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ON THE ASYMPTOTIC BEHAVIOR OF SOLUTIONS
OF NEUTRAL DELAY DIFFERENCE EQUATIONS

Nguyen Van Minh, Nguyen Minh Man
Department of Mathematics, College of Science, VNU

Abstract. For a natural number 7 we denote the Banach space C := {¢ : {-r, -7 +
1,-++,0} = X} with norm ||@]| := sup_,cp<oll¢(n)|. Iz : Z = X, x,, € C stands for
the function ,(6) = =(n + ), ¥n € Z,—r < 6 < 0. We consider conditions for the
existence of bounded and almost periodic solutions of neutral delay difference equations
of the form

A(Dz,) = Lz, + f(n), nezZ,
where f € 1(X), D,L € L(C,X) and A(Dz,) : Dz,4+y — Dz,. Conditions for the
existence of bounded and almost periodic solutions of difference equations have obtained
which extend and complement several recent results.

1. Introduction and pr inaries

1.1. Notations

In this paper Z,R, and C denote the sets of integer, real and complex numbers,
respectively. I stands for the unit circle in C. Given complex Banach spaces X, Y. L(X,Y)
stands for the space of all bounded linear operators from X to Y. For a linear operator A
on X we denote by o(A), p(A) its spectrum and resolvent set. The space of all bounded
sequences {r(n)}nez C X is denoted by [« (X). For a natural number r we denote the
Banach space C := {¢ : {-r,—r + 1,--+,0} - X} with norm [|¢] := sup_,<,<o l$(n)]|.
Ifz:Z - X, x, € C stands for the function z,(8) = z(n+6), Vne€Z, —-1-“5 ] <0

1.2. Problem Setting
With the above notations we consider conditions for the existence of bounded and
almost periodic solutions of neutral delay difference equations of the form
A(Dz,) = Lz, + f(n), ne€Z, (1)
where f € l(X), D, L € L(C,X) and A(Dz,) : Dxnyy — Da,,.

Conditions for the existence of bounded and almost periodic solutions of difference
equations have been studied for a long time. There are a lot of works with various methods
of study dedicated to this topic some of which can be found in our list of references and the
references therein (see e.g. 5. 10, 11, 12, 14, 23, 27, 31, 32]). Actually, it goes back to the
Poincare method of studying periodic solutions of ordinary differential equations. We refer
the reader to (10, 11, 14, 23] with further introduction to the relations between solutions of
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(hﬂnn‘mv equations and those of differential equations. As shown in recent works (see e.g.
and the references therein) the spectral theory of sequences is a powerful tool for
studying the asymptotic behavior solutions of difference equations. On the other hand, in
our recent paper [19], the method of commutative operators seems to be a natural way to
approach various problems on the asymptotic behavior solutions of differential equations.
Although we are trying this method for neutral functional differential equations, there
are still several abstract obstacles to be overcome. However, for neutral delay difference

equations, there turn ont to be no such obstacles.

As a continnation of some results in [11, 23, 27], in this paper we combine the
method which makes use of the spectral theory of sequences used in (23] with the one of
commutative operators used in [19] to study conditions for the existence of bounded and
almost periodic slontions of Eq. (1). The main results of this paper are Theorems 2.2,
2.8 and 2.10, which extend and complement several ones in (8, 18, 11, 17, 21, 23, 27| to
neutral delay difference equations Eq. (1).

1.3. Preliminaries

Spectral theory of sequences
In this paper we use the following definition of spectrum of a sequence {z(n)}ncz
which corresponds to the notion of spectrum of the sequence {T(n) := S(n)z}nez C lao(X)
of [5], where S(n) denotes the translation z(-) € lo(X) = z(n + ) € lo(X).
Definition 1.1. The spectrum o(g) of a given bounded sequence g € 1+ (X) is defined
to be the set of all complex numbers Ao in the unit circle ', at which the function g(\)
defined by
~
Z =18(n YAl > 1
9N =9
%
- Y A"T1S(—n)g, VI|Al< 1.
n=1

has no holomorphic continuation at any neighborhood of Ao.

We list below some properties of the spectrum of {gn}.

Propositionl.2. Let g := {gn} be a two-sided bounded sequence in X. Then the follow-
ing assertions hold:

a(g) is closed.

. If g" is a sequence in | (X) converging to g such that o(g™) C A for alln € N,
where A is a closed subset of the unit circle, then o(g) C A.

If g € 1(X) and A is a bounded linear operator on the Banach space X, then
a(Ag) C a(g), where Ag € L(X) is given by (Ag)n := Agn,Vn € Z.

Let the space X not contain any subspace which is isomorphic to ¢y (the Banach
space of numerical sequences which converge to 0) and z € l.(X) be a sequence
such that o(zx) is countable. Then x is almost periodic.

iii.

Proof. For the proof we refer the reader to [23].
As an immediate consequence of the above proposition is the following:
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Corollary 1.3. Let X be a Banach space and let A C ' be closed. Then the subspace
AX) := {z € Io(X) : a(z) C A}

is a closed subspace of 1 (X).
In what follows we use the notation M, := span{S(n)z,n € Z}.

Lemma 1.4. Assume that z € I(X). Then we have the following assertion:

o(z) =0 (S[M,) @

where S = S(1).

Proof. For the proof see [23].

We denote by APZ(X) the space of all almost periodic two-sided sequences in a
complex Banach space X in the sense of Bohr. Note that by the Approximation Theorem
for Almost Periodic Sequences, APZ(X) is the closure of the linear space spanned over all
trigonometric polynomial sequences, i.e., sequences {z(n)} of the form

N
z(n) = ngq,'(', Yn e Z,

k=1
where ax € X,qx € T.

Commutative Operators and Their Spectra

In what follows, we list some spectral properties of commutative bounded linear
operators.

Lemma 1.5. Let X be a complex Banach space and let U and V be bounded linear
operators acting on X such that UV = VU (commutativeness). Then, the following
assertions hold:

a(UV) Ca(U) +a(V) (3)
a(UV) C a(U)a(V). 4)

Proof. For the proof see {28, Theorem 11.23].

Next, we will show how to apply this result to study the existence of bounded
solutions of difference equations. Let A be a bounded linear operator on X and A CT be
a closed subset of the unit circle. Then we can define the operator of mul(,iplicatiol—x by A
on A(X) by the formulas

(Aaz)(n) = Azn = Az(n + 1), Vo € A(X),Vne Z
(Saz)(n) = z(n+1), Vz € A(X),Vn € Z.

The following lemma can be easily proved.
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Lemma 1.6. Let A C T be closed. Then
i) Sa commutes with Ay,
if)
o(Ap) = a(A) ()
Similar assertions hold for the restrictions of the above operators to Aap(X) :=
AX)NAPZ(X).
On the other hand, we have
Lemma 1.7. For any closed A C T’ we have
o(Sa) = A. (6)
Proof.” For the proof see [23].

2. Main results

From the definitions of the operators D and L in Eq. (1) it is easily seen that they
can be represented in the forms:

0
Dp= 3" Awpk), VoeC ™M
k=-r
0
Le= 3" Bup(k), VgeC, ®)
k=—r

where Ag, B € L(X), Vk = —r,---0. Hence, the operator A(Dz,) in Eq.(1) can be
re-written in the form:

A(Dzy) = Dznyy — Dz

0 0
= Z Axnir (k) — Z Axzn(k)

k=—r k=—r

0 0
=Y Axm+1+k)= Y Aw(n+k)

k=-r k=-r
0
=Aoz(n+ 1)+ Y (Akor - A)z(n+k) — Az(n 7).
k=—r+1

Combined with (8) the Eq. (1) can be re-written as follows:
0
Agz(n+1)= Y Cex(n +k) + f(n), ©
k=—r

where
Ck=Ak—Ak-1+Br, Vk=-r+1,---,0
Cor= Asp+ By
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Definition2.1. Eq. (1) is said to be atomic at zero if A is invertible.
Note that this notion of atomicness is an analog of what has been known in the
theory of functional differential equations (see e.g. [13]).
We now transform Eq.(9) into a first order equation by setting
¥’(n) = z(n~1)
y'(n) =z(n-r+1)

y'(n) = z(n).
Finally, we re-write Eq. (1) in the form
Ay(n + 1) = By(n) + F(n), (10)
where
y(n) = (1°(n), ¥} (n), - ¥ ()T €Y :=X"* VneZ,
F(n)=(0,---,0,f(n))", Vnegz,
and
1 0 « 0 0 34 w0
01 .0 0 0 .0
A=1. . .|, B= i p i, 1
00 ... A Cp Corya ... G
From now on we denote
0
Toi={z€C:A(Z*I- Y 277y} (11)
j=—r

We are now in a position to formulate a main result of this paper.
Theorem 2.2. Let Ag commute with Ci, k= —r,---0 and let Ao(Ag) NZo = ©. Then,
for every f € A(X) Eq. (1) has a unique bounded solution zy such that o(zs) C o(A).
Moreover, if f is almost periodic, then so is xy.
Proof. By the above notations, observe that a(Ao) = d(A), o = o(B) and o(f) = o(F).
Consider the space A(Y). Then, by the assumption and 1.6, 1.7 and 1.5, we have
@ = {o(Ax)ANa(Br)} D {a(ArSa) Na(Ba)}-
Thus
o(ArSA)No(Ba) = @.
This yields
0 ¢ o(AprSa) +o(~Ba), (12)
i.e., the operator (ArSa — Ba)~! exists on A(Y). Hence y; = (ArSa — Bp)~! exists on
A(Y), that is yy is a unique solution of Eq. (10) in A(Y). This yields that z(n) := y°(n)
is a unique solution of Eq. (1) in X.
By the remark following Lemma 1.6, if f is almost periodic our argument works well
with the operator theoretic setting on A(X) N APZ(X). Thus, the last assertion follows.
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2.3. In general, without assumption on the iveness of A and B we do not know
if the assertions of the above theorem is true. We have the following which extends [23,
Theorem 3.1].

Corollary 2.4. Let Ay commute with Cy, k = —r,--- ,0 and let f € l(X). Then Eq.
(1) has a unique solution zy € 1 (X) provided that o(f)o(Ag) N Ly = @. Morover, if f is
almost periodic, then so is xy.

Proof. We can set A := o(f) and apply Theorem 2.2.

Corollary 2.5. Let the operator D in Eq. (1) be atomic at zero, i.e., Ag is invertible,
and let A be a closed subset of the unit circle such that o(f)NE, = ©. Then, there exists
a unique solution xy € A(X) of Eq. (1).

Proof. Re-write the equation in the form (9). Then, since Ay is invertible, we have

z(n+ 1) Z Ay 'Cua(n + k) + A7 f(n),
k=-—r
Observe that o(A5*f(+)) € o(f). Thus, A;'f(-) € A(X). By Corollary 2.4 we have the

assertion of the corollary.

To consider the converse of Theorem 2.2 we need several results.

Definition 2.6. Let A and B;,j = 1,2,---n be bounded linear operators acting on a
complex Banach space X. Then, we define

n
ca(B) = {AEC:B(/\"”A—Z/\'B)“GL(X)}A (13)
i=1
Proposition 2.7. Let A and B,,j = 1,2,--- ,n, be bounded linear operators acting on
a complex Banach space X. Then the following assertions hold true:

i) The o 4(B) is a closed subset of C;

i) The function pa(B) := C\oa4(B) 3 A (A"F1A- Z;':] N B)~! € L(X) is analytic.
Proof. (i) It suffices to show that C\o 4(B) =: pa(B) is open. In fact, take Ay € pa(B) :=
{reC: FOHA-FT  ¥B)' € L(X)}. Then (A\"*'A -7 | MB)~! exists. And
thus, by the Open Mappmg Theorem, the operator (A"+!4 — Z:= MB)™1: X - Xis
bounded.

Consider (A"+1A — Z;':] M B), where A is sufficiently close to Ag. We have

n n n
AHA-SNB) = (AT A=A A) =Y (V- M)B| + (M A=Y NB)
=1 =1 i=1
Since A, B, are bounded, if A — Ag is sufficiently small, then so is (A"*1A — AT+ A) —
7 ‘0
37-1(¥ = ) B. Finally, since AgtA- 37-1 XpB) ™! is bounded, if |A — Ao| is so small
that N "
™A= AGT14) = SV - M)BI < 0 A= S MB) 7,
J=1 i=1
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then (A\"*1A = $°7_| M B) is invertible, i.e., A € pa(B).

(ii) Set G C L(X) consists of all invertible elements of L(X). Then § is open in L(X) with
the usual operator topology. Moreover, if Uy € G, U~! exists if U is sufficiently close to

Up and can be represented in the form

Ut =Y - Ugtotugt

k=0

Suppose that zo € pa(B) Then for |A — Ag| sufficiently small, by setting

n n
= U(A):(A"“A—Z/\’B); U0=U(Ao)=()\a'+‘A—ZA{,B)
=1 =1

we have

x

Ut =Y (- U 0!

-
°

[\Hf]z

i=1 i=1 i=1

x
i
°

M

=1 j=1

-
ii
o

e

k
{(As“ —AMYA- S - AJ)BJ} (A=Y B!
1=1

=1

-
il
s

(o = NF(eN)* UG,

N

-
il
°

where () is anaiytic function, and thus, it is bounded around Xo.

Now we can easily see that

“HA) = U7 (0) = 3 (o = N¥(e(A) UG

k=1

=(d = )Xo = AV (W)Y U2

j=0

Since ¢(A) is bounded in {|A — Ao| < €} with small ¢, the series

i(xa =N (YU
3=0

k
[1 gt a- Z,\’B YA - Z,\JB} A=Y Bt
n n & n
[(,\;;“A =S NB) - (A - ZA’B)} (aHa-S B
j=1

(14)
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is absolutely and uniformly convergent in {{A — Ao| < €} for sufficiently small e. Finally, if
* is any bounded functional on X

(U A) -2 (U7 ) | o Fipmie2
N (= R Y ORE S U

By the absolute and uniform convergence of (14), we have

(UTT) - 2 (U ) _
]nn —_—————

m Sy thm (Ao = Az ((p(A)) U772

7=t

= w'(kP(/\u)Uo )-

This shows that for each bounded functional z* the complex function z*(U~*())) is holo-

morphic on pa(B). By the well known facts on vector-valued analytic functions, this

implies in particular the analyticity of U~1()) as a vector-valued function of A on pa(B).
To proceed we denote

1
Tyi={A e C A A - 3 AHrC) ) (15)
k=—r
Theorem 2.8. Let A C I be closed and let Ag and C,,j = —r,--- ,0 be bounded linear
operators on X defined as in (9). Assume further that for every f € A(X) Eq. (1) has a
unique bounded solution xy € A(X). Then, £, NA = Q.
Proof.

Take A € A C . Consider the sequence f, = Xz, z # 0,2 € X. Then, f =
{fu}nez € A(X) and o(f) € A). We are going to show that there exists a unique solution
x5 to Eq. (1) of the form

(zf)n = A"y, (16)

for certain y € X. In fact, suppose that zy is a solution to Eq. (1). Then,

Apz(n+1) = Z Ciz(n+ k) + f(n), Vn € Z.

i

Denoting by Ag, Ck the operators of multiplication by Ag, Ci on A(X), respectively,
we have o
(A0S = 37 CuS(R)zs =1
k=—r
Thus »
Tr = (AS = Y ChS(R))7'f. an
k=—r

Next, the linear operator (AgS — ZL_,C,,S(IC))“ exists and is bounded according to the
Open Mapping Theorem. Set G := (AOS—ZL_, CiS(k))~1. We claim that the operator
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G: AX) = A(X), f+— x5 commutes with the translation operator S. In fact, suppose
that f = {f(n)}nez € A(X). By checking directly we can see that Szy is a solution to Eq.
(1) with the forcing term Sf. By the assumption on the uniqueness and by the definition
of G we have G(Sf) = Sz = S(Gf), i.e., G and S commutes. Now letting f = A"z we
have

(GS(AT2))(n) = (S(Gf))(n)
(GA™*1z)(n) = (Szg)(n)
(»\ GA™z)(n) = S(zs)(n)

AGS)(n) = (z5)(n+1)

Azs)(n) = (z7)(n+1).

Hence, x5 = {zs(n)}nez is of the form zs(n+ 1) = Azs(n) ¥n € Z. Consequently,
zs(n) = A"z5(0). Set
y = z4(0). (18)

Then, y € X, and thus, z7(n) = A".y ¥n € Z. This implies (16).
Next, we consider the operator T : X 3 z — y € X, where y is defined by (18),
T:zm f={AN'g}nez — x5 — z5(0) = y. (19)

This shows that the map taking z into y is a bounded linear operator. Moreover, it is

easily checked that T : z = y is the continuous inverse of (\"*1Ag — S4__, A**Cy), so
A ¢ Ty. This shows that £, NA = Q.
Theorem 2.9. Let z be a bounded solution of Eq. (1). Then,

a(z) =ZraUa(f), (20)

where r, :=TNX;.

Proof. First, by definition we have
Si(z) = §2(2) = 28(2) =z, Vre€lo(X), 0<|z|#1.
By induction,
S(n)z(z) 5(1[1 Ja(z) = 2"#(z) — ("4 224 4 )2, YR=1,2,-- .
For negative integers k, by the above computation we can show that
S(k)i(z) = S(L)t(l) =z*8(2) + ¢i(2), 0 <zl #1, (21)

where ¢y is an analytic function in {0 < |2|}.
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Re-write (1) in the form

0
AgSz = ( 3 CkS(k)) T+ f. (22)

k=—r
Taking the Carleman transform of both sides of the above equality, for |z| > 1, by (21) we
have
AdSz(2) = Apz.8(2) - Asz
-3 S () AeSE)

n=0

i “=15(n)(( chs Nz + f)

n=0 k=-r

o0 0 00
=3 ISm)(Y CStk)z) + Y 2 S(n) f

n=0 k=—r n=0

0 oG
= (Y GSk) Y 2" S(n)z + f(2)

k=—r n=0

0
= (Y CeSWNE=) + f(2).

k=1

Hence,

~

(23)

(Aom Y CuS(k ) = Aoz + f(

k=—r
Similarly, for |2] < 1 we get (23).
Now, by (21) we have
0
(Aoz~ > CkS(k))i( )= (Aoz— 3 )z 2) + ¢(2),
k=-r k=—r
where ¢(z) is analytic in {0 < |z|}. Hence we have
(Am Z Ciz )x(z #1(2) + f(2),
k=—r
where ¢ (z) is analytic in {0 < |z|}. Consequently,

0
(A -~ 57 c) #2) = "u(2) + (),

k=—r



36 Nguyen Van Minh, Nguyen Minh Man

If 2o € (T\Zr,1) N (C\o(f)), for z near zo we have

0 -1
- (AaZ"“ - C> () + 2 f(a).

k=—r

-1
By Proposition 2.7, (Anz"+l - 2:4 Ckz"“‘) is analytic in a neighborhood of zp. On
the other hand, near zg € (C\o(f)), f(z) has an analytic extension to a neighborhood
of zg. This shows that #(z) has an analytic extension to a neighborhood of 25. Hence,
2o € o(z). Finally, this yields that o(z) C £, Ua(f).

We are going to prove a Massera type theorem for the neutral delay difference
equation (1).
Theorem 2.10. Let Xr;\o(f) No(f) = @ and let  be a bounded solution of Eq. (1).
Then, there exists a bounded solution w to Eq. (1) such that o(w) C a(f).

Proof. By definition, Sr \o(f) No(f) = @. Set A := Er; Uo(f), Ay = Era\o(f)
and Az := o(f). Then, as in the proof of 23, Theorem 3.4]naiminmiyham, we can show
that there is a splitting A(X) = A1(X) @ A2(X), and the projection P : A(X) = A2(X)
commutes with translation operator S and multiplication operators. Hence, by (22) we
have

k=1 k=1

0 0
PAySt = AySPz = P ( > cksuc)) z+Pf= ( S cksu-,)) Pz + Pf.

Obviously, w := Pz is a bounded solution of Eq. (1) satisfying o(w) C o(f).

Corollary 2.11. Let all assumptions of the above theorem be safisfied. Moreover, as-
sume that f is almost periodic, o(f) is countable, and X does not contain any subspace
isomorphic to co. Then, if there is a bounded solution to Eq. (1), then there is an almost
periodic solution to this equation as well.

Proof. As shown in the above theorem, if there is a bounded solution z to Eq. (1), there
is a bounded solution w such that o(w) C ¢(f). Under the additional conditions of the
corollary, w is almost periodic according to [23, Theorem 5.3].

3. Discussions

In particular, if dim X < oo, then X does not contain any subspaces isomorphic to cg.
In this finite dimensional case, the noninvertibility of the matrix (/\”“Aofz,lr:ﬁ, AHECy)
is equivalent to det(\"+! Ag—3";__ A"*ECy) = 0. If we assume a further condition on the
nondegenerateness that g(z) := det(A"™+1 Ay — 22:4 A+ECy) is not identically equal to
zero, then one can see that ¥, is always countable due to the discreteness of the set of zeros
of an analytic function. In a separate paper, by using the spectral theory of sequences we
have proved that in this case any bounded solution should be almost periodic. And the
decomposition technique can be refined so that the countability of o(f) is not necessary.
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