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Abstract: A study on a five-dimensional scenario of a ghost-free nonlinear massive gravity 

proposed by de Rham, Gabadadze, and Tolley (dRGT) will be presented in this article. In 

particular, we will show how to construct a five-dimensional massive graviton term using the 

Cayley-Hamilton theorem. Then some cosmological solutions such as the Friedmann-Lemaitre-

Robertson-Walker, Bianchi type I, and Schwarzschild-Tangherlini-(A)dS spacetimes will be 

solved for the five-dimensional dRGT theory thanks to the constant-like behavior of massive 

graviton terms under an assumption that the reference metric is compatible with the physical one. 

Keywords: Massive gravity, higher dimensions, Friedmann-Lemaitre-Robertson-Walker, Bianchi 

type I, and Schwarzschild-Tangherlini-(A)dS spacetimes. 

1. Introduction

 

Recently, an important nonlinear extension of the Fierz-Pauli massive gravity [1] has been 

proposed by de Rham, Gabadadze, and Tolley (dRGT) [2], which has been confirmed to be free of the 

so-called Boulware-Deser (BD) ghost, a negative energy mode arising from nonlinear terms [3], by 

several approaches [4]. It turns out that a number of cosmological implications of dRGT theory have 

been investigated extensively. For example, the dRGT theory has been expected to provide an 

alternative solution to the cosmological constant problem. Besides the Friedmann-Lemaitre-

Robertson-Walker (FLRW) metric, some anisotropic metrics such as the Bianchi type I metric along 

with some black holes such as the Schwarzschild, Kerr, and charged black holes have also been shown 

to exist in the context of dRGT theory [5, 6]. Since the dRGT theory has been proved to be free of the 

BD ghost for arbitrary reference metrics, a very interesting extension of the dRGT theory called a 

massive bigravity, in which the reference metric is introduced to be dynamical, has been proposed by 

Hassan and Rosen in Ref. [7]. For up-to-date reviews on massive gravity, see Ref. [5].    

It is worth noting that it is possible to extend the dRGT theory to higher dimensional spacetimes 

[8]. As far as we know, however, most of previous papers on the dRGT massive gravity have worked 

only in four-dimensional spacetimes [5]. Hence, we would like to study higher dimensional scenarios 

of dRGT theory. In particular, we have systematically investigated some cosmological implications of 

a five-dimensional dRGT theory in Ref. [9]. As a result, we have used a simple method based on the 
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Cayley-Hamilton theorem for square matrix [10] to construct higher dimensional graviton terms (or 

interaction terms), for example, 
5L  existing in five- (or higher) dimensional spacetimes. It is worth 

noting that we have been able to show that higher dimensional massive graviton terms 
4nL 
 all vanish 

in four-dimensional spacetimes but do survive in spacetimes, whose dimension number is larger than 

or equal to n [2, 7, 9]. Hence, we should not ignore their existence when studying higher dimensional 

dRGT theories. For example, we have introduced the five-dimensional graviton term, 
5L , to a five-

dimensional dRGT theory. Then, the corresponding field and constraint equations have been derived 

in order to see whether the FLRW, Bianchi type I, and Schwarzschild-Tangherlini metrics act as 

physical solutions to the five-dimensional dRGT theory [9].   

In the present article, we will summarize basic results of our recent study [9]. The article is 

organized as follows: A very brief introduction of our research has been written in section 1. The 

Cayley-Hamilton theorem, which is used to construct the graviton terms, will be mentioned in section 

2. Then, we will present a basic setup and simple physical solutions of a five-dimensional massive 

gravity in sections 3 and 4, respectively. Finally, concluding remarks will be given in section 5.  

2. Cayley-Hamilton theorem and ghost-free graviton terms 

As mentioned above, we would like to show a connection between the Cayley-Hamilton theorem 

and the graviton terms 
2nL 
 of the dRGT massive gravity. In linear algebra, there exists the Cayley-

Hamilton theorem [10] stating that any square matrix must obey its characteristic equation. 

Particularly, for an arbitrary n n  matrix K , we have the following characteristic equation [10] 

       
11 2

1 2 11 1 det 0
n nn n n

n n nP K K D K D K D K K I
 

          ,                                      (1) 

 where  1nD trK K   ,  2 1n jD j n     are coefficients of the characteristic polynomial, 

and 
nI  is a n n  identity matrix. Now, we apply this theorem to the following matrix K  of 

dRGT theory, whose definition is given by 

a b

abK g f  

         ,                                                                                               (2) 

where g  is the physical metric, while 
abf  is the (non-dynamical) reference (or fiducial) metric. In 

addition, a ’s are the Stuckelberg scalar fields, which will be chosen to be in a unitary gauge, i.e., 
a ax  in the rest of this paper. As a result, it is straightforward to recover the first three massive 

graviton terms, 
2 2 22detL K  , 

3 3 32detL K  , and 
4 4 42detL K   corresponding to 2,  3,  and 4,n   

respectively. Similarly, we are able to define a five-dimensional ( 5n  ) graviton term 
5L  to be [9] 

5 3 2 2 3 2 3 2 2 4 5

5 5 5

1 1 1 1 1 1 2
2det [ ] [ ] [ ] [ ] [ ] [ ][ ] [ ][ ] [ ][ ] [ ]

60 6 3 3 4 2 5
L K K K K K K K K K K K K K        .    (3) 

Generally, we have the following relation: 
2 2detn n nL K  , which is a key to construct arbitrary 

dimensional dRGT theory. For instance, the definition of 
6L  and 

7L  can be seen in Ref. [9]. 

3. Basic setup of five-dimensional nonlinear massive gravity 

In this section, we would like to present basic details of five-dimensional nonlinear massive 

gravity, whose action is given by [9] 
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  
2

5 2

2 3 3 4 4 5 5
2

p

g

M
S d x g R m L L L L        ,                                                                    (4) 

where 
pM  the Planck mass, 0gm   the mass of graviton, 

3,4,5  the field parameters, and 
2,3,4,5L  

the graviton terms (or interaction terms) whose definitions are given by   
2 2

2 [ ] [ ]L K K  ,                                                                                                                         (5) 

3 2 3

3

1 2
[ ] [ ][ ] [ ]

3 3
L K K K K   ,                                                                                               (6) 

4 2 2 2 2 3 4

4

1 1 1 2 1
[ ] [ ] [ ] [ ] [ ][ ] [ ]

12 2 4 3 2
L K K K K K K K     ,                                                        (7) 

5 3 2 2 3 2 3 2 2 4 5

5

1 1 1 1 1 1 2
[ ] [ ] [ ] [ ] [ ] [ ][ ] [ ][ ] [ ][ ] [ ]

60 6 3 3 4 2 5
L K K K K K K K K K K K K       .        (8) 

As a result, the corresponding Einstein field equations of physical metric will be defined by 

varying the action (4) with respect to the inverse metric g  :   

 2

5

1
0

2
gR Rg m X Y W     

 
     

 
,                                                                    (9) 

with the following tensors: 

 2 3

1

2
X L L g X       ,                                                                                             (10) 

 2 3 2 2[ ] [ ] [ ]
2

L
X K K g K K K K K K K        

 
       

 
,                                         (11) 

4

2

L
Y g Y     , 2 3 43 2 [ ]

2 2

L L
Y K K K K K        ,                                                      (12) 

5

2

L
W g W     , 2 3 4 534 2 [ ]

2 2 2

LL L
W K K K K K K          .                            (13) 

Here we have introduced some additional parameters such as 
3 1   , 

3 4    , and 

4 5     for convenience. Besides the field equations of physical metric, we have also derived the 

following constraint equations due to the existence of reference metric [9]: 

 5 3 2 4 3 5 4

1
0

2
t X Y W L L L g               .                                                      (14) 

As a result, due to the constraint equations (14), the Einstein field equations (9) can be reduced to 

the simpler form [9]: 

2
1

0
2 2

g

M

m
R Rg L g  

 
   

 
,                                                                                             (15) 

where 
2 3 3 4 4 5 5ML L L L L       is the total massive graviton term. We observe that 

ML  will act 

as an effective cosmological constant, 2 / 2M g Mm L   , due to the Bianchi constraint that 0ML  . 

Indeed, this claim will be the case for a number of metrics, which will be discussed in the next section. 
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4. Simple cosmological solutions 

In this section, we would like to examine the validity of our claim in the section 3 that the total 

graviton term 
ML  turns out to be an effective cosmological constant for a number of physical metrics 

and compatible reference ones. It is worth noting that some metrics such as FLRW and Bianchi type I 

have been found in the four-dimensional dRGT theory in Ref. [6], in which the physical metrics have 

also been assumed to be compatible with the reference ones.  

4.1. Friedmann-Lemaitre-Robertson-Walker metrics 

As a result, the following FLRW physical and reference metrics are given by [9] 

      2 2 2 2 2 2

1 1ds g N t dt a t dx du     ,                                                                                (16) 

      2 2 2 2 2 2

2 2abds f N t dt a t dx du    .                                                                                (17) 

Given these FLRW metrics, the total graviton term 
ML  becomes as 

          
         

33 2 3

4 3 2 3 2 1 1 1 2 3 4 5

2

3 4 2 3 4 3 1

2 3 3 3 3 2 1 1

      3 1 3 1 + 1 3 1 1 ,                             (18)

ML             

         

                    

                  

with 
2 1N N  , 

2 1a a  , 
1 3 43 3     , 

2 3 41 2     , and 
3 3 4    . Armed with these 

results, we will solve the following constraint equations (14), which turn out to be equivalent with the 

Euler-Lagrange equations of scale factors of reference metric [9]: 

2 2

0 0M M M ML L L L

N a 

   
    

   
.                                                                                             (19) 

As a result, once these constraint equations are solved, the corresponding values of 
ML  and then 

that of effective cosmological constant, 2 / 2M g Mm L   , will be determined. For detailed 

calculations, one can see Ref. [9]. Once the value of 
M  is figured out, we will solve the following 

Einstein field equations of physical metric (15) to obtain the following FLRW solution [9]: 

1 exp
6

Ma t
 

  
  

.                                                                                                                       (20) 

It turns out that for a case of positive 
M  we will have the de Sitter solution, which describes the 

expanding universe in five dimensions.  

4.2. Bianchi type I metrics 

As a result, the following Bianchi type I metrics, which are homogenous but anisotropic 

spacetimes, are given by [9] 

       

       

2 2 2 2

1 1 1

2 2 2

1 1 1

exp 2 4

                  exp 2 2 exp 2 ,

ds g N t dt t t dx

t t dy dz t du

  

  

      

          

                                         (21) 

       

       

2 2 2 2

2 2 2

2 2 2

2 2 2

exp 2 4

                 exp 2 2 exp 2 ,

abds f N t dt t t dx

t t dy dz t du

 

  

      

          

                                         (22) 
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where 
1,2  are additional scale factors associated with the fifth dimension u. Similar to the FLRW 

case, we define the following total graviton term 
ML  to be [9] 

          

            
    

2

4 3 2 3 2 1 1 1 2 3

22

4 5 3 4 2 3 4

3 1

2 2 2 3 3

     2 1 1 1 1 2 1 2

      + 1 3 1 1 ,                                                            

ML AB B A B A B

AB A B B A B A B

C

         

         

  

             

                    

                                                    (23)

where      2

2 1 2 1 2 1, , exp ,  exp ,  and expA B C                 . Analogous to the 

FLRW case, the corresponding Euler-Lagrange equations:  

2 2 2 2

0 0M M M M M M M ML L L L L L L L

N A B C   

       
        

       
,                                         (24) 

need to be solved first in order to determine the following values of 
M  [9]. Once this task is 

done, the corresponding Einstein field equations (15) can be solved to give non-trivial solutions [9]: 

       0
1 0 1 1

1

exp 3 exp 3 cosh 3 sinh 3H t H t
H


 

 
  

 
,                                                                   (25) 

       0
1 0 1 1

1

exp exp cosh 3 sinh 3
3

H t H t
H


 

 
  

 
,                                                                   (26) 

       
1

2 2 0 0
1 0 0 0 0 1 1 1 1 1

11

cosh 3 sinh 3 cosh 3 sinh 3
3

H H t H t H t H t dt
HH

 
    



    
        

     
 ,   (27) 

where  2 2 2 2 2

1 1 0 1 0 1 1 04 9 1 ,  ,  3,  and  is a constantMH H V H V H H V    . In addition, parameters 

with subscript “0” appearing in the above expressions are initial ( 0t  ) values of scale factors. 

4.3. Schwarzschild-Tangherlini metrics 

In this subsection, we would like to consider the Schwarzschild-Tangherlini metrics of the following 

forms [9]: 

   
   

2 22
2 2 2 3

1 2 2

1 1

,
, ,

r ddr
ds g N t r dt

F t r H t r



    ,                                                                   (28) 

   
   

2 22
2 2 2 3

2 2 2

2 2

,
, ,

ab

r ddr
ds f N t r dt

F t r H t r


    ,                                                                   (29) 

where 2 2 2 2 2 2 2

3 sin sin sin ,  0 , 0 ,  and 0 2d d d d                     . As a result, 

the corresponding total graviton term turns out to be [9] 

       
   

3 2 2
2 2 2 0 1 2 2 2 0 1

5 2 4 2 3 2 0 1 2 4 2 3 2 0 1

2
2 2

2 3 2

2 3 3 1 3 3

      + 3 ,

ML K K K K K K K K K K

K K

    



          
      



  (30) 

with 0 1 2 3 4

0 2 1 1 1 2 2 3 4 1 21 ,  1 ,  and 1K N N K F F K K K H H        . Hence, the corresponding 

Euler-Lagrange equations read 
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0 1 2

0 1 2

0M M ML L L

K K K

  
  

  
.                                                                                                          (31) 

Solving these constraint equations will yield the following values of 
M . Furthermore, solving the 

Einstein field equations (15) will give us the following metric [9]: 

   
 

2
2 2 2 2

3

dr
ds g f r dt r d

f r
      ,        (32) 

here 

       2 2 2 2

1 1 12
, , 1  and , 1

6

MN t r F t r f r r H t r
r

 
      .                                                      (33) 

It is noted that 
58 3G M   is a mass parameter with M and G5 stand for the mass of source and 

the five-dimensional Newton constant, respectively. It is also noted that we will have the 

Schwarzschild-Tangherlini-de Sitter (dS) and Schwarzschild-Tangherlini-anti-de Sitter (AdS) black 

holes for positive and negative 
M , respectively. On the other hand, we will have the (pure) 

Schwarzschild-Tangherlini black hole for vanishing 
M . 

5. Conclusions 

We have presented basic results of our recent study on the five-dimensional dRGT massive gravity 

[9]. In particular, we have shown the effective method based on the Cayley-Hamilton theorem to 

construct the five- (or higher) dimensional graviton term.  Then, we have examined, after deriving the 

corresponding Einstein field and constraint equations, whether the five-dimensional dRGT theory 

admits some well-known metrics such as FLRW, Bianchi type I, and Schwarzschild-Tangherlini 

metrics as its cosmological solutions. Our research has indicated that the five-dimensional dRGT 

theory might play an important role in describing our universe. Of course, many other cosmological 

aspects, e.g., gravitational waves, should be discussed in the context of the five-dimensional massive 

gravity in order to improve its cosmological viability. To end this article, we would like to note that a 

bi-gravity extension of the five-dimensional dRGT theory, in which the reference metric is introduced 

to be fully dynamical as the physical one [7], has been proposed in our recent paper [11].  
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