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Abstract: Debye-Waller factors (DWFs) of metallic Cu (fcc crystal) in X-ray absorption fine 

structure (XAFS) presented in terms of cumulant expansion have been studied based on the 

anharmonic correlated Debye model (ACDM). This ACDM is derived from the many-body 

perturbation approach and the anharmonic effective potential that includes the first shell near 

neighbor contributions to the vibration between absorber and backscatterer atoms. Analytical 

expressions of three first XAFS cumulants of Cu have been derived involving more information of 

phonon-phonon interactions taken from integration over the first Brillouin zone. Morse potential is 

assumed to describe the single-pair atomic interaction. Numerical results for Cu using the present 

ACDM show their good agreement with experiment and with those of other theories, as well as 

their advantages compared to those calculated using the single-pair potential. 

Keywords: Debye-Waller factor, XAFS cumulants, effective potential, correlated Debye model, 

metallic Cu. 

1. Introduction

 

X-ray absorption fine structure (XAFS) has developed into a powerful probe of atomic structure 

and thermal effects of substances. XAFS expression contains Debye-Waller factor (DWF) presented in 

terms of cumulant expansion, where the first cumulant describes the net thermal expansion, the second 

one describes the mean square relative displacement (MSRD), the third cumulant describes the 

anharmonic contribution to XAFS phase [1]. The accurate cumulants are crucial to quantitative 

treatment of anharmonic XAFS. Consequently, the lack of the precise cumulants has been one of the 

biggest limitations to accurate structural determinations (e.g., the coordination numbers and the atomic 
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distances) and other parameters from XAFS experiment [2]. Therefore, investigation of XAFS 

cumulants is of great interest.  

The purpose of this work is to study XAFS DWFs presented in terms of cumulant expansion up to 

the third order describing the thermodynamic properties of Cu (fcc crystal) based on the anharmonic 

correlated Debye model (ACDM). The ACDM is derived from the many-body perturbation approach 

(MBPA) [3] and the anharmonic interatomic effective potential that includes the first shell near 

neighbor contributions to the vibration between absorber and backscatterer atoms.  In Section 2, the 

analytical expressions for the dispersion relation, correlated Debye frequency and temperature and 

three first XAFS cumulants of fcc crystals have been derived which contain more information taken 

from integration over the phonon wave numbers varied in the first Brillouin zone (BZ). Morse 

potential is assumed to describe the single-pair atomic interaction included in the derived anharmonic 

interatomic effective potential. Numerical results for Cu (Section 3) using the present ACDM show 

their good agreement with those calculated using the anharmonic correlated Einstein model (ACEM) 

[4], the Path-integral Monte-Carlo (PIMC) [5] and with experiment [5-8], as well as their advantages 

compared to those calculated from the single-pair potential (SPP) [9, 10]. 

2. Theory 

2.1. XAFS cumulants 

In order to include the anharmonic effects in the present ACDM, Hamiltonian of the system is 

written in the summation of the harmonic and cubic anharmonic components, 
0H  and 

cH , 

respectively 

0 cH H H  .                                                                                                                                  (1) 

Here H0 and Hc contain the local force constant effk and cubic parameter 3effk  of the anharminic 

effective potential of fcc crystals, respectively. This effective potential is defined based on the first 

shell near neighbor contribution approach (FSNNCA) as  

   2 3

eff eff 3eff 0

1 x x x
V x k x k x V x 2V 8V 8V , x r r

2 2 4 4

     
              

     
,                             (2) 

which is the sum over not only the term V(x) describing the pair-interaction between absorber and 

backscatterer atoms but also the other ones describing the projections of their pair-interactions with 18 

first shell near neighbors of fcc crystals along the bond direction excluding the absorber and the 

backscatterer themselves whose contributions are already described by V(x), as well as 4 others 

located in the surface perpendicular to the bond direction providing zero contribution.  

The values of eff 3effk ,k are determined by applying the Morse potential expanded to the third order 

around its minimum 

     2 x x 2 2 3 3V x D e 2e D 1 x x          ,                                                                          (3) 

where α describes the width of the potential and D is the dissociation energy, to each term of the 

second equation of Eqs. (2) and comparing the results to the first equation. They are quite different 

from those of the SPP [8, 9] which include only the first term V(x) on the right of Eqs. (2).  

Derivation of the present ACDM for fcc crystals is performed using the MBPA [3] based on the 

dualism of an elementary particle in quantum theory, i.e., its corpuscular and wave property. Then, we 
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can describe the system in the present ACDM involving all different frequencies up to the Debye 

frequency as a system consisting of many bodies or many phonons, each of which corresponds to a 

wave having frequency ω(q) and wave number q varied in the first BZ. Moreover, based on the 

FSNNCA only backscattering from the first shell of absorber and backscatterer atoms is taken into 

consideration. This reduces and simplifies the derivations of the analytical expressions of the 

considered XAFS cumulants. 

For this purpose, the displacement nu ' s  in the parameter x in terms of the displacement of nth 

atom 
nu  of the one-dimensional chain described by 

n n 1 nx u u  ,                                                                                                                                  (4) 

is related to the phonon displacement operators qA  [11] in the form 

iqan

n q

q

e
u A

2NM ( q )
  ,   q q q q'A A , A ,A 0


    ,                                            (5)  

to be given by 

   
 

 n q
q

iqan iqax e f q A , f q e 1
2NM q

   ,                                                                (6) 

where N is the atomic number, M is the mass of the composite atoms and a is the lattice constant. 

The frequency ω(q) contained in Eq. (6) and then in all cumulant expressions derived for the 

oscillation between absorber and backscatterer atoms in XAFS process under the interactions of these 

atoms with their first shell near neighbors, describes the dispersion relation. Using the obtained local 

force constant for fcc crystals, it has resulted as 

   
5D qa

q 2 sin , q
M 2 a


 

 
  

 
.                                                                                            (7)  

At the bounds of the first BZ of the linear chain, q / a  , the frequency has a maximum so that 

from Eq. (7) we obtain the correlated Debye frequency D  and temperature D  for fcc crystals in the 

form  

D
D D

B

5D
2 ,

M k


    ,                                                                                                          (8) 

where Bk  is Boltzmann constant. 

Based on the above results the cubic anharmonic effective parameter can be expressed as 

1 2 3

1 2 3

3

c 3eff 1 2 3 q q q

q ,q ,q

H k x V( q ,q ,q )A A A   ,                                                                                     (9) 

or in the following form using Eq. (5) for the displacement of nth atom  

         1 2 3

1 2 3

1 2 3

3 i q q q an

c 3eff n 1 n 3eff 1 2 3 q q q

n q ,q ,q n

H k u u k e f q f q f q A A A
 



 
    

 
   .                    (10) 

     Comparing Eq. (10) to Eq. (9) and indicating   

iqna

n

1
( q ) e

N
    ,      i0na

n

0 e N   ,                                                                                   (11) 
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with N as the atomic number, we obtain  

         1 2 3 3eff 1 2 3 1 2 3V q ,q ,q k q q q f q f q f q   .                                                                (12) 

       Using Eq. (5) and Eq. (11), this Eq. (12) changes into 

       
     

31 2

1 2 3

iq aiq a iq a3/ 2

i q q q an

1 2 3 3eff

n 1 2 3

e 1 e 1 e 1
V q ,q ,q k e

2NM q q q  

 
    

    
   

  .                            (13) 

In the MBPA [3] the value x  is calculated using the expression        

q 0
q

0

f ( q ) A S( )

S( )
x







,                                                                                                          (14)            

 
 

n

1 n a 1 a n

n 0 0 0

1
S( ) d d T H ( ) H ( )

n!

 

    





   , 0 0tHtH

a aH (t ) e H e


 ,                                  (15)  

which takes backscattering only from the first shell. 

Substituting into Eq. (14) the relations [3] 

   q q 10

ˆA S d T A H       ,   q 0
A 0 ,                                                                           (16) 

we obtain 

           
1 2 3

1 2 3

1 2 3 q q q q
0

q q ,q ,q 0

ˆ ˆ ˆ ˆx f q V q ,q ,q d T A 0 A A A .



     
                                        (17)                                                                                                                                                                                                                                                  

Using Wick theorem for T-product in the integral, the harmonic phonon Green function [3] 

     0

q,q' q q'
0

ˆ ˆG T A A 0  
  ,         q q0

q,q' q, q' q qG n 1 e n e
   

 


    ,                     (18) 

the symmetric properties of V(q1,q2,q3) [11], properties of function q, q'  , the phonon density   

 
    q B

1
n , Z q exp q , 1 / k T

Z q 1
    


 ,                                                                (19) 

as well as  q  from Eq. (7), f(q) from Eq. (6),  0  from Eq. (11) and the phonon momentum 

conservation in the first BZ we change Eq. (17) into the one in terms of Morse parameters for fcc 

crystals  

  
 

 

 

 

 

iqa iqa

q q

e 1 e 1 1 Z q 1 Z q3 3 qa
x sin

8NM q 1 Z q 2 1 Z q4N 5MD





   
 

 
  .                                  (20) 

Using this expression, the first cumulant describing the net thermal expansion or lattice disorder in 

XAFS theory has resulted as 

     
 

 

    

/ a ( 1 )
1 ( 1 ) 20

0 2

00

( 1 )

0 B

1 Z q
T x q dq ,

1 Z q

3a
, Z q exp q , 1 / k T .

40 D




   


   
 


  



  


                                                                         (21) 
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Here, σ
2
 is second cumulant describing the mean square relative displacement (MSRD) and has the 

following form for fcc crystals 

   
 

 

/ a
22 2 2 2

n 1 n 0 0 2
n 0

1 z q a
T x u u ( q ) dq ,

1 z q 10 D



   
 




    


  ,                              (22) 

The third cumulant is the mean cubic relative displacement (MCRD) describing the asymmetry of 

the pair distribution function in XAFS theory and has resulted for fcc crystals as 

      

   
     

     

   

     

     

        

1/ a q/ a
3 1 2 1 23 2 ( 3 )

0 1 2

1 2 1 20 / d

1 2

1 2 1 2

2 2
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1 2 1 2

1 2 1 2

q q q q

q q q q

q q q q
T x 3 x x dq dq

q q q q

q q e e
1 6 ,
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a
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400 D





    

     

  
 

  

 

  


 





 
  

 




  

  

 
  

  
     

 



 

        (23) 

Note that in the above expressions for the cumulants of fcc crystals in the present ACDM, 
( 1 ) 2 ( 3 )

0 0 0, ,    are zero-point energy contributions to the first, second and third cumulant, respectively, 

and these cumulant expressions have been obtained for the case of large phonon numbers, when the 

summation over q is replaced by the corresponding integral in the first BZ. Moreover, we have used 

the phonon momentum conservation in the first BZ [11] to describe the value of q3 by q1 and q2 for the 

first and third cumulants. This leads to reducing the integrations for these cumulants given by Eqs. 

(21) and (23), respectively. 

2.2. High- and low-temperature limits 

It is useful to consider the high-temperature (HT) limit, where the classical approach [12, 13] is 

applicable, and the low-temperature (LT) limit, where the quantum theory must be used [4]. In the HT 

limit we use the approximation 

   Z q 1 q                                                                                                                          (24) 

to simplify the expressions for the cumulants. In the LT limit Z(q) >> 1, so that all temperature-

dependent terms approach zero, and in the LT limit, the cumulants approach constant values, e. g., 

their zero-point contributions. These results are written in Table 1. 

Table 1. The expressions of cumulants in LT and HT limits. 

Cumulant LT limit HT limit 

 
( 1 )  

 
6

1 z
4 5MD

  B3k T

20D
 

 
2  

 
2

1 z
5MD

  B

2

k T

5D
 

 
( 3 )  

     

     
 

1 2 3

2
1 2 3

32 2 3
q ,q ,q 1 2 3

q q q3
1 Z

200N D q q q

  

   


 
  

 
2

B

2 3

6 k T

100D 
 

( 1 ) 2 ( 3 )/     1/2 
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where 

  
 

/ a

0

qa
sin

1 2z dq
a Z q



  ,
   

     

     

     
1 2 3 1 2

3 2 2
1 2 31 2 3

6 q q Z q Z q Z q
Z

Z q Z q Z qq q q

 

  

    

    

.                         (25) 

Note from Table 1 that at high-temperatures the first and second cumulants are proportional to the 

temperature T, the third cumulant to T
2
 as the standard characters for these quantities as it was 

mentioned for the other crystal structures [4, 9]. At low-temperatures, they approach their zero-point 

energy contributions which also involve the contributions of q-values from the first BZ. Moreover, at 

high-temperature the cumulant ratio σ
(1)

σ
2
/σ

(3)
 approaches the classical value of 1/2 [12, 13]. 

3. Comparison of numerical results to experiment and to other theories 

Now the expressions derived in the previous section are applied to numerical calculations for Cu 

using its Morse parameters [14] D = 0.337 eV, α = 1.358 Å
-1

. The values of local force constant kS, 

correlated Debye frequency DS  and temperature DS  calculated using the present theory (S = eff) 

written in Table 1 are found to be in good agreement with experiment [6] and in significant difference 

from those calculated using the SPP.   

   Table 2. The values of S DS DSk , ,   of Cu calculated using the present theory (S = eff) compared to experiment 

(S = Expt.) [6] and to those calculated using the SPP. 

S  
S N / mk   13

DS 10 Hz    DS K  

eff  (Present) 50.7181 4.3717 333.9399 

Expt. [6] 50.3450 4.3556 332.7094 

SPP  20.2872 2.7649 211.2021 

  

 

 

 

 

 

 

 

                                  

  Figure 1. Temperature dependence of a) first cumulant  ( 1 ) T  and b) second cumulant  2 T  of Cu 

calculated using the present theory compared to those calculated using the ACEM [4] and SPP and to the 

experimental values: Expt. [6, 5] for  ( 1 ) T , and Expt. [6, 7] for  2 T . 
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   Figure 2. Temperature dependence of a) third cumulant  ( 3 ) T  and b) cumulant ratio σ
(1)

σ
2
/σ

(3)
 of  Cu 

calculated using the present theory compared to those calculated using the ACEM [4], the PIMC [5], the SPP, 

and to the experimental values Expt. [6, 8] for  ( 3 ) T . 

Consequently, temperature dependence of three first XAFS cumulants of Cu (fcc crystal) 

calculated using the present ACDM is found to be in good agreement with experiment [5-8] and with 

those calculated using the ACEM [4] and the PIMC [5], but in difference with those calculated using 

the SPP. The significant discrepancies of the results of SPP with experiment can be attributed to 

neglecting the many-body effects. The above obtained temperature-dependent cumulants describe the 

thermodynamic properties of the considered materials such as the net thermal expansion or lattice 

disorder described by the first cumulant, the MSRD described by the second cumulant and the MCRD 

or the asymmetry of pair atomic distribution described by the third cumulant. All they contribute to 

providing the accurate information of the considered materials from XAFS experiment. 

4. Conclusions 

In this work, XAFS Debye-Waller factors presented in terms of cumulant expansion up to the third 

order describing the thermodynamic properties of Cu have been studied based on the ACDM which is 

derived for studying XAFS cumulants of fcc crystals.  

Derived analytical expressions of the anharmonic effective potential, dispersion relation, 

correlated Debye frequency and temperature, as well as three first XAFS cumulants satisfy all their 

fundamental properties and provide good results which overcome the significant discrepancies with 

experiment of those calculated from the SPP. 

The good agreement of numerical results for Cu with experiment and with those calculated using 

the ACEM and the PIMC illustrates the advantages and efficiency of the present theory and of using 

the anharmonic effective potential in XAFS data analysis. 
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