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REMARKS ON THE SHOOTING METHOD FOR NONLINEAR
TWO-POINT BOUNDARY-VALUE PROBLEMS

Nguyen Trung Hieu
Department of Mathematics, College of Science, VNU

Abstract. In this note, we prove a convergent theorem for the shooting method combin-
ing the explicit Euler’s scheme with the Newton method for solving nonlinear two-point
boundary problems (TPBVPs). Some illustrative numerical examples are also considered.
A convergent result obtained before by T. Jankowski is a particular case of our result,
when the boundary condition (BC) becomes linear.

1. Introduction

The shooting method for TPBVPs has been studied throughly in many works (c.f
[1-10)). However, the convergence of the method did not receive adequate attention of
researchers. In 1995, T. Jankowski gave an adequate proof for a convergent theorem of a
shooting method.

In this paper, we will generalize this result for nonlinear ordinary differential equa-
tions (ODEs) with nonlinear boundary conditions.

Consider the problem

= f(t,y), teJ=ab (1a)
#(y(a), y(b)) = 0, (1b)
where f : JxR” — R” is continuous in ¢ and continuously differentiable in y, ¢ : R xR” —

R’ continuously differentiable in both variables.
If we denote y = y(t; s) a solution of (1a) subject to initial condition

vla) =3, (16)
then the problem is reduced to that of finding s = § which solves the equation
By(a;s),y(b; s)) = (s, y(b; 5)) = 0. @
This equation can be solved approximately by the Newton's iteration
sye1 = 85 = 05, 9(b:5;)) 655, u(bisy)), G20, ®)

where ¢/'(s) = #1(s,y(b; 5)) + ¢2(s, y(b; s)).yL(b; s) and ¢y, ¢, are partial derivatives of ¢
with respect to the first and the second variables, respectively. In addition , Y (t;s) =
y4(t; s) can be found as a solution of the IVP

{Y'(t;s) = £, (ty(6:9).Y (& s)

Y(a;s) =1 @
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The remaining problem is to solve approximately the two IVPs (1 ac) and (4).
There are many methods for solving IVPs, but in this paper, we only use explicit Euler's
method to solve them. Thus we obtain a method using Euler”
Newton's iteration. In the following, this method will be discussed in detail. Let the
integration interval be subdivided by the points

scheme combined with

ti=a+ih, h= (5)
First, applying the explicit Iuler’s scheme mentioned above, we get
yn(toisng) 1= sngi t yn(ticrssng) = ya(tison;) + (s yn (i o)) (6a)

= I Yt sng) = 1+ hofy (b, un (b sn3))Ya (b, 505). (6b)
i=0,1,.,N-1,

b o
sho = s0,50 € R is an initial vector.

Yu(to; sn.;)

Then we nse the Newton method to improve the shooting vector
Shjet = Shy = [01(5h,5, yn (b sh ;)
+d2($n. Yn(B:5n3) )Y (b, sk )™ D(sh s yn (0 9n,5)) (6c)
=10,

2. Convergence

In this note, we nse the terminologies and notations of [4]. However, the definition
of isolated solution should be stated as follows.
Definition 1. A solution y(t) of (1) is said to be isolated if the following linear TPBVP

{ 2 = f,(t.y(t)z

o), 50)2(0) + (), 402 (8) = @

has only trivial solution z(1) = 0.
Lemma 1. The isolated solution is locally unique.
Proof. Consider the space C''(J.R”) equipped with the norm [|y|| = max{||yllmax, [#/lmax}+

the space C(J,R") xR” equipped with the norm [|(Z, 22)|| = ||Z]lmax + 2], where ||z]lmax =
r:xéa;d.v(t)t, |.| is the Enclidian norm and the mapping
3 f(ty)
P43 ted.
[¢(y(a) y(b)) ]
Clearly,

F'yh= ’)l

[ - St yn ]
#1(u(a), y(b))h(a) +¢2(I!(’1 y(b))h(b)
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and if y* is an isolated solution of (1), then KerF'(y*) = {0}. Moreover, the shooting
matrix ¢1(y*(a), y*(b))U(a) + ¢2(y*(a), y* (b))U(b) is nonsingular, where U(t) is a funda-

mental solution ; 3
U'tty =%y
U(a) =1L

It implies that ImF'(y*) = C(J,R") x R*. According to the Banach inverse mapping
theorem, [F '(y‘)]“‘ exists and is continuous. The inverse function theorem ensures that
the equation F(y) = 0 has a locally unique solution. [m]
Theorem 1. Let the BVP (1) have an isolated solution . Assume that

i)both f: I xS R amif; :J x 8 =R are continuous;

ii)the function f: J x S8 — R” has a bounded by a constant L > 0 derivative with
respect to the second variable, and there exists a function : Ry — Ry such that

1,(,2) = £,(6,3)]| <

where the matriz norm is consistent with the vector norm;

iii) Q is continuous, Q(0) = 0 and Q is non-decreasing;

iv) The Buler scheme is consistent with (1a), i.e there ewists a function ¢ - H —
R*,H = (0,R*] for some h* > 0,¢(h) = 0 as h — 0 such that

IRf(t, () + () = p(t + W)l < he(h), fort € [a,b— hl;
v) There eaists a function 6 : H — R, 6(h) — 0 as h — 0, such that the following
condition holds
N + RSyt eENIY (4 (@) = Y+ Bsp(a))l] < h: 8(h) for t € [a,b— h];

vi) The function ¢ in the boundary condition has Lipschitz continuous partial derivatives

161, 31) — b1.(z5, 90)| £ Ka(lIF = 2511 + llyr — woll);
e2(Z, 1) = d1(2;, w0l < Ko(||Z — 25 + llvr — woll)-
Moreover
lg2(z, Y < K.

Then for a sufficiently small h, the shooting method (6) is convergent.
Let

v 1= Yn(tn; sng) = @(tn); T = Yaltn, sn5)lsn, — w(a)] = vi;
Rn o= hf(tn, 9(tn)) + (tn) = @(tas1); Ad = I+ BI5(tn, yn(tnish,3));
@ = Ya(tn,5n;) = Y (tn, £(a)); C) 1= X ®=; Gy = (C) - 1)/L.
Introducing the norm [Juff = mmax: e L9 |u(t)|, : w € C(J,R”) and using the Gronwall-

Bellman inequality we can show that the problem (4) has an unique solution Y is bounded
by a constant Cj.
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Lemma 2. Under the conditions in the theorem 1, we have
D) o]l < ] + Cae(B)

i) | T3l < Coz wlh, 1)

iii) g || < Cox [Cr: QC gl + Cae(h)) + 6(R)].
where v(h, €) = UCE + Cae(h))(C1€ + Cae(h)) + e(h).
Proof. The proof is carried ont analogously to the proof of the convergence theorem in
(4. o
Lemma 3. Let

Qn(u) = o1 (w, yn(biw)) + d2(w. yn (b u)) Y (b, u);

Q(u) = 1 (u, y(b; u)) + do(u. y(b:u))Y (b.u).

Then )
Qulsn )™ = 62T} = [6(@) = 8(x;) = &' (2;)(F = )],

where x5 = (shj, yn(bi sn;)); T = (p(a), (b)) and we have an estimate
() = d(x,) = @'(2,)(& = 5)1| < GalII? + e (W)l + a(h),

where ¢, : H =+ Ry, ¢(h) =0 ash = 0,:i= 1,2 and (3 is a nonncgative constant.
Proof. The above-mentioned relation is easily obtained. Iurthermore,

1
6(2) = ¢(zy) = &' (2,)(E = ;) = | /D 6 (2; + 4T - 25) = ¢ (@)|(% - @)t

Lo ’
<z -

S %(Ilsh.J = p(@)ll + lly(bs sn.5) — £ (O)1)?
< GIRIP + (Wl + ea(h). 0

Now, we go on proving the theorem 1. It is known that, assuming that ¢ is an isolated
solntion of (1) then the matrix Q(y(a)) is nonsingular(see, for example, [5]).

Let [|Q™"(¢(a))|l < f. From Lemma 3 and condition (vi) in theorem 1, it follows
that

1@n(sn.5) = QUe(a)l = li1 (sn,50 yn(bi sn.5)) = d1(2(), (b)) +
+ ¢2(sh,5. Yn (b 5n,3))Yn (b, sh.5) = d2(sn,5, yn(b; sn,3))Y (b, (a))+
+ d2(sng, y)n(b; sn5))Y (b, 9(a) = ¢2(p(a), w(0)Y (b, 2(a))l
< Ku(llsng — (@)l + llyn(bs sn5) = £ (O))+
+ Ky [[Ya (b, sny) = Y (b, 0(a))l| +
o
+ Ka(llsn; = #(@)ll + llyn (b sn,5) = (O Cr
= Mllgll + Mae(h) + Kol gl
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Therefore
1Q7" (#(a)@n(sn.5) = Qle(aDll < Bi{ My llwgll + Mae(h) + Killgk |1}
< m{m\ W,u + Mae(h) + Ky Co[CLUC [0l + Cac(R)) + ()]} =: Py(h). (R)
Since € is continuous and 2(0) = 0, one can choose p = [[vd]| = ||so — (a)|| << L. such
that

%(h) < @ <1 and }\[p+ rl(h> + BoUCyp) <@ < 1for h<< 1, 9)

where o = 1 KpyC2C1 /(1 — @), M = max{ﬂlMl,M'; =4 Cs/(1—a)}
Using Lemma 4.4.14 from (1], one conclndes that the matrix

I+ Q7 (#()[Qn(sn.0) = Q(p(a))]

is nonsingular. Furthermore, Qx(so) is nonsingular and U(J;l(so)u < B1/(1—a). Applying
Lemma 3, one has

llell < 1Qn(sn.0) "I’(ilaﬁz(‘ho Jh(b:-*‘m))\l'lﬁll + (@) = Bla;) = 6 (2,) (@ ~ )1}

<P v(hp) + Mp* + 5 ‘”w») =uf (F= A KC/(1-a)).

pt‘l(’l,
It can be proved that there exists a function &, : £(h) = 0 as h — 0 such that

legll < ui, = Bu(h, p) + Mp* +

el 5
= per(h) + ) c2(h)

1
; 3,

< Bop(Cip) + Mp* + 1—/;’7, per(h) +¢(h)

<@p+((h) < pi=u) for h<< 1.

By an induction and argue as above, one sees that @} ' (ss.;) is nonsingnlar. Moreover
-t B PSR TR R
QR sl < T+ llwg ™l S wi™ < g,

2
where u, = Bu(h,u)) + M(u)" + —_—f[ly_m u, ¢ (h) + £ ac;(/z).
The sequence {u],} is nonincreasing and nonnegative, so up = lim;_,eo uj, exits

and uy, satisfies the equation

up = Bv(h,up) + M(uh) +

~ Une 1(h) +

B
2(h).
1_("2(1)

Moreover, if up, — u as h — 0, then u is a non-negative solution of
u = BCyu)(Cyu) + Mu?. (10)

Since 0 < up < uf) = p, it implies u < p. The estimate FQ(Ciu) + Mu < @& < 1 ensures
that u = 0 is an unique solution of (10). This and (i) in Lemma 2 yield the assertion,
which was to be proved.
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3. Numerical Experiments

In this section, we consider three examples. In each example, step sizes and an
initial vector are given. The convergence of the method in each example is expressed by
max|y)(t;) — vi” ()], where 3] (t;) denotes y (i, sh;)-

Iizample 1. Consider the problem
y = -y’ 1efo1],

sin(y(0)) + cos(y(1)) - sin c

1 N T
T+vE~ “CervaE
This problem has been studied in [4] with the linear boundary condition y(0) — 2y(1) = 0.
In both cases, it has an exact solution y(t) = (2+1++/(2)) "% and y(0) = 0.17157287525381.
Furthermore, }'y;({uy) = —6ty'/? is not bounded. However, it is bounded in a bounded
neighbourhood of the isolated solution. We can put (v) = 6v/2. Thus Q and the
function in the boundary condition satisfy the conditions in the theorem 1.

N S5 Time Accuracy
10 | 0.17173830227481 0.11s 1071
40 | 0.17161116830044 0.27s 1097
150 | 0.17158289850619 | 0.88s 10-°

Table 1: Numerical result of example 1 with initial vector so = 0.5.

Starting from the initial vector so = 0.5 we get the improved shooting points given
in Table 1. The convergent speed of the method (N = 10) is given in Table 2.

J maxlyd (t:) -y ()]
5.00 x 10~

3 2.38 x 1072

1 6.07 x 107°

5 4.07 x 1010

6 ©111x 10716

Table 2: The convergence of the method in example 1 with N = 10.
Ezample 2. Consider the problem
yY=2z2:2=ytel0l],

€001 (0) 1 cosy(1) — =001 — cos(e™!) =0,
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This problem has an exact solution y = e™%,: z = —e™" and y(0) = 1,: 2(0) = —1. It is
easy to show that the function in the boundary condition satisfies all the conditions in the
theorem 1.

N s;(1) 5;5(2) Time Accuracy

30 1 —0.99462269847685 1.81s 1072
250 1 —0.99937163278951 2.58s 104
2000 1 —0.99992170530796 10.93s 10-°

Table 3: Numerical result of example 2 with initial vector sy = [1.5; —1.5].

¢ max|y (t:) — v~ (t:)] max|2) () - 2, (t)]
1 1.45 x 10° 1.45 x 10°

5 6.39 x 1072 9.82 x 102

7 8.44 x 107° 1.26 x 107°

8 5.82 x 1071 8.62 x 1071

9 7.22 x 10716 7.22 x 10716

Table 4: The convergence of the method in example 2 with N = 30.
Choose the initial vector so = [1.5; —1.5] we have Table 3. The convergent speed of
the method (N = 30) is given in Table 4.
Ezample 3. Consider the problem

3
Y =359 te 01,
0 00132(0) _ 0016 _ 0,
£—0-001y*(1) _ ,—.0001 __

Put z = ¢/, the equation becomes

[Z] = [3/;y2]’ te0,1).

The partial derivative j;, is not bounded in the whole space but it is bounded in a neigh-
borhood of an isolated solution. The remaining conditions of the theorem 1 can be easily
checked.

. N 3,(1) 5;(2) Time Accuracy
40 4 —8.02978329590422 1.70s 102
400 4 —8.00297581304037 4.56s 1074

4000 4 —8.00029758256503 30.3s 10-°

Table 5: Numerical result of example 3 with initial vector so = [4.5; —8.5].
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This problem has an exact solution y = 4/(1 + t)? and y(0) = 4,: 2(0) = -8.

Choose the initial vector s = [4.5: —=8.5] we have Table 5. The convergent speed of the
method (N = 40) is shown in Table 6.

J max|y), (t:) — yﬂ’l(t,)\ max|zj (t,) - 2{.4(’:)!
1 3.99 x 10° 7.54 x 100

5 7.81 x 1072 1.60 x 107}

7 7.07 x 1076 1.44 x 107

8 1.73 x 10~10 3.50 x 10710

9 5.60 x 10714 1.09 x 1013

Table 6: The convergence of the method in example 3 with N = 40.
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