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Abstract : The scattering amplitudes for two spineless particles colliding at Planckian center-of-

mass energies are considered by the partial wave method in quantum gravity. In the framework of 

the partial method, a scheme for finding the leading eikonal scattering amplitudes is developed and 

constructed. The connection between the solutions obtained by partial wave method, quasi-

potential and functional approaches is also discussed. 
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1. Introduction

 

In recent years there have been important advances in our understanding of Planck scattering in 

quantum field theory and string theory ( 1/ 2

PlM G  is called Planck mass at the energy scale about 
1910 GeV ) [1-6]. This understanding give us a scientific basis to investigate the singularity, the 

formation of black holes and the loss of information near black holes as well as the modification of the 

string theory in quantum gravity. The research results have confirmed that [1-6] if gravitational 

interaction is considred, Planck scattering amplitude of two particles at high energy, Pls M  (s is 

the square of the total energy of two particles in the center of mass system) and small fixed momentum 

transfer t (t is the square of momentum transfer) has the form Glauber with the scattering phase 

depends on energy in the limit  t / s  [1]. 

The calculation of high-level correction terms to the eikonal leading term of scattering amplitude 

has been studied by many authors, but this problem remains an issues. By using the integral method  

and quasi – potential equation we have obtained the analytical expression for the eikonal leading term 

in this problem [7]. To confirm this result, we revisit this problem using a new approach that is the 

partial wave method [8]. All results which have been obtained are compared. 

_______ 

Corresponding author. Tel.: 84-913059195 

   Email: lienbat76@yahoo.com 

mailto:lienbat76@yahoo.com


N.S. Han, N.N. Xuan / VNU Journal of Science: Mathematics – Physics, Vol. 33, No. 1 (2017) 41-47 

 

42 

The paper is organized as follow. In section 2, we introduce briefly the method to find scattering 

amplitude and scattering phase by using the partial wave method. Section 3 is devoted to compute the 

leading term and correction terms of scattering amplitude at high energy and small momentum tranfer. 

Finally, in section 4, we discuss and compare the results that we obtained in previous sections and 

draw conclude. 

2. Scattering of uncharged particles in the gravitational field 

The covariant Klein-Gordon equation for the massless test particle with no electric charge and 

moving in the gravitational field is      

1
( g g )

g

 

  


=0 ,                                                                             (2.1) 

where g det g ( x ) gg

    . 

The solution of classical Schwarzschild background field of slow target particle that is obtained by 

the Einstein equation has the form                         

1

2 2 2 2 2 2 22GM 2GM
ds 1 dt 1 dr r ( d sin d )

r r
  



   
         

   
,                                            (2.2) 

where M is the mass of the target particle. In the center of mass frame of the particles, M << s . 

Main diagonal terms of the Schwarschild metric is determined by the expression 

1

2

2 2

2GM
1 0 0 0

r

2GM
g 0 1 0 0

r

0 0 r 0

0 0 0 r sin







  
  

  
  

   
  

 
 
 
 

                                                      (2.3) 

 with 

2g r sin  , 

1

tt 2GM
g 1 ,

r



 
   

 

rr 2GM
g 1 ,

r

 
  
 

2 2g r ,g ( r sin )      

 Using expression (2.3), we rewrite equation (2.1) in the form                      

1

2

tt r

2GM GM
r sin 1 2r sin 1

r r
   



   
         

   
 

2

rr

2GM
r sin 1 cos  sin  0

r
        

 
          

 
                                (2.4) 

The wave function of the test particle that obtain from eq. (2.1) or (2.4) is assumed to have the 

form  

iEt iEt

lm

f ( r )
( r ,t ) ( r )e .Y ( , )e

r
                                                      (2.5)                     
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where E is energy of the test particle as measured by an asymptotic observer 

From the Eqs. (2.5)-(2.6), we have 

2 iEt

tt tt lm

f ( r )
( r ,t ) E Y ( , )e

r
         

iEt iEtr r
r lm lm2 2

r f ( r ) f ( r ) f ( r ) f ( r )
Y ( , ).e Y ( , ).e

r r r
    

   
    

 
;  

iEtrr r
rr lm2 3

f ( r ) 2 f ( r ) 2 f ( r )
Y ( , ).e

r r r
  

  
    

 
                                                       (2.6) 

iEt

lm

f ( r )
Y ( , ).e

r
      ;  

iEt

lm

f ( r )
Y ( , ).e

r
      ; iEt

lm

f ( r )
Y ( , ).e

r
               

Substituting Eq.(2.5) into Eq. (2.1) and using Eq. (2.6), one obtains the equation for wave function 

of the radial coordinate 

  

1 2
2 2 2

r r

2GM 2GM
r 1 E r (1 ) L ( r ) 0

r r



    

         
     

,                                                    (2.7) 

here  
2

2

1 1
L (sin )

sin sin
  

 

  
      

 
; và  

2

lm lmL Y ( , ) l( l 1)Y ( , )   


  . 

From eq. (2.7), linearizing the Schwarzschild metric, substituting s 2ME  ( s is the Mandelstam 

variable in quantum relativistic mechanics) and retaining terms up to order  
2

2GM / r , the radial 

equation of the l
 th

 partial wave is (for large l) 

2 2 2
2

2 2

d f ( r ) l( l 1) G s 2GsE
E f ( r ) 0

dr r r

  
    
 

.                                               (2.8) 

Thus, we can find the solution of this equation without adding a further approximation while 

keeping in mind that at Planck scale (about 10
-33

 cm) very small impact parameter scattering cannot be 

probed  

The radial equation (2.8) will be solved by using hypergeometric functions with its asymptotic 

form. It is By setting  

  2 2

l lp ( s ) p ( s ) 1 l( l 1) G s                                                                                                (2.9) 

The eq.(2.8) is rewritten in form 

  
 2

l l2

2 2

p ( s ) p ( s ) 1d f ( r ) 2GsE
E f ( r ) 0

d r r r

  
    
 

.                                                   (2.10)  

Equation (2.10) is the hypergeometric equation. At far enough distance, l ,  its solution has form  

[9]  
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l l

l l

p ( s ) 1 2i iErl
l

p ( s ) 1 i iErl
l l

p ( s ). i
f ( r ) sin Er ( i ) ( e 1)e

2 2

p ( s ).
sin Er ( i ) e sin .e ,  Er p ( s )

2














 
     

 

 
     

 

                           (2.11)                

the phase shift of the partial wave is      

   

l l

l l 0l

0

p ( s ) 1 i iErl l
l

0

2GsE
E.sin f ( r ). f ( r )dr

r

p ( s ). p ( s ).2GsE
sin Er ( i ) e sin .e .sin Er dr

r 2 2









 




    
        

    





      (2.12) 

In the first order approximation, it has the form 

     
 

 
l2 l

l

l0

p ( s ) 1 iGsp ( s ).1
2Gs .sin Er dr

r 2 p ( s ) 1 iGs

 




  
   

  
                 (2.13) 

If the particle is free motion, eq. (2.11) become to   

l
0l l

p ( s ).
f ( r ) sin Er ,  Er p ( s )

2

 
   

 
.                                (2.14) 

Wave function is expressed in terms of a partial wave expansion 

lp ( s ) l
l

l 0

f ( r )
( r ) ( r, , ) ( 2l 1).i P(cos )

Er
    





                                                           (2.15) 

in view of the spherical symmetry 

   
iEr iEr

0 0l

e e
( r ) ( r ) f ( ). f ( r ) f ( ).

r r
                                                            (2.16)    

The scattering amplitude in the gravitational field is found in terms of a partial wave expansion 

  l2i

l

l 0

i
f ( ) 2l 1 e 1 P(cos )

2E

 




                 ,                             (2.17)                   

where, the phase shift of the partial wave, characterized by a fixed angular momentum quantum 

number l ≫ 1, is determined by eq. (2.16) and lp ( s )  is determined by eq. (2.9).  

In the centre of mass frame (cms) of the particles, because s 2E  is the total energy (see eq. (9) 

in ref.[10]), the scattering amplitude is  

  l2i

l

l 0

1
f ( ) 2l 1 e 1 P(cos )

i s

 




                                                                                      (2.18) 

It is not difficult to show from eq. (2.13) that, for fixed l, the phase shift has singularities at center 

mass energies 

lp ( s ) 1 iGs N      with N 0                                                                             (2.19) 

or 
 

 
i

Gs l( l 1) N( N 1)
2N 1

   


                                                       (2.20) 
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for any non-negative integer N. Although still located on the imaginary axis of the complex s-

plane, clearly the locations of these poles are quite distinct from those seen in the eikonal limit [2], 

viz., at Gs iN  .  

Here, we only consider the first order correction term for the leading term (leading eikonal) of the 

scattering amplitude in the limit l  . In case of large and fixed l, the explanation of the existence 

above poles outside the eikonal limit according to string theory was disscussed in [8]. 

The formula above also permits us to extract the leading order corrections to the eikonal 

limit l  , by using the asymptotic expansion of the argument of the gamma function in increasing 

inverse powers of l. We obtain 

 
2

l 2 3

Gs1 1
Gs log l O

2l 2l l


   
       

   
.                                                                                     (2.21)                   

The first term in eq. (2.21) obviously corresponds to the eikonal result, and the sub-leading 

corrections have been anticipated from reggeized string exchange diagrams [3]. The leading correction 

above to the eikonal phase shift behaves as   2 2Gs / l log s .  

By using quantum mechanics, we will not receive correction terms which are logarithmic 

functions [8]. Therefore, we need to use formalism of quantum field theory to achieve this aim. 

3. The correction terms of leading term for scattering amplitude 

For the scattering of particles at high energy and small momentum transfer, we can convert the 

sum into an integral in l  in the expression of the scattering amplitude (2.17): 

  l2i

l
0

i
f ( s,t ) f ( ) dl( 2l 1)P(cos ) e 1

s

 


                                                            (3.1) 

Set 
( 2l 1) 2l 1

b
2E s

 
   so that  

s
dl Edb db

2
  , here b is called impact parameter and the 

Legendre polynomial convert to the Bessel function of zezoth order 

k high

l 0small
P(cos ) J ( 2l 1)sin

2


 



 
  

 
.                                                                                        (3.2) 

The expression for the scattering amplitude is found 

l2i

0
0

i s
f ( s,t ) bdb.J ( 2l 1)sin e 1

2 2

  
      

 
                                                                      (3.3) 

When small angle   then sin
2 2

  
 

 
 , ( 2l 1)sin ( 2l 1) Eb

2 2

 


 
    

 
, Eq. (3.3) becomes to 

l2i

0
0

i s
f ( s,t ) bdbJ ( Eb ) e 1

2




                                                                                (3.4) 

Note that l l2i 2i2 iEb

0
0 0

1
bdbJ ( Eb ) e 1 d be e 1

2

 


 

          , so the scattering amplitude is 

obtained in general form 
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l2i2 iEb

0

i s
f ( s,t ) d be e 1

4







                                                                                                 (3.5) 

Substituting the shift phase in Eq.(2.21) into Eq(3.5) we obtain 

  

1 iGs
2iGs log l ...

2 iEb 2 iEb 2iGs2l l

0 0

i s i s
f ( s,t ) d be e 1 d be ( l ) .e 1

4 4

 

 

 
      

   
        

    
                   (3.6)         

Expanding at large l, l 1 , we have 

2
2 iEb 2iGs

20

i s iGs ( iGs )
f ( s,t ) d be .( l ) 1 ...

4 l l






  

     
 

 .                                                         (3.7) 

In Eq.(3.7), if  l is large, we substitute 
b s

l bE
2

   into Eq.(3.7) and obtain finally expression 

    

2iGs 2

2 iEb

0

i s b s 2iGs 2iGs
f ( s,t ) d be . 1 ...

4 2 b s b s







     
         

     
                                            (3.8) 

The factor precedes the parenthesess in Eq.(3.8) is the leading eikonal term, the other terms in the 

parenthesess are the correction terms of scattering amplitude. Phases of them increase in proportion to 

the square root of energy s .   

In our recent paper [7, 11], we obtained exact expressions for the scattering amplitude of two 

particles in quantum gravity by using functional integration method. In cms system at Planck energy 

and small momentum transfer, we used eikonal approximation to calculate the integrals and obtained 

the leading term and the first order correction term for the leading term. 

 

 

 

 

 

 

 

 

 

Fig. 1. The accuracy of the eikonal approximation  i jk k 0, i j   at high energy and small momentum 

transfer was confirmed in the frame of perturbation theory. 

In the high-energy limit 2

PLs M t  ,  the phase function of the scattering amplitude has the 

eikonal form and increases with energy [7].            

1p
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 1

0

2 v d


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(1/ 2)b

(1/ 2)b



N.S. Han, N.N. Xuan / VNU Journal of Science: Mathematics – Physics, Vol. 33, No. 1 (2017) 41-47 

 

47 

If mass of the changed particle is small, we will obtain the following expression for the scattering 

amplitude in quantum gravity in the zeroth order of  mass                                                         

2i s 2
2 2

2
i b2

0

|b | s s
f ( s,t ) 2is d be 1 ...

2 2 2




   

 


      
         

       
                                                (3.9) 

with 0.5772...  is the Euler Mascheroni constant.  

The factor precedes the parenthesess in Eq.(3.9) is the leading eikonal term, the other terms in the 

parenthesess are the correction terms. Phases of them are proportional to s. 

4. Conclusion 

From eq.(3.8) and eq.(3.9) give us that the dependence of the correction terms on energy are 

qualitatively not the same. To explane this problem is that eq.(3.8) was obtained basing on regular 

perturbation theory. It has not been proven in quantum gravity because of alternating signs of 

correction terms [4]. Eq. (3.9) was found in the frame of functional integration method in quantum 

gravity, it is not related to perturbation theory. Expression (3.9) is the same as the expression obtained 

by using quasi-potential equation [11, 12]. Note that eikonal representation for scattering amplitude of 

particles at high energy in quantum field theory was first found by using quasi-potential equation [11].  
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