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SOME REMARKS AND EXAMPLES ON DOMAIN
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Abstract. In this note we present some remarks on the domains of sums of series and

some examples on domains of sums of series in infinite - dimensional Banach spaces.

1. Introduction

Suppose that 7. ) is a series in Banach space X. The domain of sums of series
is defined to be the set DS(3" x) of x such that the 3.7 To(k) converges to x for some
permutation o : N — N. Let R,, denote the set of all series in X with domain of sums
is an m-dimensional linear set: €2, is the set of all series in R, with terms in some finite
demensional linear subspace of X. and

% %
R= R 2=
m=0 m=0

Suppose that Y7 rx is a convergence series with sum s in a Banach space X.
A linear functional f € X* is called a convergent functional for the series 3 LTk if
Yoy [f(zk)] < oc. The set of all convergent functionals of series 7, | 4 is a linear
subspace I' C X*. By I'y € X we denote the annihilator of the convergence set, i.e

To={xzeX: f(z)=0,VfeTl}.

A series 37| ay, is said to be unconditionally convergent if it converges for any rearrange-
ment for its terms.
A series is said to be conditionally convergent if it converges, but not unconditionally.
We recall the following well-known result.

Riemann theorem. If /" | r, is conditionally convergent series of real numbers, then

DS(Y xx) = R.

The following is a perfect extension of Riemann theorem over the finite-dimensional *
spaces.

Steinitz theorem [2]. Let 7", xx be a convergent series in an m-dimensional space
X and let Y_p7 | @ = s. Then the domain of sums of the series Z:‘;l . is the linear set
s+ Lo, where Iy is the annihilator of the set of convergent functionals.

From Steinitz theorem, it follows that any series in finite-dimensional space having
domain of sums is a linear set. It is known that in any finite -dimensional Banach space
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there exist series with domains of sums that is not linear set. In this note we construct
some series in infinite-dimensionaly spaces with domains of sums which are linear sets.

2. Some properties the set &

Theorem. Let Y ;- zx be a unconditionally convergent series in a Banach space X then

=
Z“‘ €Ry and Tg={0}.
k=1

Proof. By theorem 1.3.1 in [2].5°72, xx € Ro. For every f € X°, the series of real
numbersy_;~ | f(zx) is unconditionally convergent, hence 37" [f(xx)| < x. Therefore
X =T. On the other hand any = € X,z # 0, from Hahn-Banach’s theorem there exists
f € X* such that f(z) # 0. Hence, I'y = { 0}. The theorem is proved.

The contrary sentence of theorem 1 is false if X is infinite-dimensional. Indeed, in
the Hilbert space I5 for the canomical orthonormal basis { ex} ., consider series having
terms ey, 2,,’ ke’ﬂ foreachn>2, 2" '-1>k>0:

2 2 47 47 4 4
This is a convergent series, and its sum is equal to e;. The series constructed does not
converge unconditionally, but domain of sums of this consists of only the one point e;.

Theorem. If Y77, xx € Q then Tg = DS(Y 5o, xx) — xo for any x9 € DS(Y ).

Proof. We denote E is the linear subspaces of X generated by terms of series 777 | 4.
Since dimE < oo so E is a closed subset of X. Therefore DS(3" x;) ¢ E. Denote I'Z is
the set of all convergence functionals of 3=, zx in E,

rf={z€E : f(x)=0, YfelF}
From Steinitz theorem we have

T8 = DS(Tzx) - x0, z0 € DS(Y ).
On the other hand, from Hahn-Banach’s theorem, any f € I'® there exists fo € I' such
that f, ;= f. Hence I'¥ =TI'y. The theorem is proved.
3. Series with domains of sums are finite dimensional linear set in Banach
spaces
Theorem. Let X be a Banach space and S be an m-dimensionally linear set of X. Then

there exists 3" po| Tx € Ry such that DS(Y. xx) = S.

Proof. Given fix zo € S. Then S — o is a linear subspace of X. Let { e,} [, be a basis of
S —1x0. Forany i€ { 1,2,...,m} and j € N, put ¢;; = B, Obviously. for any k € N
there exists a unique pair (i,j) for i € { 1,2,...,m} and j € N such that

k=m(j-1+i (%)
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1t follows that the element z; = t;; + 7‘.—1., € X is unique. We shall prove that DS(}" z1)
=5

Given z € S. Since  — 1y € S — zg. there exist numbers A, Az, ...\,, such that
- a0 =Y .0, Aie;. Forany i€ {1.2,..,m} choose permutation o; : N — N such that
Sty = Mies. By relation (), put

2uj=1

o(k)=mloi(j) - 1] +i, keN

we obtain the permutation o : N — N. We have 37| z,x) = z. Indeed, for any ¢ > 0
and i € { 1,2,...,m} there exist ng and n; € N such that

.
o &

1Dty = Nieall < 5=, ¥m >y,
: 2m

n
1 £
— -3 - h- &
Il g] Fm Lo x| < 3 Yn2ne

Take N = max{ mn;,mny.... ,mn,,ng} . For each n > N we have numbers k; > n;
such that

m

1" @y = all = 113 ( th ) +Z2,(k> ||
k=1

,1;1

m

13503 e - M) +ij,zon

=1 =1

m ki
SN tio) - Xeedl 1+|122”(,¢)zon

=1 j=1

<m = +E—e
om 2

Therefore Ztl Ty(ky = 2. The theorem is proved.

3. Series with domains of sums are linear subsets in the hilbert spaces
Theorem. Let X be a separable Hilbert space and A be a closed subspace of X. Then

there exists a convergent series Y p—, x; with DS(}_xzx) = A.

Proof. From theorem 3 we can assume dimA = oo. Given a orthonormal basis { e,} 52,
such that { e, } %, is an orthonormal basis of A. For any i,j € N, we put

e,

T
A

We shall prove that series Y~ zx have terms t;;, i,j € N satisfying

DS m)=A



12 Dau The Cap, Le Xuan Truong
For any z € A, we write z = ) ;2| Aien,. Take permutaion o; : N — N such that

1)7@)

o (=
Ztm.(]) Z 0 €n, = Aien,.

i=1 =1

Let ¢ : N2 N denote the map defined by
elig) =5+ -1(i+7-2)+i.

Then ¢ is a surjection. Let T (k) = t,-1(x). It is easy to show that 37" | z,(x) = z. Since
A is closed of X, DS(}" xx) = A. The Theorem is proved.
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