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Abstract: We show that the famous Heisenberg uncertainty relation for two incompatible 

observables can be generalized elegantly to the determinant form for N arbitrary observables. To 

achieve this purpose, we propose a generalization of the Cauchy-Schwarz inequality for two sets 

of vectors. Simple consequences of the N-ary uncertainty relation are also discussed.  
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1. Introduction

 

The uncertainty principle was introduced by Heisenberg [1] who demonstrated the impossibility of 

simultaneous precise measurement of the canonical quantum observables x̂  (the coordinate) and 
xp̂  

(the momentum) by positing an approximate relation xx p  , where  is the Plank constant. A 

year after Heisenberg formulated his principle, Weyl [2] derived the more formal relation 
2

x p   . 

Robertson [3] generalized the Weyl’s result for two arbitrary Hermitian operators Â  and B̂ :  

1 ˆ ˆA B [ A B]
2i

                                                                                                                         (1) 

where A  and B  are the standard deviations and ˆ ˆ[ A B]  represents the commutator 

ˆ ˆ ˆˆ ˆ ˆ[ A B] AB BA   . The Robertson formula (1) has been recognized as the modern Heisenberg 

uncertainty relation.  

Going further, Schrödinger [4] derived the following stronger uncertainty relation:  

2 2
1 1ˆ ˆ ˆˆ ˆ ˆA B { A B } A B [ A B]
2 2i

   
          

   
                                                                    (2) 
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The difference between Eqs (1) and (2) is the first squared term under the square root, analogously 

known as the covariance in the theory of probability and statistics, consisting of the anti-commutator 

ˆ ˆ{ A B } , defined as ˆ ˆ ˆˆ ˆ ˆ{ A B } AB BA   , and the product of two expectation values ˆ ˆA B . These 

extra terms lead to substantial differences between the two uncertainty relations (1) and (2) in many cases.  

All uncertainty relations mentioned above are binary, that means only two observables are involved in 

such relations. In this article, we propose a novel generalized uncertainty relation in which N  

arbitrary observables simultaneously participate. In order to achieve this goal, we need to establish 

new generalized Cauchy-Schwarz inequality.   

The paper is organized as follow. In section 2, we introduce notation and derive the Robertson and 

Schrödinger uncertainty relations. In section 3, we propose a generalization of the Cauchy-Schwarz 

inequality and subsequently formulate a novel uncertainty relation for arbitrary incompatible 

observables. Section 4 is devoted to present simple consequences of the generalized uncertainty 

relations presented in previous section. Finally, in section 5 we briefly discuss related results and conclude.     

2. Mathematical derivation of Schrödinger uncertainty relation 

Throughout this article we consider a certain physical state   (in a Hilbert space  ), all 

observables ˆ ˆˆA B C …    act on that state, and all observables are assumed to be Hermitian operators. For 

each operator Â  we define the expectation (which depends on  ): ˆ ˆA A    , the operator 

Â  defined by ˆ ˆ ˆA A A Id   , the associated vector is given by ˆA A   , the variance or the 

dispersion of Â : 
2

2 2 2 2

A
ˆ ˆ ˆ( A) ( ) ( A) A A      . One easily finds that: 

ˆ ˆˆ ˆ[ A B] [ A B]    . The symmetrized covariance of Â  and B̂  can be defined as: 

1
2

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆCov( A B ) AB BA A B Cov( B,A)     .  

In an inner product space, the Cauchy-Schwarz inequality states that for any vectors u  and v   

2 2 2u v   u v          the equality holds if and only if  u v  for some complex  .           (3) 

On another side, the imaginary and real part of A B   can be calculated as  

ˆ ˆˆ ˆA B B A A B B A 1 ˆ ˆIm A B [ A B]
2i 2i 2i

         
 

 
                                   (4) 

ˆ ˆ{ A B }A B B A ˆ ˆˆ ˆRe A B A B Cov( A B )
2 2

   
 


                                              (5) 

Combining (3), (4) and (5) we obtain the following inequality: 

2 2 2 2 2 2 2( A) ( B ) A B A B ( Re A B ) ( Im A B )                  , or 

 

2 2

2 2 1 1ˆ ˆ ˆˆ ˆ ˆ( A ) ( B ) { A B } A B [ A B]
2 2i

 
       

 
                                                                (6) 
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2

2 2 1 ˆ ˆ( A ) ( B ) [ A B]
2i

                                                                                                              (7) 

The inequalities (6) and (7) are exactly the Schrödinger and Robertson uncertainty relations, 

respectively. Equality in (6) holds if and only if A s B   for some s C (complex number), 

while equality in (7) holds if and only if A s B   for some s i R (imaginary number).  

Uncertainty relations also apply to the case of mixed states. The Robertson uncertainty relation for 

mixed state can be easily found [5]: 

1 ˆ ˆA B Tr( [ A B])
2i

                                                                                                                    (8) 

where  is the density operator that describes the mixed state and Tr  denotes the trace. Similarly, the 

Schrödinger uncertainty relation for mixed state follows [5]: 

2 2

2 2 1 1ˆ ˆ ˆˆ ˆ ˆ( A ) ( B ) Tr( { A B }) Tr( A)Tr( B ) Tr( [ A B])
2 2i

   
          

   
                                      (9) 

3. Uncertainty relations in multiple simultaneous measurements 

As we have seen in previous section, the Cauchy-Schwarz inequality (3) is the mathematical 

foundation of the Heisenberg uncertainty relation (7). In this section, we first propose a novel 

generalized Cauchy-Schwarz inequality for multiple vectors, and subsequently, using this inequality 

we formulate a generalized uncertainty relation for multiple incompatible observables.  

Consider two sets of m  and n  complex vectors from a Hilbert space H :  1 2 mX { x x … x }     

and 1 2 nY { y y … y }    . We introduce the following 4 complex matrices:  

1 1 1 m 1 1 1 n

m 1 m m n 1 n n

x x x x y y y y

M( X )   M(Y ) ,

x x x x y y y y

   
   

     
   
   

                                       (10) 

1 1 1 n 1 1 1 m

m 1 m n n 1 n m

x y x y y x y x

M( XY ) M(YX )

x y x y y x y x

   
   

      
   
   

                                     (11) 

 

We are able to prove the following determinant inequality [6]:  

Theorem 1. Suppose that the matrix M(Y )  is invertible. Then we have the inequality:  

1det M( X ) det[ M( XY ) M(Y ) M(YX )]                                                                       (12) 

The equality holds if and only if X  is linearly dependent or X A Y   for some matrix A  of 

size m n .   

In the particular, if m n  we get the following form: 

2det M( X ) det M(Y ) det M(YX )                                                                                            (13) 
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We remark that for m n 1  , the inequality (12) becomes: 2 2 2x y x y       , which is the 

Cauchy-Schwarz inequality (3). For this reason, we shall refer to the inequality (12) as “generalized 

Cauchy-Schwarz inequality”.  

For two sets of Hermitian operators 1 2 m
ˆ ˆ ˆ ˆX { x ,x , ,x } and 1 2 m

ˆ ˆ ˆ ˆY { y ,y , ,y } , there are two sets 

of associated vectors 1 2 mX { x x … x }        and 1 2 nY { y y … y }       , defined as in 

previous section. Following the inequality (12), the natural generalized uncertainty relation for m n  

observables 
1 2 m 1 2 n
ˆ ˆ ˆ ˆ ˆ ˆ{ x ,x , ,x y ,y , ,y }  should be:   

1det M( X ) det[ M( X Y ) M( Y ) M( Y X )]                                                                     (14) 

Uncertainty relations for mixed states can be derived in a similar way. Below we consider 

particular interesting cases, for several observables.  

1. Three Observables  m 1 n 2   :  

For ˆ ˆX { x }   and ˆ ˆ ˆY { y z }    , the uncertainty relation (14) becomes ternary:  

2 2 2 2 2 2 2( x y z ) ( x ) | y z | ( y ) | z x | ( z ) | x y |

      2 Re x y y z z x .

           

     

   

   
                                (15)  

We remark that the inequality (15) is stronger than inequality (7) which is the Robertson 

uncertainty relation. 

Indeed, 2Re x y y z z x | | x y y z z x | ( x y z )                   | , then (15) is 

stronger than:  

2 2 2 2 2 2 23( x y z ) ( x ) | y z | ( y ) | z x | ( z ) | x y | ,                                               (16) 

which can be easily derived from the Robertson uncertainty relation.                 

2. Four Observables  m 2 n 2   :  

For 1 2
ˆ ˆ ˆX { x , x }    and 3 4

ˆ ˆ ˆY { x , x }   , Eq. (14) forms a quaternary uncertainty relation:  

  2 2 2 2

1 2 1 2 3 4 3 4

2

1 3 2 4 1 4 2 3

( x x ) | x x | ( x x ) | x x |

              | x x x x x x x x | . 

       

       

  


                                                           (17)  

We need to note that the inequality (17) is stronger than the estimation derived from the Robertson 

uncertainty relation for two pairs of operators 1 2
ˆ ˆ( x ,x )  and 3 4

ˆ ˆ( x ,x ) , which has zero lower bound:  

   2 2 2 2

1 2 1 2 3 4 3 4( x x ) | x x | ( x x ) | x x | 0.                                                                  (18) 

3. Five Observables   m 3 n 2    or m 4 n 1   :  

Inequality (14) leads to the same relations as for three and four observables.  

4. Applications 

The uncertainty relation (14) can be used in different areas of quantum physics. Below, for 

simplicity, we limit to several consequences of the generalized uncertainty relation in quantum 

mechanics and noncommutative quantum fields.  
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A.  Consider three incompatible components of angular momentum. Their commutators read [5]: 

1 2 3 2 3 1 3 1 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ J ,J ] i J ,  [ J ,J ] i J ,  [ J ,J ] i J .                                                                       (19) 

The uncertainty relation (15) takes the form:  

2 2 2 2 2 2 2

1 2 3 1 2 3 2 3 1 3 1 2

1 2 2 3 3 1

( J J J )   ( J ) J J ( J ) J J ( J ) J J

       2 Re J J J J J J  

     

     

              

   

         

 
2

2 2 2 2 2 2

1 1 2 2 3 3

1 2 2 3 3 1

( J ) J ( J ) J ( J ) J
4

  2 Re J J J J J J

  

      

         

  

                                                          (20) 

Following (16) the weaker estimation of (20) has the form: 

 
2

2 2 2 2 2 2 2

1 2 3 1 1 2 2 3 3( J J J ) ( J ) J ( J ) J ( J ) J .
12

                                         (21) 

We note that in eigenstates of the operators 3J and 2J , both sides of (21) are zeros.  

B.  Consider canonical noncommutative coordinates in a noncommutative space:  

3 1 2
ˆ ˆ ˆ ˆˆ ˆ[ x y] i  [ y z ] i  [ z x] i                                                                                           (22) 

The ternary uncertainty relation (15) becomes: 

 
2

2 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( x y z ) 2C( x y )C( y z )C( z x ) C( x y ) C( y z ) C( z x )
2

                         

2 22 2 2 2
2 2 2 2 2 231 2ˆ ˆ ˆ ˆˆ ˆ( x ) C( y z ) ( y ) C( z x ) ( z ) C( x y )

4 4 4

 
     

    
    
    
         

     

                   

2 3
2 2 2 2 2 2

1 2 3 1 2 3

3
( x ) ( y ) ( z )

4 8
      

 
 

                                                                            (23) 

where ˆ ˆ ˆˆ ˆ ˆC( A B ) Cov( A,B ) Cov( B,A)    the symmetrized covariance of Â  and B̂ .  

C.  Similarly, consider canonical noncommutative space with four coordinates satisfying 

j k jk[ ] icˆ ˆx x   for j k 1… 4     and j ,kc  are real, the quaternary uncertainty relation (16) reads:  

2 2 2 2 2 2
2 12 34 13 24 14 23

1 2 3 4 1 3 3 2 2 4 4 1

c c c c c c
( x x x x ) 2 Re x x x x x x x x

16
       

 
              (24) 

5. Conclusion 

In this article, we have proposed a novel uncertainty relations for N ( N 2 ) incompatible 

observables. The uncertainty relations for three and four observables have been derived explicitly, 

which have been shown stronger than the ones derived from the Schrödinger (or Heisenberg) binary 

uncertainty relations. Moreover, we have formulated a determinant form of N -ary uncertainty relation 

for arbitrary N  incompatible observables. Our results have been derived from generalizing the 

classical Cauchy-Schwarz inequality. Alternative stronger uncertainty relations for multi observables, 

their associative lower bounds and minimal states have been investigated recently [7-10]. These 
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uncertainty relations, based on different inequalities, are not equivalent to the one discussed in this 

article. The differences of such uncertainty relations and the corresponding minimal states will be 

analyzed in details elsewhere.  
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