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INDEX OF NILPOTENCY, MULTIPLICITIES
AND BLOWING-UP BY SPECIALIZATIONS

Dam Van Nhi X
Pedagogical university Ha Noi, Vietnam

Abstract. Let z = (z7..... T,) be indeterminates and % an indeterminate, which is
considered as a parameter. The specialization of an ideal I of R = k(u)[x] with respect
to the substitution u — « was defined as the ideal I,,, which is generated by the set
{flax) | fluxz) € TN E[u,x]}. It was showed that the ideal I, inherits most of
basic properties of I and it was used to prove many important results in algebra and in
algebraic geometry. In this paper we want to prove the preservation of index of nilpotency,
multiplicities, Forster-Swan number and to study some properties of blowing-up of factor
ring by specializations.

Introduction

The purpose of this paper is to prove the preservation of index of nilpotency. multi-
plicities, Forster-Swan number and to study some properties of blowing-up of factor ring
by specializations. Here we want to fix some of notations that will be used throughont this
paper. The groundfield k is always assumed to be infinite and perfect. A ficld extension
of k will be denoted by K. Aggregates such as xy,... 2, or aj,... ,q,,, where Yo, € K,
will often be written 2 or a. Accordingly, the ring or field extensions klzy,... x| or
k(ay, ..., a,,) will be written by k[z] or k(a), with evident variants of these designations.
Denote the ring k(u)[z] by R, and the ring k(a)[z] by R,.

The theory of specialization of ideals was introduced by W. Krull {3]. Krull defined
the specialization of an ideal I of R = k(u){x] with respect to the substitution u — a as
the ideal I,,, which is gencrated by the set {f(a, )| f(u,z) € I Nk{u,x}}, where a € k™.
The ideal I, inherits most of basic properties of I.

The notion of specialization of an ideal also played an important role in the study
of normal varieties by A. Seidenberg who proved that almost all hyperplane sections of
a normal variety are normal again under certain conditions [10]. Following these works,
N. V. Trung studied the preservation of properties from the quotient ring R/I to R./1,
[12]. Using specializations of finitely generated free modules and homomorphisms between
them we defined in [4] the specialization of finitely generated module. We showed that
basic properties and operations on modules are preserved by specializations. In [5].[6] we
followed the same approach to introduce and to study specializations of finitely generated
modules over a local ring and of graded modules. Present paper is a continuation of an
earlier one [5]. The aim of this paper is to study the preservation of some invariants of
modules and some properties of blowing-up of factor ring through a specialization.

The paper is divided in three sections. Section 1 is devoted to the discussion of
index of nilpotency aud multiplicities of modules. We shall see that these invariants are
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unchanged through a specialization. In Section 2. we shall see that the preservation of
rank and Forster-Swan number of modules. and of dimension of symmetric algebras by
specializations are proved. While some properties of the blowing-up of factor ring by
specializations will be studied in section 3.

In this paper. we shall say that a property holds for almost all a if it holds for
all a except perhaps those lying on a proper algebraic subvariety of K™. For unxplained
. [11}. For convenience we will often skip the phrasc
“for almost all o™ when we are working with specializations.

notations we refer the reader to |

1. Index of nilpotency and multiplicities of modules by specialization

We start by recalling the definition of a specialization of a finitely generated S-
module. Let P be an arbitrary prime ideal of R. The first obstacle in defining the
specialization of Ip is that the specialization P, of P in R, need not to be a prime ideal.
The natural candidate for the specialization of Rp is the local ring (R,),, where o i
associated prime ideal of P,. Such a local ring was already considered with
regard to specializations of points in [12]. For short we put S = Rp and S, = (R.),. The
notion S, is not unique. However. all local rings S, have the same dimension as S. Here
the maximal ideals PS of S and pS,, of S, will be denoted by m and n, respectively.

Now we will recall a specialization of any element of the ring S. Note that an
arbitrary element f € R may be written in the form

S

2.4 plu,z) € klu,z], q(u) € k[u] \ {0}.

In [6]. for any « such that g(a) # 0 we define f, := p(a,z)/q(«). For every element

a:ées, flgeR, g¢ P,

there is g, ¢ P, and we define a, := f,/ga. Then a, is uniquely determined and belongs
to S, for almost all a, (see [5]).
Let M be a finitely generated S-module. Assume that the following exact sequence

59257 — M — 0,

where the matrix of ¢ is A = (a;;) with all a;; € S, is a finite free presentation of M.
We now obtain a homomorphism ¢, : S — S? given by the matrix ((aij)a). As the
definition of a specialization of module, we obtain a finite free presentation

51 8% 58— M, — 0,
where M, = Coker g, see [5]. The S,-module M, is called a specialization of M. In
particular, we note that m, = n. Denote the dimension of M by d. The following result
shows that the dimension of module is preserved by a specialization.



2 Dam Van Nhi

Lemma 1.1. [5, Theorem 2.6] Let M be a finitely generated S-module. Then, for almost
all a, we have

(i) AnnM, = (AnnM),,

(ii) dim M, =dim M.

With the following lemma we see that specializations commute with the Tor and
the Ext functors.’

Lemma 1.2. [5. proposition 3.3] Let L and M be finitely generated S-modules. For
almost all a,

Extls, (Lo, Ma) = Ext§(L, M)a, i >0,
Tor* (La, Ma) & Tors (L, M)a, i > 0.

Now we shall prove the preservation of the index of nilpotency of an ideal through a
specialization. We first recall the definition of index of nilpotency. The indez of nilpotency
of an ideal / of a commutative ring, which is denoted by nil(f), is the smallest integer
s such that (v7)* C I. It is to provide a path to the estimation of the exponent in the
Nullstellensatz. This is the classical notion of multiplicity of a primary ideal regarding the
Loewy length of a module.

Let M be a finitely generated S-module. When M has a finite length, the Loewy
length of M is the smallest integer s such that m*M = 0. It is denoted by ¢£(M). Let q be
a prime ideal of S. Set

Co(My) == | (Onr, :0™).
m>0
The Loewy multiplicity of M at q is Lmultys(q) = €€(T'q(M,)). These notions were used
in [13] in order to estimate the index of nilpotency for m-primary ideals. When [ is a
P-primary ideal, nil(I) = nil(Ip) = €4(Rp/Ip) and it will be called the nilpotency degree
of S/IS.

Suppose that I C P is a prime ideal of R such that q = I'S. By [5, Corollary 1.6},
we set o = InS,. It is known that I, is a radical ideal of R,. Thus, q, is a radical ideal.
Suppose that Q is an arbitrary associated prime ideal of I, such that Q C p. Then we
have the following theorem.

Theorem 1.3. Let M be a finitely generated S-module of finite length and q a prime
ideal of S. Then, for almost all a, we have

20(My) = L6(M),
Lmultay, (QSs) = Lmultar(q).
Proof. We first prove the equality £6(M,) = €6(M). By [5, Proposition 2.8, M, is a
S,-module of finite length. Put £¢(M) = s. Then m*M = 0, and m*~!M # 0. By Lemma
1.1, we get m$ M, = 0. Since m* "' M # 0, a = Ann(m*~' M) # S. There is an ideal I of
R such that I C P and a = IS. By [5, Corollary 1.6], we get

Ay = 1nSa C PaSa = Mq.
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Hence
Amn(m’"'M,) = (Ann(m*~'M)), Cm, =n.

Then mf,’lx\l,, # 0. Hence €4(M,,) = s = €0(M) for almost all a.
Next we will prove that Lmulta,, (QS,) = Lmult;(q). Suppose that

St St M —0

is a finite free presentation of M. By localization at the prime ideal q, the exact sequence

&
SN St — My — 0

is a finite free presentation of the Sy;-module M. Since Sg = (Rp)ir,. = R;, we may
consider M, as a finitely generated R;-module with a finite free presentation

Rl — R, — M, —0.

For the specialization of Ry is the local ring (R.)q. By the definition of specialization of
M,, we have the finite free presentation of (Mg) :

(Ra)ly — (Ra)y — (Mg)a — 0.
Since the sequence S" —— S! — M, — 0 is exact, we get the exact sequence
(Sa)s, — (Sadgs, — (Ma)gs, — 0.
= ((Ra)o)ara),

Since (Sa)gs. = (R,)q. we obtain the following commutative diagram

(Ra)y —— (Ra)p —— (Mg)a —— 0
lm J.A
(Rally —— (Rady —— (Ma)gs, — 0
and then there is an induced isomorphism (Mg)o — (M, )gs, such that the diagram
(Ra)ly —— (Ra)p — (Mg)a ——— 0
Ju [ |
(Ra)ly — (Ra)lg —— (Ma)gs, —— 0

is commutative. Hence. we can identify the module (M;), with the module (M,)qs, -
Because M, is a Noertherian module, there is an integer ¢ such that

Tq(Mg) = 0pr, :q"and Oy, : q' = Opr, :q™ for allm > ¢.
Since Pq(Mg) = Tgs, (My), we have Tg(Mg) = Tq(M),. Since

(Or :9™)g)a
(

(0ar, : 9™)a =
= ((0ar : 4™)a)gs.. by above proof

= (Oar,, : qo')@s., by [5. Lemma 2.5],
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we get Tq(Mg)a = (Om, : 9%)a = (Om, : 9%)@s., and (O, : 44)@s. = (Oar, : 47)Qs.
for all n > t. Hence €6(Tq(My)a) = €€(Tq, ((My)a)), and it follows from the fact that
(Mg)a = (Ma)gs., that

£6(Tq(Mq)) = €(Tq, ((Mq)a)) = £6(Tq, (Ma)qs.))

and therefore, Lmult s, (QS,) = Lmultas(q) for almost all a.
Using this result, we will show that the index of nilpotency of a P-primary ideal is
preserved by specialization.

Corollary 1.4. Let I be a P-primary ideal of R. Then, for almost all a, we have
nil(IS) = nil(/oSa).

Proof. By Theorem 1.3, we get ¢((R/I)p) = LU(((R/I)p)a) = €U((Ra/Is)p). Hence
nil(Jp) = nil((Z4)p) for almost all a.

Lemma 1.5. Let I be an ideal of R. Then, for almost all a, we have

(VDa = V.
Proof. Assume that [ = I, N---N I, is a minimal primary decomposition of I, where
P, =yT,i=1,...,s By 3, Satz 3] = (I)a N++-N (Is)a- Suppose that

(I)a=HaN--NHy,i=1,..s
is a minimal primary decomposition. Let

Py=+Hyi=1,... ,sl=1,.. t.

Since k is perfect, (Pi)a = PaN...N Py, i=1,...,s Hence
s
(VDa = ﬂ(Pn N...NPy,).
i=1
By (3, Satz 8 and Satz 9], the minimal primary decomposition of I, is
Io={)(Han- N Hy,).
i=1

Hence VI, =N_;(PaN...NPy,) = (V1)a-
Proposition 1.6. Let a be an ideal of S. Then, for almost all a, we have

nil(a) = nil(a,).
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Proof. Assume that a = IS, where I C P is an ideal of R. There is a, = 1,S,. Since
Va= VIS and V@, = VI,Sa. therefore

(V@) = (VIS)a = (\/7)(«5,. by [5. Corollary 1.6]
= \/_I:Sﬂ by Lemma 1.5 = /a,.

Put nil(a) = s. Since (v/a)* C a. by an easy computation it follows that
(Vaa)* = (Va)i, € aa.

Hence nil(a,) < s. We need still show that nil(a,) > s. Indeed, by definition of the index
of nilpotency, there is (v/a)*~!  a. Then (\/a,)*"! € a,. This proves nil(a,) > s, and
therefore nil(a,) nil(a) for almost all a.

We continue with the preservation of multiplicites of modules through a specializa-
tion. Before stating the theorem we first recall some notations and definitions.

Let M be a finitely generated S-module. A sequence of elements a = ai,... ,a, in
m is a multiplicity system of M if A(M/(a)M) is finite, where X is the length of modules.
Let q = (ay,...,a,)S an ideal of S. Now we will show that the multiplicity of M with
respect to q is unchanged through a specialization. By [11, Lemma 1.4] it is sufficient to
treat the case in which a;.... ,a, is a system of parameters for M with p = dimM = d.
We know that the multiplicity of M with respect to q is defined as the number

A(M/q"M).d!

e(q, M) = hlkx; ]

Note that e(q, S) will be denoted by e(q). The following theorem shows that the multiplicity
of M with respect to q is unchanged by a specialization.

Theorem 1.7. [7, Theorem 1.6] Let M be a finitely generated S-module of dimension d
and let
9=(a,... ,aq)§

be a parameter ideal on M. Then, for almost «, we have

e(ga; My) = e(q: M),
where e(q,: M,) and e(q: M) are the multiplicities of M,, and M with respect to q, and
q respectively.

Let H! (M). i € Z, denote the ith local cohomology modules of M. In (1}, the ith
pseudo-support Psupp' (M) and ith pseudo-dimension psd'(M) of M are defined as follows
Psupp'(M) = {p & Spec(S) | Hy5¢™ 5P (M) # 0},

psd’(M) = sup{dim $/p | p € Psupp*(M)}.
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Let q be an m-primary ideal of S. The multiplicity of local cohomology modules is defined
by i
(0. H(M)) = pH ts, (Hys,™ 7 (My)e(a, S/p).
p € Psupp'(M)
dim S/p = psd'(M)
To prove the preservation of multiplicity of local cohomology modules by a special-
ization we will study the specializations of modules

K}, = Homg(H} (M), E(S/m)) fori =0,... ,d,

where E(S/m) denotes the injective hull of the residue field S/m. The modules K}, are
again the finitely generated S-modules. Clearly K}, = 0 for all i < 0 and 7 > dim M. We
often write K, instead of KK,A This module K/ is called the canonical module of M, see
2], 8-

Lemma 1.8. Let M be a finitely generated S-module. Then, for almost «, we have

(K)o 2 Ky, ,i=0,....,d
Proof. By Lemma 1.1, dimM,, = dimM = d. Let r = dimS = dim S,,. Since S and S,
are regular rings, they are Gorenstein rings. Therefore K}, = Exty™'(M,S) and K}, =
Extyg ' (Ma, Sa) by Matlis duality. Since Extg (M, §)a = Extly "(Ma,Sa), i =0,... ,d,
by Lemma 1.2, we have (Kj,)o = K}, for almost a.

Proposition 1.9. Let M be a finitely generated S-module and q an m-primary ideal of
S. Then, for almost a, we have

(i) an ideal b of S with Psupp'(M) = V(b) such that Psupp'(Ma) = V(ba),

(ii) €'(da, Hy(Ma)) = €'(a, HL (M),

(i) psd’(M,) = psd(M).

Proof. (i) By (1, Proposition 1.2 (iii)], Psupp'(M) = Supp(K},) = V(b), where b =
Ann K}, Since (Kjy)a = Kj;, by Lemma 1.8 and by = (AnnKj},). = Ann K}, by
Lemma 1.1, Psupp'(Ma) = Supp(K},, ) = V(ba)-

(ii) By (1, Proposition 1.2 (ii)], we know that

€'(q, Ho(M)) = e(q, K},) and €' (qa. Hy (Mo)) = e(da, Ky, )-

Since (Kij)a = K}, by Lemma 1.8 and e(qa, (Kj/)a) = e(q, Kiy) by Theorem 1.7, we
have e(qa, Ky, ) = €(q, K}). Hence €'(qa, Hy(Ma)) = € (a, Hy, (M)).

(iii) By (1, Theorem 2.4], we know that psd'(M) is equal to the dimension of H} (M).
Since Ann H}(M,) = Ann H, (M), by [5, Lemma 3.5], upon simple computation, we get
dim Hi{(M,) = dim H. (M) from [5, Lemm 1.1]. Hence psd'(M,) = psd’(M) for almost
a.
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2. Preservation of Forster-Swan number by specializations.

In this section, the problem of concern is the preservation of Forster-Swan number
and of dimension of symmetric algebra of a module by specializations. Fir:
study the pre:
a module by spec

Let M be a finitely generated S-module. In this section we want to study the
preservation of Forster-Swan number and dimension of symmetric algebra of M by spe-
cializations. Recall that the Forster-Swan number of M is defined to be

M) = sup {dimS/q+ u(M,)},
)

q€Spec(S,

we want to
ion of Forster-Swan number and of dimension of symmetric algebra of
zations.

where z(My) is the minimal number of generators of M. Note that b(M ) is always bounded
below by bo(M) = dim S + rank M. The tensor algebra Ts(M) of M is defined the graded,
non-commutative algebra

Ts(M)=SaeMae(MesM)®- -,

where the product of yy @ ®ysand 21 @ D zp s Y @ VY, © 2 @
symmetric algebra S(M) of M obtained from Ts(M) by factoring out the two-sided ideal
generated by relations y © z -z @y for all y,z € M.

Denote the total ring of fractions of S by H. Then M has rank r, which is denoted
by rank M, if M @ H is a free H-module of rank 7. If » : M — N is a homomorphism of
S-modulesm then the number rank(z) is defined to be the number rank Im(v’). We shall
see that these numbers are unchanged through a specialization.

Lemma 2.1. Let M be a finitely generated S-module with a finite free presentation
59 %5 §7 — M —» 0. Then rank M, =rank M and rank(@,) = rank(¢) for almost all
a.

Proof. Suppose that Fy : 0 — §7r 24 gpest —y ooy §m 25 6m s M — 0isa
finite free resolution of M. Then, the following complex

(Fu)o: 0—> 8 @ gpees oy gm Boy gm0y M, 50

is a finite free resolution of M, by [5, Theorem 3.1]. By (2, Corollary 1.4.5], we get

¢
rank M, = Z(*l)jp, = rank M.

=0

By (2. Proposition 1.4.3] we get rank(¢,) = rank(¢) for almost all a.
Let 1;(¢) be the ideal generated by ¢ x ¢ minors of the matrix A of ¢. For an integer
h, the module M satisfies the condition Fj if

ht [;(¢) > rank(¢) —t+1+h, 1 <t < rank(e),

see (14, Definition 1.3.1]. We have the following lemma.
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Lemma 2.2. Let M be a finitely generated S-module. If M satisfies the condition F),,
then M,, also satisfies the condition F}, for almost all a.

Proof. Let ay,... ,a, be the d x d-minors of A,d = rank ¢. We may write a; = f,/g, with
f5:9; € R, g, € P. Then

1((#)a) = ((a1)a: -+ (@s)a) = ((f1)ar- -+ (fu)a)Sa

Let I be the ideal of R generated by the elements fi, ..., fo. Then In = ((fi)as--- , (fs)a)
by [4, Corollary 3.3]. Therefore, I((¢;)a) = InSa. Since S and S, are regular rings and
dim$ = dim S,, ht [;(6¢s) = ht I;(¢) for all ¢t by Lemma 1.1. Since rank(¢,) = rank(¢)
by Lemma 2.1, we get

ht I;(¢a) > rank(d) —t + 1+ h, 1 <t < rank(¢s).

Hence, M, satisfies the condition F}, for almost all a.
We are now in a position to prove the following proposition about the preservation of the
Forster-Swan number and the dimension of S(M) of M through a specialization.

Define the following integral valued function on (1, rank(¢)] :

dt) = { rank(@) — t + 1 — ht [;(¢) if Fy is violated at ¢,
7710 otherwise.

If we put d(M) = sup{d(t)}, we have the dimension formula: b(M) = by(M) + d(M) by
(14, Theorem 1.3.5].

Theorem 2.3. Let M be a finitely generated S-module. Then, for almost all a, we have
(i) b(M,) = b(M),
(i) dim S(M,) = dim S(M).

Proof. (i) Since dimS, = dimS and rank(M,) = mnk(M) by Lemma 2.1, by(M,) =
by(M). From the definition of d(t) it follows that d(M,) = d(M). Since b(M.,,) = by(M,)+
d(M,) and b(M) = by(M) + d(M), we have b(M,) =

(ii) By the theorem of Hunecke-Rossi, dim S(M,,)
[14, Theorem 1.2.1]. By (1), dim S(M,) = dim S(M

)=

b(M).
= b(M,) and dim S(M) = b(M), see
) for almost all a.

3. Blowing-up of factor ring by specialization

The present section will be devoted to study the preservation of Blowing-up of factor
ring by specializations. We now assume that J is an ideal of S. We consider the local ring
A= 5/3 and b = m/J. A and b may be considered as ﬁmtely generated S-modules, we
have A, = S,/Ja, and b, = m,/J,. Each ideal of A may be written in the form gA,
where q is an ideal of S. If L’ is an A-module, then we can regard L' as a S-module and
there is a S-isomorphism ¢ : H;A(L’) =5 Hi(L"), so that, it doesn’t matter whether we
calculate these local cohomology modules over S or A.
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Let q be a parameter ideal of A. Denote by Proj Rq(A) the set of homogeneous
prime ideals of Ry(A) not containing the ideal

Ry(A). = D"

h>0

Proj Ry(A) is called the blowing-up of A with centre of q. We shall begin with recalling
the following lemma.

Lemma 3.1. [5, Theorem 3.7) If q is a standard parameter ideal of A, then q,, is again a
standard parameter ideal of A,, for almost a.

Lemma 3.2. We have H(A),, = H‘b'_‘(:l..) for almost all a.

Proof. There is an integer ¢ such that H(A) 20,4 : b* and 04 : b' = 04 : b™ for all m > t.
By (5. Lemma 2.5]. (04 : b™), 2= 04, : bl Therefore, H)(A) 2 (04 : b*)y = 04, : b,
and 04, : bf, = 04, : b]' for m > t. Hence HY(A)s = HY (Aq) for almost all a.

Proposition 3.3. Let q = (a),... ,aq4)A be a parameter ideal of A, where d = dim A.
If R'”” "4,,)(/1) is a Cohen-Macaulay scheme for all d-tupels (ty,... ,tq) of positive
1y

integers, then, for almost o, R, (Aq) is again a Cohen-Macaulay scheme for

((a1)5h oo (aa)lsh)

all d-tupels (ty,... .tq) of positive integers.

Proof. By [9, Theorem 5.1]. it is well-known that R um)(A) is a Cohen-Macaulay
Ly

scheme for all d-tupels (... ., t4) of positive integers if and only if the images of (ay, ... ,aq)

form a standard system of parameters in z\/'Hl?(A). By Lemma 1.1, dim A, = d. Since

dim A, /((a1)as - (@d)a)Ag = dim(A/(ay, ..., ag)A)y =dimA/(ay,... .ag)A =0

by Lemma 1.1 (a;), ., (@), 1s asystem of parameters on A,. Using the S-isomorphism
¢ and by Lemma 3.2 and [5. Lemma 2.3]. we have

Ao /HY (Aq) % (A/HJ(A))a-

Therefore, the images of ((@i)a,--.,(ad)a) form a standard system of parameters in
Aa/H} (As) by Lemma 3.1. Hence R((nﬂ,",,.“(a,),'d)(A“) is again a Cohen-Macaulay
scheme for all d-tupels (t,... .t4) of positive integers.

Proposition 3.4. If Ra(A), (resp.Gq(A)), is a locally Cohen-Macaulay module for all
parameter ideals a of A, then, for almost o, Rc(A,), (resp.G(As)), is a locally Cohen-
Macaulay module for all parameter ideals ¢ of A,.

Proof. By [11. Chapter IV Theorem 3.2]. we only need to show that if A/H{(A) is a

Buchsbaum module, then A,,/H,‘,’" (Ag) is also a Buchsbaum module for almost all . The

proof for this claim follows immediately by virtue of [5, Corollary 3.8] and Lemma 3.2.
From Proposition 3.4 we obtain a following corollary.
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Corollary 3.5. If Proj R,(A) is a Cohen-Macaulay scheme for all parameter ideals a of
A, then Proj R.(A,) is a Cohen-Macaulay scheme for all parameter ideals ¢ of A,.

Proof. By [9. Corollary 6.1, Proj R.(A) is a Cohen-Macaulay scheme for all parameter
ideals a of A if and only if A/H{(A) is a Buchsbaum ring. We consider the ring A/H{(A)
as a finitely generated S-module. This module is a Buchsbaum S-module. Using the
S-isomorphism ¢ and by Lemma 3.2, we obtain

Aa/Hy, (Aa) = (A/HJ(A))a

Since A/H(A) is a Buchsbaum S-module, (4/H{(A)), is a Buchsbaum S,-module by
[5, Corollary 3.8]. Thus, A‘,/H\‘,’"(A(,) is a Buchsbaum S,-module. Hence ProjR:(A,) is
a Cohen-Macaulay scheme for all parameter ideals ¢ of A, by [9. Corollary 6.1].

Proposition 3.6. If there is a parameter ideal a such that ProjG.(A) is a Cohen-
Macaulay scheme, then there is a parameter ideal ¢ such that ProjG (A,) is a Cohen-
Macaulay scheme.

Proof. Put d = dim A. Then dim A, = dim A = d. By [9, Proposition 4.2]. it is wall-known
that there is a parameter ideal a such that Proj G,(A) is a Cohen-Macaulay scheme if and
only if- H{(A) is of finite length for all i < dim A. We consider H{(A) as finitely zenerated
S-modules. Using the S-isomorphism ¢ and Lemma 3.2, and by (5, Theorem 3.6], we
obtain

A(Hy, (An)) = MH(A)) < oo for all i < d.

By (9, Proposition 4.2], there is a parameter ideal ¢ such that ProjG(A,) is a Cohen-
Macaulay scheme.

Proposition 3.7. If Proj R.(A) is a Gorenstein scheme for every parameter ideal a of A,
then Proj R(A,) is a Gorenstein scheme for every parameter ideal ¢ of A,.

Proof. By [9, Theorem 5.4}, Proj Rq(A) is a Gorenstein scheme for every parameter ideal
a of A if and only if A/H2(A) is a Gorenstein ring. We consider the ring A/H)(A) as a
finitely generated S-module. This module is Gorenstein. By using the S-isomcaphism ¢
and by Lemma 3.2, we obtain

Aa/HY, (Aq) = (A/H(A))o.

Since A/HQ(A) is Gorenstein, (A/H2(A)), is Gorenstein by [5. Proposition 42]. Thus,
A‘,/H{,’“ (A,) is Gorenstein. Hence Proj R.(A,) is a Gorenstein scheme for every param-
eter ideal ¢ of A, by [9, Theorem 5.4].

References

1. M. Brodmann, R. Y. Sharp, On the dimension and multiplicity of local coxomology
modules, Nagoya Math. J., to appear.

2. W. Bruns, J. Herzog, Cohen-Macaulay rings, Cambridge University Pres:, 1993.

3. W. Krull, Parameterspezialisierung in Polynomringen, Arch. Math., 1(198). 56-64.



Indez of nilpotency, multiplicities and... 51

4.

o

=

N

©

. A. Seidenberg, 'l

D. V. Nhi and N. V. Trung. Specialization of modules, Comm. Algebra 27(1999).
2959-2978.

. D.V. Nhi and N.V. Trung. Specialization of modules over local ring, J. Pure Appl.

Algebra. 152(2000). 275-288.

. D. V. Nhi. Specialization of graded modules. Proc. Edinburgh Math. Soc.. 45(2002).

491-506.

D.V. Nhi. Preservation of some invariants of modules by specilization, Vietnam
national Univ.. Hanow, J. of Science t. XVIII, Math.-Phys. 1(2002), 47-54.

P. Schenzel. Dualitat Komplexe in der lokalen Algebra und Buchsbaum-Ringe. Spring-
Verlag Berlin Heidelberg New York 1982.

P. Schenzel, Standard systems of parameters and their blowing-up rings, J. Reine
Angew. Math., 344(1983), 201-220.

1e hyperplane sections of normal varieties, Trans. Amer. Math.

Soc., 69(1950). 375-386.

. J. Stiickrad and W. Vogel, Buchsb rings and applications, Springer, Berlin,
1986.
N. V. Trung, S ! ungen all i Hyperflich hnitte und A di

gen, in: Seminar D.Eisenbud/B.Singh/W .Vogel, Vol. 1, Teubner-Texte zur Mathe-
matik, Band 29 (1980), 4-43.

. W. V. Vasconcelos. Comp onal methods in ive algebra and algebraic

geometry, Springer-Verlag Berlin Heidelberg New York, 1998.

. W. V. Vasconcelos. Arthmetic of Blowup Algebras, London Mathematical Society

Lecture Note Series, 195.



