the particle. 

Substituting eq.(2.6) into eq.(2.4) and using Hamiltonian in eq. (2.5), we have 

 

2 2
0

1 1

2 2
2 20

( ) ( )

( ) ( )2 2
  

( ) ( )( ) ( )

2 2

V V
m V

r rm m
m T

r rV V
m V

m m

 

 

  
     

     
     

    
 

p p

p p

                                                      (2.7) 

Equation (2.7) can be seperated into coupled equations as follow 

2 2
0

1 1 2

2 2
0

2 1 2

( ) ( )
( ) ( ) ( )

2 2

( ) ( )
(2 ) ( ) ( ) ( )

2 2

V V
T r V r r

m m

V V
m T r r V r

m m

  

  

   
    

  


    
       

   

p p

p p

                                                               (2.8)                             

As m , the dimensionless quantities | | | |
,

V

m m

p  and 
| |T

m
 are all <<1 therefore  2 1( ) ( )r r  . 

Expanding the second equation (2.7) in inverse powers of m and discarding terms of order m
-3

 or 

higher gives 

2

2 12 3

( ) 1
( ) ( ) 0

4

V
r r

m m
 

  
   

 

p
                                                                                            (2.9)  

Substituting this result into the first equation of eq.(2.8) gives an equation for 1  accurate to order 

m
-3 

2 0 4

1 13

1 1
( ) ( ) ( ) ( )

2 8
T r V V V r

m m
 

 
     
 

p p                                                                        (2.10) 

In the specific case, when the external field is scalar, 0V  , eq. (2.10) becomes: 

2 4
0

1 13
( ) ( )

2 8
T r V r

m m
 

  
    
 

                                                                                        (2.11) 

The right hand side of eq.(2.11) has two terms, the first term

2

0

2
V

m

 
  
 

 is the non-relativistic 

limit part, and the second term 
4

38m

 
 
 

 is the relativistic correction to the energy up to order
3

1

m
.  

Now, we drop out the second term and retain the first term of RHS of eq.(2.1), and note that 
2

2

p
T

m
  , we obtain 

     2 2 0

1 12p r mV r      .                                                                                           (2.12) 

Set    02V r mV , then 
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          2 2

1 1p r V r r                                                                                               (2.13) 

Thus, from two - component formalism, we also obtain the Klein – Gordon (KG) non-relativistic 

equation  with V(r) potential..  

Since the KG equation describes the behavior of a spin zero particle therefore it would be a good 

approximation equation to describe pionic atoms (atomic states with 
-
 substituted for an electron). 

Knowing that the wave function of the Dirac particle also satisfies the KG equation, we can apply the 

eq.(2.12) for the Dirac particle noting that 1  is a spinor having two - components and V is an 2x2 

matrix operator having spin interaction. 

3.  High energy scattering amplitude of nucleons in smooth interaction potential 

In nuclear physics, the elastic scattering of nucleons in nuclear can be described by using spin – 

orbit  potential [11]       

 
( )

V( , ) (1 )U( ) .
a dU r

r i r L
r dr

                                                                                 (3.1) 

where  L i r    is angular momentum operator, a – constant has square length dimension and 

the imaginary part U( )i r  of this potential is considered due to the absorption nucleon by nuclear.  

Set         0 1

( )
(1 )U( );

a dU r
V i r V

r dr
   

 

                                                                           (3.2) 

then  

 0 1( ) ( ) ( ) . ,V r V r V r L                                                                                                     (3.3) 

For smooth potential, the quasi-classical condition of scattering is satisfied [8,9] 

2
1, 1

p

V V

V p
                                                                                                                  (3.4) 

The solutions of equations (2.13) with the boundary conditions (3.4) can be written in the form 

  1( ) ( ). ipzr r e                                                                                                                    (3.5) 

where ( )r  is a Dirac particle having two components, with the boundary conditions 

0 1/2,( )
smz

r  


  . Here,  1/2, sm  are spin function [11]: 

           1/2,1/2

1

0


 
  
 

 and 1/2, 1/2

0

1
 

 
  
 

                                                                          (3.6)  

Substituting eq.(3.5) into eq.(2.13), we have 

 
     22 ipz ipz ipz

r
ipe e r V r e r

z


 


  


                                                                            (3.7) 

where  ,r b z , with the condition (3.4), the Dirac particle (r) are slowly varying functions and 

the z-axis is chosen to be coincident with the direction of incident momentum p . 
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Thus, (r) approximately satisfy the equation 

 
     0 12 ipz ipzipe V r iV r r e

z

r
r





    

  
                                                                     (3.8) 

To perform some calculations and retain the p-terms and use the boundary condition, we obtain 

 

0 0 1

0 0 1

1
ln ln '

2

1
exp , ' '

2

z

z

z

z

V V p r dz
ip

V b z V p r dz
ip

  

  





     
  

            





                                                                  (3.9) 

Here,  ,r b z ;  cos ,sin
b

n
b

   , where   is the azimuthal angle in the  ,x y - plane.  

Equation (3.8) can be rewritten as 

     0 0 1

1
exp , ' ' , ' '

2 2

z z

z
b n

V b z dz i V b z dz
ip


 

 

    
  

  

                                                    (3.10) 

 Set 

0 0

1
( , ) ( , ') '

2

z

b z V b z dz
ip




                                                                                                  (3.11) 

1 1( , ) ( , ') '
2

z
b

b z V b z dz


                                                                                                     (3.12) 

Eq. (3.9)  rewritten as 

  0 0 1( ) .exp ( , ) ( , )
z

r b z i n b z                                                                                 (3.13) 

Therefore, the solution of eq.(2.13) has the form 

  1 0 0 1( ) ( ) .exp ( , ) ( , )ipz ipz

z
r e r e b z i n b z                                                               (3.14) 

For the scattering amplitude, one obtains the Glauber representation 

  
          

     0 1

*

0 0 1 1

2 *

0 0

1
,Δ

4

1
2

z

i

z

iib

f p d e V r V p r

p
d e e

i

 











 

 





   

  
 




Δ

p r

n σ

r p σ r

b p p

                                                       (3.15) 

Note that    os siny xn c       ; 
2

2

0

... ...d b d bdb



     

One can rewrite this formula as 

     *

0 0( ')( ), ) (yf f p p A B p                                                                               (3.16) 

0 0 1 1' 2 sin ; ( , ), ( , )
2

p p p b b


                                                                        (3.17) 
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0

0 1

0

( ) ( ) os 1A ip bdbJ b e c
 



                                                                                           (3.18) 

0

1 1

0

( ) ( ) sinB ip bdbJ b e
 



                                                                                               (3.19) 

where p  and   are the momentum after scattering and the scattering angle; 0 ( )J b  and 1( )J b  

are the Bessel functions of the zeroth and the first order.  The presence of quantities  A   and  B   

determined by formulas (3.18) and (3.19) in the high – energy limit shows that there are both spin-flip 

and non-spin flip parts contributing to the scattering amplitude.  

4. Differential scattering cross section of polarized nucleon 

Square of scattering amplitude (3.16) determines the differential scattering cross section of 

polarized nucleons. If they are not polarized, the differential scattering cross section is determined by 

taking the average of  two polarized nucleon states 1/ 2, 1/ 2 sm
 
then   

2 2 21
( ) ( ) ( )

2
sm

d
f A B

d


    


                                                                                      (4.1)  

The results which relative to scattering of non-polarized nucleon are studied by us in the paper [9] 

basing on Foldy-Wouthuysen representation apply to Dirac equation. 

Now let us examine the scattering of polarized nucleons. Assuming nucleon motions along the y-

axis and the spin projection along the z-axis direction. If the nucleons in the plane Oxy is deflected 

upward positive direction of the z-axis then unit vector that perpendicular to the scattering plane will 

orientate to the positive direction of the z-axis, so that . zn  . In contrast, the nucleon is skewed to 

negative z-axis direction, then unit vector perpendicular to the scattering plane will rotate in the 

negative z-axis direction so . zn   .  

We have the differential scattering cross sections of left and right polarized nucleons respectively 

2 2
( ) ( ) ( )

z

smleft

d
f A B

d



  

 
   

 
                                                                                  (4.2)  

2 2
( ) ( ) ( )

z

smright

d
f A B

d



  

 
   

 
                                                                               (4.3)  

The polarization of the nucleons has been characterized by polarization vector [11] 

2 2

*( ). ( ) ( ). *( )
( ) .

( ) ( )

A B A B
P n

A B

   


 





                                                                                      (4.4)  

In this section, we use Yukawa potential to compute above differential scattering cross sections 

and plot graphical of them following the momentum of incident particle and the small scattering angle. 

Our aim is to compare the influence of the spin and the imaginary part of potential to the polarization 

of the scattering nucleons. 

The Yukawa potential [12] given by: 
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U( ) ,
r

r R
g g

r e e
r r




                                                                                                           (4.5) 

here, g is a magnitude scaling constant whose dimension is of energy, 
 
is another scaling 

constant which is related to R -  the effective size where the potential is non-zero – as 
1

R
  . 

Now, we compute the expression  0 b  following eq. (3.11) 

 

 

   
2 2

0 0

' '

2 2

1 1
, ( , ') ' ( , ') '

2 2

1 1
' '

2 ' 2 '

r b z

i
b V b z dz U b z dz

ip ip

g i g ie e
dz dz

ip r ip b z

 




 

 

 

   

 


   

 
   



 

 

                                     (4.6) 

Using property of the Macdonald function of zeroth order [13] 

 

2 2'

0
2 2

0 0

1 1
( ) ' '

2 2 '
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We have 

      0 0 0
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.(2 ).
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                                                    (4.8) 

Now, we turn to the calculation of  1 b  following eq. (3.12) 

Since: 
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We can rewrite  1 b  as 

 

   

 

1 1 1

0

3

0 0

, ( , ') '
2

11 ( )
. ' . '

2 2

r

b
b b V b z dz

g r eb dU r b
a dz a dz

r dr r



 





 

  

 
 



 

                                                            (4.10) 

with following property 
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                                                (4.11) 

one gets: 

   1 0 1.2 . ( ) . ( )
2

ga d
b K b ga K b

db
                                                                             (4.12) 

where  1K b  is the Macdonald function of first order 
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   1 0

1
( )

d
K b K b

db
 


                                                      (4.13) 

Substitution of eqs. (4.8), (4.13) into eq. (3.18) and (3.19), one gets: 
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                          (4.15) 

The differential scattering cross sections of left and right polarized nucleons follow equations 

(4.1), (4.2), respectively  are 
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                        (4.17) 

With a dimensionless q defined as 
p

q


  [12], one can rewrite (4.16) and (4.17), respectively, as 
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                                                                        (4.18) 
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                                                                        (4.19) 

The total differential scattering cross section of nucleon is 
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                                    (4.20) 

The polarizaton vector of  nucleon is 
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                    (4.21)  

From eq.(4.21), we derive the maximum value of the polarization vector at scattering angle, that 

satisfies the condition 

2

2 2

1
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4a p





 , (condition 21 2ap  )                                                                         (4.22)   

and it depend on ratio of the real and imaginary part of potential. 

Evidently, at the high momentum with the imaginary part of potential is small, the nucleon is 

almost not polarization. 

Substituting the scattering angle in eq. (1.22) into eqs.(4.18) – (4.20), we obtain the differential 

scattering cross sections of left and right polarized nucleons  
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                         (4.23) 
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                                                                                     (4.24) 

The dependence of the left, right and total differential cross section on q (or, in other words, on the 

incident momentum) and the scattering angle   are graphically plotted in Figures 4.1 and 4.2 

(constants are set to unit). 
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Fig.4.1. Dependence of the differential cross section (left, right and total) on the momentum 

of incident particle (with a specific small value of the scattering angle 0.1rad  ) 

 

 

Fig. 4.2. Dependence of the differential cross section on the scattering angle  

for q = 10 and q = 1000 

In figure 4.2, show that when the moment incident of particle is high or very high, the polarity of 

nucleons is ignored. 
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5. Conclusion 

We obtained the non-relativistic expression for high energy small angles scattering amplitude of 

nucleons in the form of Glauber type representation. The expressions for the left, right and total 

differential cross section for polarization nucleon are obtained by using Klein – Gordon equation with 

phenomenological spin - orbit potential. The Yukawa potential is used to illustrate the results. We 

have shown that nucleons are almost no polarization at high energies.  

Form of graphs in Figure 4.1 and 4.2 depicting the differential cross section of particles on the 

incident momentum and scattering angle of particles is similar to the graphs in Figure 1, Figure 2 of 

the paper [9] (without Darwin term), but  results of this paper is a bit smaller than the same result 

obtained  in the paper[9] , because the interaction potential used in this paper is taking part in the 

absorption of nucelon by nuclear (characterized by the imaginary part of the interaction potential) and 

in the paper [9] the Darwin term related to the speed fluctuations of the interaction potential. 

With the consideration of the imaginary part of the interaction potential related to the inelastic 

scattering and the results obtained in non-relativistic approximation will form the basis for the analysis 

of experimental data related to the nucleon scattering in nuclear. This issue must also examine the 

details more when the empirically related to nuclear structure at high energies be considred in the  

near future. 
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