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Abstract: We have studied magneto-thermoelectric effects in quantum well in the presence of 

electromagnetic wave. The analytic expression for Ettingshausen coefficient (EC) in the Quantum 

Well with parabolic potential (QWPP) in the presence of Electromagnetic wave (EMW) is 

calculated by using the quantum kinetic equation for electrons. The dependence of EC on the 

frequency, the amplitude of EMW, the Quantum Well parameters and the temperature are 

obtained. The results are numerically calculated, plotted, and discussed for GaAs/GaAsAl 

Quantum Well to clearly show the dependence of EC on above parameters and the results in this 

case are compared with the case in the bulk semiconductors. We realize that as the temperature 

increases, the EC decreases. The results show appearance of the Shubnikov–de Haas (SdH) 

oscillations when we survey the dependence of EC on the magnetic field. 

Keywords:  Ettingshausen, Quantum well, Electromagnetic wave, parabolic potential, 

GaAs/GaAsAl. 

1. Introduction

 

The magneto-thermoelectric effect has been studied both theoretically and experimentally. In [1, 

2], the theory of the Ettingshausen effect in the bulk semiconductors has been also investigated. 

According to the Hicks and Dresselhaus [3] predicted that “the thermoelectric figure of merit for two-

dimensional QWs and one-dimensional quantum wires should be substantially enhanced relative to the 

corresponding bulk materials”. In [4], the mechanism for the increase of thermoelectric power of n-

type multivalley PbTe/Pb1−xEuxTe QWs has been studied theoretically. The theory of thermopower 

in quantum dots was developed in [5]. The theory of the quantum thermomagnetic effects in size-

quantized systems was studied in [6]. The Ettingshausen effect of a two-dimensional electron gas has 

been investigated theoretically within the framework of the Boltzmann kinetic equation for different 

mechanisms of electronic scattering taking into account phonon-grag contributions [7]. However, the 

limitation of the Boltzmann kinetic equation is that it is only used in high temperature conditions and 

the Ettingshausen effect in the QWPP under the influence of EMW has not been studied. So, in this 
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work, we use the quantum kinetic equation method to calculate the EC in the QWPP under the 

influence of electromagnetic wave. We see some differences between the results obtained in this case 

and in the case of the bulk semiconductors. Numerical calculations are carried out with a specific 

GaAs/GaAsAl Quantum Well. Numerical results and discussion for the GaAs/AlAs cylindrical 

quantum wire are given in the section 3. And the final section shows remarks and conclusions. 

2. Calculation of ettingshausen coefficient in quantum well in the presence of  

electromagnetic wave 

In this report, we use quantum kinetic equation method to obtain EC in QWPP in the presence of 

EMW. We consider a QWPP subjected to a crossed electric field  1 1,0,0E E , magnetic field 

(0,0, )B B  is perpendicular to the plane of the free electronics . 

 If the confinement potential is assumed to take the form 
2 2( ) / 2zV z m z  then the single-particle 

wave function and its eigenenergy are given by: 
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Here: yk  and yL  are the wave vector and the normalization length in the y-direction, respectively, 

z  and 
c

eB

m
   are the confinement frequency and the cyclotron frequency, respectively. N is the 

Landau level index and n being the subband index, 1E

B
   being drift velocity of electron. The 

Hamiltonian of the electron-acoustic phonon system in QWPP in the second quantization presentation 

can be written as : 
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Where ( )A t  is the vector potential of laser field, q  is the energy of an acoustic phonon with the 

ware vector 
 , zq q q

, 
, , yN n k

a and 
, , yN n k

a ( qb

and qb
) are the creation and annihilation operators of 

electron (phonon), respectively. 
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qC  is the electron–phonon interaction constant which depends on the scattering mechanism, 

, '( )n n zI q is the form factor of electron, given by: 
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Where 

 ( )N

ML x  is the associated Laguerre polynomial. 

 
 2 2 / 2, /B B cu l q l m 

,
2 2 2

x yq q q   .  

When a high-frequency EMW is applied to the system in the z direction with electric field vector 

0 sinE E t   (where 0E  and   are the amplitude and the frequency of the EMW), the quantum 

kinetic equation of average number of electron 
, , , , , ,y y yN n k N n k N n k

t

f a a  is: 
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By replacing Eq.(3) on Eq.(6) we get the quantum kinetic equation: 
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Here 
H

h
H

  is unit vector in the direction of magnetic field. For simplicity, we limit the problem 

to case of 1,0,1l   . Now, we mutiply both sides of the Eq.(7) by    , ,/
yN n kye m k    , carry out 

the summation over N and yk  and then notice that 
2
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, we get following equation: 
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  is the momentum relaxation time. 
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The current density J  and thermal flux density eq  given by: 
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From the current density and thermal flux density formula, we obtain the EC: 
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1 1 1 1

2

1 1 2 2

ij 1 1 ij 12 2

1 1

-eE -eE

-eE
-eE -eE

-eE
-eE

1 -eE

c k k c i j jl

F

lm c lmp p c l m

c k k c

c

B x h B x h h

B x
B x h B x h h

Tm

B x
B x h B

B x

      


     


     

 

          


  
           



   
      
    

 

 

     

1

2 2

1 1 1 1

-eE

-eE -eE

i j jl

lm c lmp p c l m

x h h

B x h B x h h



     

   

          
   

Here:    1 ' 'c zB N N n n     . The appearance of the parameter x  is due to the 

replacement of /eB x , where x  is a constant of the order of Bl  [8], F  are the Fermi level. From 

the analytic expression for EC we see that: EC dependence on external fields (i.e. electrical field 

intensity 1E , the cyclotron  c ),  including EMW (i.e. frequency   and amplitude 0E  of EMW), 

temperature and special  parameters for QWPP (i.e. the confinement frequencies z ), and these 
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dependences is more complicated than those in the bulk semiconductors. This result is due to the 

difference in structure, wave function and energy spectrum of QWPP in comparison with the bulk 

semiconductors. Moreover, we see that the analytic expression for EC in the QWPP is absolutely 

different from that in bulk semiconductors. In the next section, we will give a deeper insight into this 

dependence by carrying out a numerical evaluation. 

3. Numerical results and discussion 

In this section, we present detailed numerical calculations of the EC in a QWPP subjected to 

uniform crossed magnetic and electric fields in the presence of an EMW. For the numerical 

evaluation, we consider the model of a QWPP GaAs/AlGaAs with the following parameters: 

16 3 14 1 3 150 ; 13,5 ; 3.10 9,1.10 5,32 . ; 53 .5 ; 78; ;zF meV eV cm s g c mT sB m                

 

 

Fig.(1) describes the dependence of EC on temperature with 1010 Hz ,  
4

0 5.10 /E V m , 5

1 10 /E V m , 5B T . 

In the Fig (1): The dependence of the EC in QWPP on temperature is vaguely nonlinear (nearly 

linear).  The EC decreases as the temperature increases.  This is consistent with the experimental result 

obtained in the bulk semiconductors case [1].  However, in the bulk semiconductors, EC has positive 

value, whereas the EC in QWPP on temperature has negative value. This result is due to the difference 

in structure, wave function and energy spectrum of QWPP in comparison with the bulk 

semiconductors. Also, the presence of electromagnetic waves influence on the EC weakly, the EC 

value is the same in the domain of low temperature and have different values in the region with higher 

temperatures. 

Figure (2) shows the dependence of the EC on the magnetic field . We can see clearly the 

appearance of oscillations and oscillations are controlled by the ratio of the Fermi energy and energy 

of cyclotron. The mechanism of the oscillations can be easily explained as follows. At low 

temperature and strong magnetic field, the free electrons in metals, semiconductors will move as 

simple harmonic oscillator. When the magnetic field changes, the cycle of the oscillations also 

changes. The energy levels of electrons are separated into Landau levels, with each level Landau, 

cyclotron energy and the electron state linearly increase with the magnetic field. When the energy 
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level of the Landau levels excesses the value of Fermi level, the electron can move up freely and move 

in the line, which makes the EC oscillate circulating with magnetic field. The presence of 

electromagnetic waves influence on the EC weakly. From fig (2) we see that the value of the EC is the 

same in the domain of weak magnetic field and there is not much different value in the domain of high 

magnetic field.  

 

 

Fig.(2) describes the dependence of EC on magnetic field with 
1010 Hz ,

4 5

0 15.10 / , 5.10 /E V m E V m  . 

 

Fig.(3) describes the dependence of EC on laser amplitude with 

 5 12

1 10 / , 5 , 10E V m B T Hz   . 
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In Figure 3, we investigated the dependence of the EC on amplitude of electromagnetic waves.  

Basing on the graph, we see that when the amplitude of electromagnetic waves increases, the EC is 

almost unchanged. 

4. Conclusion 

In this paper, we analytically investigated EC in the Quantum Well in the presence of the EMW 

with parabolic potential. The electron-phonon interaction is taken into account at low temperatures. 

We give out the analytical expression of EC in the Quantum Well. Estimating numerical values and 

graph for a GaAs/GaAsAl Quantum Well to see clearly dependence of the EC on the amplitude of 

EMW, magnetic field and temperature. 

The results showed that the EC decreases linearly with temperature and the EC has a negative 

value. When surveying the EC dependence on EMW amplitude, we see that the amplitude of 

electromagnetic wave less impact the EC. In addition, we see the appearance of SdH oscillations when 

the survey EC dependence on the magnetic field. 
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