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Abstract. In this paper we are going to extend the weak convergence in the space of
probability measures to the one in the space of probability capacities and investigate the

relation on weak convergence between probabili pacities and their iated proba-

bility measures.

1. Introduction

As well known that integration theory could be founded on order and monotonicity.
Indeed it turned out that many aspects of integration theory are sustained if additivity is
replaced by order and monotonicity. It is due to Choquet [2] who was lead to the problem
from his research in electrostatics and potential theory. Then Choquet’s results had been
applied to several research areas, including Artificial Intelligence, Mathematical Economics
and Bayesian statistics, particularly to the areas of upper and lower probabilities, (see, e.g.,
(14] and [15] for an introduction to their use in these areas). In a such way, non-additive
set functions, known as capacities, have become uncertainty measures in situations where
probability measures do not seem to be approriate. In the last twenty five years the study
of non-additive set functions is useful in interval computations where interval probabilities
present uncertainty, and has been carried out by several authors.

In [10] we have introduced the notion of capacites in R%, where R? denotes d-
dimensional Euclidean space with the ordinary metric p(z,y) = [S‘f,,(z, — 4:)%%, and
constructed the Choquet integral for these capacities. Then the weak topology on the space
of probability capacities in RY was investigated in [11]. We first recall some definitions
and facts used in this paper, the details can be found in [10] and [11].

Let K(RY), F(R?), G(R?), B(R?) denote the family of all compact sets, closed sets,
open sets and Borel scts in RY, respectively. By a capacity in R? we mean a set function
T: R* = Rt = [0, +00) satisfying the following conditions:

(i) (@) =0;
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(ii) T is alternating of infinite order: For any Borel sets A,, i =1,2,... ,n: n> 2,
we have N

n Z (~1)#IHT( UA)

i=1 1€I(n) i€l

where ZI(n) = {I C (1 .,n}, I # 0} and #I denotes the cardinality of I;

(iii) T(A) = :«up(T : C € K(R?), C C A} for any Borel set A € B(RY);

(iv) T(C) = inf(T(G) : G € G(R?), C c G}, for any compact set C € K(R).

A capacity in R is, in fact, a generalization of a measure in R% Clearly any
capacity is a non-decreasing set function on Borel sets of R?.

By support of a capacity T we mean the smallest closed set S C R? such that
T(R?\S) = 0. The support of a capacity T is denoted by supp T. We say that T'is a
probability capacity in RY if T has a compact support and T(supp T) = 1. By € we denote
the family of all probability capacities in R?.

Let T be a capacity in R%. Then for any measurable function f : R? — R* and
A € B(R?), the function f4 : R — R defined by

fat)=T({z € A: f(z) 2t}) forteR
is a non-increasing function in ¢. Therefore we can define the Choguet integral [, fdT of
f with respect to T by

/Am:AmfA(ndz:/omT((zeA: flz) > tht.

If fA fdT < oo, we say that f is integrable. In particular for A = R¢, we write

/R fdT = / fdT.
Observe that if f is bounded, then

/fd'r:/nT({zeA: f(z) 2 t)at,
A 0

where a = sup{f(z): z € A}.
In the general case if f : R? — R is a measurable function, then we define

/Ade:/Af*dT-/Af-riT,

where f*(z) = max{f(z),0} and f~(z) = max{-f(z),0}.

In this note we are going to extend the weak convergence in the space of probability
measures to the one in the space of probability capacities and study the relation on the
weak convergence between probability capacities and probability measures. The paper
is organized as follows. In section 2 we give a version of the Portmanteau Theorem,
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in which the space of all bounded continuous real valued functions is replayed by the
space of all continuous non-negative real valued functions with compact support in R
In Section 3, we prove a generalization of Portmanteau Theorem in the case of space
of probability capacities in R?. The main result of this paper is presented in Section 4,
where the relation on weak convergence between probability capacities and their associated

measures is investigated.
2. A version of portmanteau theorem

Let P be a measure on B(RY). Then the measure P is called the probability measure if
P(R%) = 1. By slight modification of Billingsley’s definition [1] of weak convergence, we
say that a sequence of probability measures P, converges weakly to a probability measure
Pif [ fdP, — J fdP for every f € Ci (RY), where Cf (R?) denotes all non-negative real
valued continuous functions with compact support in R%. From the definition of a weakly
convergent sequence and the property of a convergent sequence, it follows immediately the
following proposition.

2.1. Proposition. P, convergences weakly to P if and only if each subsequence {Py,}
contains a further subsequence {Pnn} such that Py» converges weakly to P.

Following [1], we say that a set A C R? is called T-continuity set if its boundary 9A
satisfies T(0A) = 0. In this section we prove the following theorem, which is a version of the
Portmanteau Theorem in situation where every bounded continuous real valued function
is replayed by non-negative real valued continuous function with compact support and
provides useful conditions equivalent to weak convergence for probability measures.

2.2. Theorem. Let P, P, be probability measures on B(R?). Then the following state-
ments are equivalent

(i) Pn converges weakly to P;

(%) limsup,, P,(F) < P(F) for all closed F';

(4ii) liminf, Po(G) > P(G) for all open G;

() limy 00 Pa(A) = P(A) for all P-continuity set A.

We prove Theorem 2.1 by establishing the implications in the following diagram

(i) > (i1) © (i) and (ii) © (iv).
Proof of (i)= (ii). Let F € F(R?) and € > 0. Then there exists G € G(R?Y),G D F such
that
P(G) < P(F) +e. (2.1)
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Suppose that frg : R? = [0,1] is a continuos function such that

1 ifzeF

fF'G(I):{o ifz¢G.

Thus function exists by Urysohn-Tietze Theorem. Then by (2.1) we get
PuB) = [ froiPu< [ faraus [ frair
= /G frcdP < P(G) < P(F) +¢,
which implies
limsl:p P,(F) < P(F) +e.

Since € was arbitrary, the assertion follows.
Proof of (ii)— (i). Suppose (ii) holds. We first show that for any real-valued continuous
f with compact support, we have

limsl’xlp/fdP,.S-/fdP. (2.2)

By addition in f a constant if necessary, we may assume that f(z) > 0 for all z € RY.
Then we have
0 < a =sup{f(z) : z € R%} < co.
For a given k € N, let
O=p<oy<..<ap=a
with
iy —o;=afkfori=01,... k-1

We put

ti=P({zeR?: f(z) > a;}) fori=0,1,...

Then for t € [ay; aiy1) we have

tiy1 <P({zeR?: f(z)>t}) <tifori=0,1,... k=1

Hence
k-1 k=1
E iv1(Qier — i) < /fdP < Zt;(&.ﬂ — o).
i i=0

That means

(Xk_] & ak—l .
NOE [rapsi+ F L PE) 23)

where the set F; = {z € R?: f(z) > &} is closed (even compact!) fori=1,... ,k-1.
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Similarly for each n € N we have
o k-1 C( k-1
= )< dpP, < - 2 g
: Z) (F) < / 1 +3 g (2.4)

If (i) holds, then from (2.3) and (2.4) we get

k=
a,Q
lims dP, < — + — limsup P, (F;
im up/! k k E np (Fy)

> w
T

<

+

—~—— IR
<

P(F)

i

<

+ dP.

>R =R

Letting k — oo, we obtain (2.2). Applying (2.2) to -f yiels
liminf/]dP,. 2/fdl’.
n

From the latter and (2.2) it follows that

Jim / fdP, = / fdp

for all real valued continuous functions with compact support f. In particular
lim /fdP,. = /fdP for all f € CF (RY),

i.e., P, converges weakly to P.
Proof of (ii)«+(iii). Suppose that (i) holds and G € G(RY). Then F = RH\G is a closed

set. Hence
liminf P(G) = liminf(1 — Pn(F))
n n

=1-limsup P,(F)
>1- P(F) = P(G).

That means (i2i) holds.
Conversely, if (i41) holds and F € F(R?), then G = R4\ F € G(R?). Hence

limsup P, (F) = limsup(1l — P,(G))
=1~ liminf P.(G)
<1-P(G) = P(F).

Consequently (iz) <> (147).
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Proof of (ii)— (iv). Suppose that (ii) holds and A is a P-continuity set. Let intA and
A denote the interior and closure of A, respectively. Note that if (i) holds, then so does

(iii), and hence
P(A) > limsup P,(A) > limsup Pn(A)
n n

> liminf P,(A) > liminf P, (intA) (2.5)
n n
> P(intA).
Since A is a P-continuity set, P(4) = P(intA|JA) = P(intA). Therefore, from (2.5) we

get
li_.m‘ Pa(A) = P(A).

Proof of (iv) — (ii). Asumme that F is a closed set in R%. Since d{z : p(z, F) < 6} C
{z : p(z, F) = 8}, we have

OF;(OF, =0 for 6 # v and 4,y > 0,

where F5 = {z : p(z,F) < &}. Hence, there are at most countably many of the sets
{Fs : 6 > 0}, which can have positive P-measure. Therefore, there exixts a positive
sequence 6 descreasing to 0, such that

Fs, = {z: p(z, F) < 8} are P — continuity sets for every k € N«
If (iv) holds, then
lims:p P,(F) < nllv"olo P.(Fs,) = P(Fs,) for every k. (2.6)
Since F is closed and Fj, | F, we have
P(Fs,) = P(F) as k — oo.

From the latter and (2.6), (ii) follows.
3. A generalization of portmanteau theorem for capacities

We topologize C as follows. The weak topology on C is the topology with the base

{UT; fr,...  frie): TEC, fie CFRY), >0, i=

Jk}
where
UT; fi,.. frie) = {S € C: !/f.d’I‘f'/f.dS|<(, e ngh)
k

NUT; fise).

=1

[}
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It is shown in [11] that C equipped with the weak topology is metrizable and scparable.
Therefore, we can define the weak convergence of a sequence of probability capacities
{Tu} to a capacity T as the convergence of the sequence {[ fdT,} to [ fdT for every
feCyRY.

In the sequel we need the following lemma, which was proved in [10].

3.1. Lemma. Let T be a capacity in R%. If A € B(R?) with T(A) = 0, then
T(B) = T(AU B) for B € B(RY).
In this section, we prove the following theorem, which is a generalization of Portmanteau

Theorem for capacities.

3.2. Theorem. Let T, T be probability capacities in R? and suppose Ty, converges werakly
toT. Then

(i) limsup,, Tu(K) < T(K) for all compact K € K(RY);

(i) liminf,, Tu(G) > T(G) for all open G € G(R?);

(iii) limp o Tn(A4) = T(A) for all bounded T-continuity set A C RY.
Proof. (i) Let K € K(R"). By definition

T(K) = inf{T(G) : G € G[®RY), G > K},
for € > 0 there exists Gy € G(R?),Go D K such that

T(Go) < T(K) +e.

We put
1 ifzeK
fK(I)——{O ife¢ K
and suppose that fx g, : R = [0,1] is a continuos function such that
1 ifzeK
) =
froo() { 0 ifz¢ Co.

Thus function fx g, exists by the Urysohn-Tietze Theorem. Clearly fxg, €
Cy (R?). We have

I
To(K) = / fxdT, < / Fx.GodTa > / Fr6odT < /0 T(Go)dt = T(G).
Hence ‘

limsup Tn(K) < “ler;/fK,cndT,‘ = /fK,ngT <T(Go) < T(K)+e.
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Since € was arbitrary, we get

lims:pT,.(K) < T(K).
(i4) Suppose that T}, converges weakly to T and G € G(R?). By definition

T(G) = sup{T(K) : K € K(RY), K c G},
for € > 0 there exists Ko € K(R?), Ky C G such that
T(Ko) > T(G) —e.

Let fx,,c : RY = [0,1] be a continuos function such that

1 ifreK

Jreoo(®) = { 0 ifz¢ Go.

Then fx,c € C§ (R). We have

L@ 2 [frocdlu [ fredr.
Hence
gt 7,(6) 2 lim [ frocdTu = [ froodl 2 T(K) > T(G) ~¢
Since € was arbitrary, we get
lim ixr}fT,.(G) > T(G).

(#44) Suppose A is a bounded T-continuity in R?. Let int A and A denote the interior
of A and the closure of A, respectively. Note that 4 is compact. By Lemna 3.1.
we have

T(A) = T(int A| JOA) = T(int A). (3.1)

If T, converges weakly to T, then (i) and (ii) hold. Since 75, and T are increasing
set functions, we have °

T(A) > limsup Tn(A) > limsup T,.(A)
> limix'::fT,.(A) > lim i&t"'Tﬂ(im A)
> T(int A),
which, together with (3.1) implies

lim T(4) = T(4).
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3.3.Problem. Docs cach of thr

weak convergence of capacities?

statements (i), (ii), and (i) of Theoremn 3.2 imply the

4. Weak convergence of capacities and of their associated measures

Let E be a locally compact separable Hausdorff space. Let K, F,G denote the classeses of
sly.
Following Matheron (9], we topologize F as follows. For every A C E we denote

all compact, closed and open subsets of E, respecti

Fao={FeF: F[JA#0} and F*={FeF:F(|A=0}
The miss-and-hit topology on F(R?) is the topology with the base

{(F§ g, KeKandGy,...,Gn€G},

where
FE e, =F*NFe, N FemeN
It was shown in [9] that for a locally compact separable Hausdorff space E, the space F
with the miss-and-hit topology is compact, Hausdorff and separable. Let B(F) denote the
family of all Borel sets of F in the miss-and-hit topology.
By Choquet Theorem, there exists a bijection between probability measures P on
B(F) and probability capacities T : K — [0, +o0) satisfying the equality

P(Fk)=T(K) forevery K € K.

In this case we say that the probability measure P is associated with the probability
capacity T.

Now we take E to be a compact set K in R?. For given probability capacities
T,Tn,n = 1,2,..., let P,P,,n =1,2,... denote their associated probability measures. To

prove the main result in this section, we need the following Lemma.

4.1. Lemma. Let T, S be the probability capacities in C such that

/[dT: /frlS for all f € CF (RY).

Then S =T on B(R?), i.c., T(A) = S(A) for all A € B(RY).

From this follows that {T} € C can not converge weakly to two different limits at
the same time.
Proof. Because of the equality

T(A) = sup{T(K) : K € K(R%), K C A}
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for any Borel set A € B(RY), it suffices to show that

T(K) = S(K) for all K € K(R?).
If it is not the case, then T(K) # S(K) for some compact set K € K(R?). Assume that

T(K)— S(K) = 6 > 0. Then there exists an open set G D K such that

S(G) < S(K) + g (1)

Let fx,g(z) € Cg (R?) such that
1 fzeK
friale)= { 0 ifz¢G.

Then by (4.1) we have

(ST

[ ireds < 5@ < stk +

This contradiction completes the proof. o
In this section we prove the folollowing theorem.

4.2. Theorem. The sequence of probability capacities Ty, converges weakly to T if and

only if the tated seq of probability measures P,, converges weakly to P.
Proof. Assume that P, converges weakly to P. Let f € Cgf (R¢). We put

a=sup{f(z): z € RY} < 0.
Note that if t1,t; € (0,a) are distinct, then 0F (s>} and OF (s>, are disjoiat, and
hence at most countably many of them can have positve P-measure. Therefore, F/f>¢) is
a P-continuity set almost everywhere on (0.c), i.e.,
o
/ PIO(Fiyse)ldt = 0.
]
Hence, by Theorem 2.2 and Lebesgue’s bounded convergence Theorem, we have
Jim ([ gat = [ am) = tim [r > ) =707 2 et
a
= nlL“;Q/O [Pa(Fis20y) = P(F(gony))dt

&
=/D im (Pa(Fiy2) = P(Fgso)ldt = 0
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Conversely, assume that T, converges weakly to T'. We will show that P, converges weakly
to P. Since the space F(K) with the miss-and-hit topology is a compact metric space,
by Theorem 6.4 [13] for each subsequence {P,} there exists a futher subsequence { P}

such that
/ FdPar — / fap'

for every f € Cy(R?) and for some probability measure P’ on F(K), where Cy(R?) denotes
the space of all bounded continuos real valued functions on R?. In particular

/ fdPy - / AP’ for everyf € CF (RY),

i.e., Py converges weakly to P’. Hence T,» converges weakly to 7. By Lemma 4.1 we
have

T =1
Therefore, by Choquet Theorem we get

P=P.

That means
/f(ll’,.u %/fdP for every fe Cg(RY).

Consequently, P, converges weakly to P by Proposition 2.1. (w]
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