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ON THE ELASTOPLASTIC STABILITY PROBLEM OF
THE CYLINDRICAL PANELS SUBJECTED TO THE
COMPLEX LOADING WITH THE SIMPLY SUPPORTED
AND CLAMPED BOUNDARY CONSTRAINTS
Dao Van Dung
Department of Mathematics, College of Science, VNU

Abstract. In this paper, an elastoplastic stability problem of the cylindrical panels under
the action of the compression force along the generatrix and external pressure has been
investigated. By the Bubnov-Galerkin method, we have established the expression for
determining the critical loads. The sufficient condition of extremum for a long cylindrical

panels was considered. Some numerical results have been also given and discussed.

1. Formulation of the stability problem and fundamental equations

Let us consider a round cylindrical panel of thickness i and radins of the middle
surface equal to R. We choose a orthogonal coordinate system Ozyz so that the plane Oxy
coincides with the middle surface and the axis Oz lies along the generatrix of cylindrical
panel while y = R, with 6,-the angle circular arc and z in the direction of the normal
to the middle surface. Denote the sides of cylindrical panel by a and b respectively to the
axis Oz and Oy.

Suppose that the cylindrical panel is simultaneously subjected to the comp:
force of intensity p(t) along the generatrix and external pressure of intensity g; (¢) increasing
monotonously and depending arbitrarily on any loading parameter ¢. We have to find the
critical values ¢ = t., p, = p(t.), g1« = qu(t.) at which an instability of the structures
appears. In order to investigate the proposed we will use the criterion of bifurcation
of equilibrium states and dont take into account the unloading in the cylindrical panel.
Afterhere we will present the fundamental equations of stability problem.

ion

1.1. Pre-buckling process

Suppose that at any moment ¢ in the pre-buckling stage, there exists a membrane
plane stress state

ore=—p(t) = -p, oy =-a(t)y =-qt) = -q,

1
h
g2 =013=03=033=0;
1
7=-3(+q), ou=0"—ps+q)"" (11)
The material is assumed to be incompressible

€33 = —(e11 +exn).
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The components of the strain velocity tensor determined according to the theory of elasto-

plastic processes are of the form [1]

§ (50 - Qs - 50)

= i+ 59 - Qs - o), (12)

—(¢n +~12)‘ fp=é3=én=0,

where i 1
1 1 Pﬁ*‘fm—im‘—il—’(l , , O
(3(3-1)7(“-§)W- ¢ = ¢'(s), N—**s—'

‘The arc-length of the strain trajectory is respectively calculated by the formula

= F(s1). (1.3)

So the equilibrium equations associated with the relations (1.2), (1.3) and boundary con-
ditions entirely define the stress and strain state at any point M in the structure at any
moment of pre-bnckling process.
1.2. Post-buckling process

The system of stability equations of the thin cylindrical panel established in (5] is

written in the form

&*ow T o T &ow 9 ( 025w & 8w 1 d%p )
PO IO i - O -1
Bt 3('3#/’)1/2 o T 2N Pogr T4 8y ROa? (14)
e ¢ e N Pow
3 + B + 05 = 1.5
P Bt ‘(')J:lf)yz oyt R R a2 (19)
where the coeficients a,, 3; (i = 1,3,5) are calculated as follows
I YR A i L, 3, _d\m
'““X_](l N) f" 03—275(1 N)az
3/ e\ . I/N  \(2q-p)?
s=l-=(1-=)=; A= e S R
=1 4(1 N)ag 1 1+4(¢/ 1) o2 (1)

N (2p-q)(29-p) N (2p—q)*
I = Pl A el P ol el
pme g5 - ) TR e (G-
For solving the stability problem of cylindrical panel, we consider two types of kinematic

constraints following
* The cylindrical panel is simply supported at the four edges x = 0, z = a, y = 0,

y=b
* The cylindrical panel is simply supported at the edges y = 0, y = b and clamped

at the edges . =0, v = a.
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2. The solving method for the simply supported cylindrical panel at four edges

We find the increment of deflection dw in the form

Sw = Z ZAm"smmsm 2nb7ry (2.1)

m=1n=1

it is easy to see that this solution satisfies the kinematic boundary conditions.
Substituting the expression of dw into (1.5) we receive the particular solution ¢ as

follows
M M

o= ZZBm,,ﬁmis' -ZE:—‘U, (2.2)

m=1n=1

where o
o= B a2 () (Y e (B) ]

It is seen that the system of functions

2
SWynp = sin —— mag sin % (mn=12,...,M)

is linearly independent. Therefore we can apply the Bubnov-Galerkin method for estab-
lishing an expression of critical forces.
First of all, substitute the expressions of dw and ¢ from (2.1), (2 2) into (1.4),
2jm
afthward multiply both sides of the just received equation by dwy; = sin 2% sin ]T{ and
integrate that equation following « and y. Finally we get

b
7 o ouv How &ow 9 Pow  Péw 1 Py
Gy & O b Oy by [ P+ 4 s

0

Dzt A Ox2 oyt oyt hAN \" 022 oy? R Ox?
imx 2j
sin ia]_ sin ]wl(i'r(ly 0 (i,j=12,...,M). (24)

For taking this integral, it needs to use the result

sin — sin ——= sin ai . ” :
a b — withm=1 n=j

b . ‘s .
]/ . ommx | imx |, 2nmy | 2jmy { 0 withm # 4 n# j
sin =
a b
4

After series of calculations, the relation (2.4) gives us

o (5 (Y () () - () (5

T R CIC RIC [T

(25)
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Because of the condition on the existence of non-trivial solution i.e. A,,, # 0 then we
receive the expression for determining critical loads

() +aa(F) () + () - b () (5]

9 mz\A[ g\t ymm\2/2nmw\2 2nw = .
() () + () (F) +a ()] =0 26)
) mb ) 3h _ Vo ¥
Putting X = (A) .Y =n% i= = the relation (2.6) can be rewritten in the other
2na h
form
, ANE (X dar = 2 (X + 5+ )Yl
= 2.7)
, PN ¢
Y(pX +q)(;5;X + 3+ 7) =y
s s g oi o2
Minimizing i, it means TX‘ =0, e 0. that yields
N
- . - (28)
Ir2 g2 A
22 Jy (p+ X)(B,X + 8+ x)
(n.—y)(i’(%;iq-‘\—x) ([f. )(rx|X+a;+')7)
2q
+ X+ =) X+8+=)= 2.9
X2(+”)(“’ n(+x)(x +»s+x) 0. (2.9)
X
Substituting the expressions (2.8) and (2.9) into (2.7) we obtain
AN By -t
2= {u,X +a,+7}{a,x+ﬂ3+7‘} (2.10)

2 (p + ;)

where X is found from the equation (2.9).

Applying the loading parameter method (1], and solving sinmltaneously the equation
(1.3) and (2.10) we can find the critical values t., p. = p(t.). q. = g(t.).

For long cylindrical panel, ie. Y =1, X < 1 we have from (2.7)

oo ANzPasf o BN
T X ¥ —Cox?’ T intRE

@.11)

o
Calculating %{ =0, leads us X = g’ 2 = X... In addition
0
s _ 8CoNwasfs
OXx=x. [,  pPOE\?
(o + 4(7.,)

So the sufficient condition of extremum is verified.
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Substituting the values of as, 35 and X = X, into (2.11) we obtain

=

4AN2p? {

7 (2.12)

2N } .
22t

3. The solving method for the simple supported cylindrical panel at y = 0,
y = b simultaneously clamped at the sides 2 =0, 2 =a

The kinematic boundary constraints of stability problem are satisfied completely

by choosing
M M

bw= 3" 3 Con (1~ con 2"‘“).@2”%- 3.1)

m=1n=1

Using the equation (1.5) and the expression of dw we can find the particular solution ¢ in

the form
M M

. 2mnz . 2nmy
¢= Zzl)m i (32)

m=1n=1

where

D= (2 [ (22) (B2 () ()

2mmay |, 2nwy
— } sin —=

It is possible to prove that the system of functions dwp,, = (1 - o8 A
is linearly independent. Then we can use the Bubnov-Galerkin. By the same method
presented in the above part we change the equation (1.4) into a relation as follows

a b

bw dw & éw 9 dw &Pow
//{016;2:+a334u u+ (6211 +qo‘2 u)
00

Ox20y? +es oyt dx? y?

9 &y 2imz\ . 2j7my 5 5 5
~mgx—2}(l—-cos—-‘;—)sdezdyA0 (i,j=12,...,M). (3.4)

Tor taking this integral above all we substitute §w and ¢ represented by (3.1) and (3.2)
into (3.4), afterwards integrate that received expression. We will obtain a system of linear
algebraic equations with the unknowns C;; which is written in the matrix form

lailCs) =0; i,j=1,2,...,M. (35)

Because of the-condition on the existence of non-trivial solution i.e. Cj; # 0 then the
determinant of the coefficients of C;; must be equal to zero

detlay,] =0; i,j=12,...,M (36)
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Associating this expression with (1.3) we can determine the critical values t., p. = p(t.),
4 = q(t.).

Note that a development of the determinant (3.6) in general case is complicated
mathematically therefore we will take the solution in the first approximation.

In this case we choose dw and ¢ in the form

Sw = Cpn (1 — i 27y
,%(21:#)7(,‘,"" Snte . T 37
2mm o (2mm\22nmw\2 Inm 7 CO8 = sm—b .
{h( ) + (2 )(T) +ﬁ5(T>

Substituting 0w and ¢ into (3.4), integrating that relation and taking into account the

condition Cynn # 0, leads us
i) oo () - g b (55 ()T

f%b{m<2m7r) (Zml.)"’(
+ o (22)' ()" + (220 () 4 (B2) ) =0 (38)

. . Y mb\2 . 3b i . n
Using notations £ = n?; = (;) pi= the equation (3.8) is rewritten as follows

AN (“"Haﬁ + —) (Bin+ 8y + H’)?

?= (3.9)
e D)+ 2) -
Minimizing this relation i.c. (:: =0, %—TT =0, gives us
_ VN
B 2n11r2(p+ )(d|17+53+ﬁ5) )
(m = )11_) (Jn7l+ﬁs+ ) (ﬁ )(am+rxa+£3)
+ﬁ(om+az+—)(dﬂ7+ﬂ3+ ):0. (3.11)
Putting the just found valnes of £ and 7 into (3.9) we have
2= AN {mr]+az+ —}{[im+ﬂz+ —} l, (3.12)

R? (7 + };’)

where 7 is determined by the equation (3.11).
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For finding the critical value ¢, of loading parameter ¢, we need to solve simultane-
ously the equation (1.3) and (3.12).

After determining t. we can obtain the critical forces as follows

pe=p(te), e = qlts).

Now consider the case of a long cylindrical panel. Based on (2] leads us

_ o 12N7%asfs _ BN .
E=1 7K1, = _-__—(pr] 390 — Cof ' 0= o (3.13)
i o e . 08 .
The minimization of the expression i in (3.13), ie. = 0, yields n = 3 Na.
U
Moreover 2 24N &
|, = 2R @19
an? ln=n. (3qﬁ 3 P ﬂs)z
° 740

So the sufficient condition of extremum is satisfied. Taking into account as, 35, 7., the
relation (3.13) becomes

1_3(1_£)L
i2=12b2N2{ 1 N/p? —pg+q? } (3.15)
R? 2l LN (2p - q)® w+3b7N o
77{ 4(<I>’ )p’—pq+q21‘ 2R

Remarks

1) If the cylindrical panel has a very small curvature i.e. B — +00; ¢ = 0 and
m =1, n=1 then the expression (2.7) coincides with the result of 1, 5, 7].

2) If b = 27 R that means the cylindrical panel becomes a closed round cylindrical
shell, then the expressions (2.10), (2.12), (3.12), (3.15) return respectively to the previous
well-known results.

4. Numerical calenlstions and discussion

A numerical analysis is considered on the long cylindrical panel made of the steel
30XI'CA with an elastic modulus 3G = 2.6 - 10> MPa, an yield point o, = 400 MPa and
the material function ¢(s) presented in [1].

The relations for determining the critical loads are given in the form:

* Formnlae (2.12) and (1.3) for the part a) of the examples.

* Formulae (3.15) and (1.3) for the part b) of the examples.

The mumerical results are realized by the program of MATLAB.

Example 1. The complex loading law is given in the form
p=p(t) =m+mt's g=qt) =g +at

where pg = 2 MPa, p; = 0.1 MPa; go = 2MPa, g; = 0.1 MPa.
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a) Numerical resnlts for the simply supported cylindrical panel

b 1
Table 1: — =
able R 5
4 s 10% MP: MPs » MP:
n t, s 1 peMPa  g.MPa o} MPa
100 8.27 2.639 470.7 2.827
200 &.11 1.780 434.7 2811
300 8.03 1.636 418.7 2.803
400 7.9 1.533 399.8 2.794 X
500 7.64 1.308 3424 2.764 341.1
b) Numerical results for the clamped cylindrical panel
Table 2 : l% = %
R 3
ﬁ 3 s-10° p,MPa ¢.MPa o MPa
100 844 4392 5083 2.843
200 8.25 2.440 464.7 2.825
300 8.13 1.880 439.6 2.813
400 8.09 1.734 429.7 2.809
500 8.04 1.647 420.3 2.804
5" Mpa
s00
X
.
450
N 4
\\ ~
Yoo [S====
350
308 400 200 00 oo R
° x

Fig. 1.

I - Simply supported, II - Clamped
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Example 2. Suppose that the complex loading law is of the form

p=p(t)=po+pit’; po=2MPa, p; =0.1MPa

g=q(t)=q+qt* go=1MPa, g =0.1MPa

a) Results of numerical calculation for the simply supported cylindrical panel
1

b
Table 3 : — = -
able B3

% te $-10° p,MPa ¢.MPa o} MPa

100 16.90  2.581 484.7 30.563 470.2
200 16.47 1775 448.5 29.117 434.7
300 16.25 1.609 431.1 28.408 417.6
400 15.83 1.479 399.1 27.075 386.2
500 14.54 1.145 309.5 23.146 298.6

b) Results of numerical calculation for the clamped cylindrical panel

Table4:%:é

te s-10° p.MPa ¢,MPa o} MPa

17.34 - 4.278 523.1 32.059 507.9
16.82 2.373 478.1 30.301 463.7
300 16.52 1.831 452.6 29.282 438.7
400 16.37 1.689 440.8 28.804 427.2
500 16.21 1.588 4280 28.279 414.6

0
88’:-|:u

S Mpa,
~
500 5
/
P~z
450
]
p— e
4o0
<]
350 \
oo
o 100 200 00 Yoo 560 i

Fig. 2. 1 - Simply supported, II - Clamped
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The zbove received results leads ns to some conclusions

1. By using the Bubnov-Galerkin we have solved the elastoplasti
of the cylindrical panels with two types of kinematic boundary constraints.
ave shown, for long cylindrical panel, the sufficient conditions of extremum
ritical loads of the simply supported cylindrical panels are always sinaller
1) loads of the clamped cylindrical panels (see tables 1, 2, 3, 4 and figures 1, 2).
4. The more the cylindrical panel is thin the more the value of critical stress intensity

ability problem

o is small (see table 1, 2, 3, 4).
i is completed with financial support from the National Basic Research

ngrum in Natural Sciences.
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