SOME KINDS OF NETWORK AND WEAK BASE

Tran Van An

Department of Mathematics, Vinh University

Abstract In this paper, we study some kinds of network, and investigate relations between the kinds of network and the point-countable weak base. It is showed that, if a space has a point-countable kn-network (strong-k-network), then so is its closed compactcovering image.

1. Introduction

Since D. Burke, E. Michael, G. Gruenhage and Y. Tanaka established the fundamertal theory on point-countable covers in generalized metric spaces, many topologists have discussed the point-countable covers with various characters. Then, the conceptions of k-network, weak base, cs-network, cs^* -network, wcs^* -network ... were introduced. The stucy on relations among certain point-countable covers has become one of the most important subjects in general topology. In this paper we shall study some kinds of network, consider relations among certain networks and prove a closed compact-covering mapping theorem on spaces with a point-countable kn-network or strong-k-network.

We adopt the convention that all spaces are T_1 , and all mappings are continuous and surjective. We begin with some basic definitions.

1.1. Definition. Let X be a space, $A \subset X$. A collection \mathcal{F} of X is called a *full* cover of A if \mathcal{F} is a finite and each $F \in \mathcal{F}$, there is a closed set C(F) in X with $C(F) \subset F$ such that $A \subset \bigcup \{C(F) : F \in \mathcal{F}\}.$

1.2. Definition. Let X be a space, and \mathcal{P} be a cover of X.

(1) \mathcal{P} is a *k*-network if, whenever $K \subset U$ with K compact and U open in X, then $K \subset \cup \mathcal{F} \subset U$ for some finite $\mathcal{F} \subset \mathcal{P}$.

(2) \mathcal{P} is a *network* if for every $x \in X$ and U open in X such that $x \in U$, then $x \in \cup \mathcal{F} \subset U$ for some finite $\mathcal{F} \subset \mathcal{P}$.

(3) \mathcal{P} is a *strong-k-network* if, whenever $K \subset U$ with K compact and U open in X, then there is a full cover $\mathcal{F} \subset \mathcal{P}$ of K such that $\cup \mathcal{F} \subset U$.

(4) \mathcal{P} is a *kn-network* if, whenever $K \subset U$ with K compact and U open in X. then $K \subset (\cup \mathcal{F})^o \subset \cup \mathcal{F} \subset U$ for some finite $\mathcal{F} \subset \mathcal{P}$.

(5) \mathcal{P} is a *cs-network* if, whenever $\{x_n\}$ is a sequence converging to a point $x \in X$ and U is an open neighborhood of x, then $\{x\} \cup \{x_m : m \ge k\} \subset P \subset U$ for some $k \in \mathbb{N}$ and some $P \in \mathcal{P}$.

(6) \mathcal{P} is a cs^* -network if, whenever $\{x_n\}$ is a sequence converging to a point $x \in X$ and U is an open neighborhood of x, then $\{x\} \cup \{x_{n_i} : i \in \mathbb{N}\} \subset P \subset U$ for some subsequence $\{x_{n_i}\}$ of $\{x_n\}$ and some $P \in \mathcal{P}$.

Typeset by ANS-T-X

(7) \mathcal{P} is a wcs^* -network if, whenever $\{x_n\}$ is a sequence converging to a point $x \in X$ and U is an open neighborhood of x, then $\{x_{n_i} : i \in \mathbb{N}\} \subset P \subset U$ for some subsequence $\{x_{n_i}\}$ of $\{x_n\}$ and some $P \in \mathcal{P}$.

The following character of kn-network will be used in some next proofs.

1.3. Proposition. For any space, the following statements are equivalent

(a) \mathcal{P} is kn-network;

(b) For every $x \in X$ and any open neighborhood U of x, there is a finite subcollection \mathcal{F} of \mathcal{P} such that $x \in (\cup \mathcal{F})^o \subset \cup \mathcal{F} \subset U$. *Proof.* The necessity is trivial.

We only need to prove the sufficiency. Let K be a compact subset of X and U and open set in X such that $K \subset U$. For every $x \in K$, there exists a finite subcollection $\mathcal{F}_x \subset \mathcal{P}$ such that $x \in (\cup \mathcal{F}_x)^o \subset \cup \mathcal{F}_x \subset U$. Then the collection $\{(\cup \mathcal{F}_x)^o : x \in K\}$ covers K. Because K is compact, there are the points x_1, \ldots, x_k in K such that the finite subcollection $\{(\cup \mathcal{F}_{x_1})^o : i = 1, \ldots, k\}$ covers K. Denote

$$\mathcal{F}=\{F:F\in\mathcal{F}_{x_i},\;i=1,\ldots,k\}.$$

Then, the finite subcollection \mathcal{F} satisfies

$$K \subset \bigcup_{i=1}^n (\cup \mathcal{F}_{x_i})^o \subset (\cup \mathcal{F})^o \subset \cup \mathcal{F} \subset U.$$

1.4. Definition. For a space X and $x \in P \subset X$, P is a sequential neighborhood at x in X if, whenever $\{x_n\}$ is sequence converging to x in X, then there is an $m \in \mathbb{N}$ such that $x_n : n \ge m\} \subset P$.

For a collection of subsets \mathcal{F} of a space X, we write

 $\operatorname{Int}_s(\mathcal{F}) = \{x \in X : \cup \mathcal{F} \text{ is a sequential neighborhood at } x\}.$

A cover \mathcal{P} of X is called is a *ksn-network* if, whenever $x \in U$ with $x \in X$ and U open in X, then $x \in \text{Int}_s(\cup \mathcal{F}) \subset \cup \mathcal{F} \subset U$ for some finite $\mathcal{F} \subset \mathcal{P}$.

1.5. Definition. Let X be a space, at $\mathcal{P} = \bigcup \{\mathcal{P}_x \mid x \in X\}$ be a family of subsets of X which satisfies that for each $x \in X$,

(1) $x \in P$ for all $P \in \mathcal{P}_x$;

(2) If $U, V \in \mathcal{P}_x$, then $W \subset U \cap V$ for some $W \in \mathcal{P}_x$.

 \mathcal{P} is called a *weak base* for X iff a subset C of X is open in X if and only if for each $x \in \mathcal{C}$ there exists $P \in \mathcal{P}_x$ such that $P \subset G$.

1.6. Definition. Let X be a space, a cover \mathcal{P} of X is called *point-countable* if for every $x \in X$, the set $\{P \in \mathcal{P} : x \in P\}$ is at most countable.

We have the following diagram

 $cs\text{-network} \Rightarrow cs^*\text{-network} \Leftarrow \text{strong-}k\text{-network}$ $\uparrow \qquad \qquad \Downarrow \qquad \qquad \Downarrow$ weak base $\Rightarrow wcs^*\text{-network} \Leftarrow k\text{-network}$ $\uparrow \qquad \qquad \uparrow$

ksn-network \Leftarrow kn-network.

It is well known from [10] that weak base $\Rightarrow cs$ -network $\Rightarrow cs^*$ -network $\Rightarrow wcs^*$ network, k-network $\Rightarrow wcs^*$ -network. From the above definitions, it is easily to prove that strong-k-network $\Rightarrow k$ -network, kn-network $\Rightarrow k$ -network, kn-network $\Rightarrow ksn$ -network, and ksn-network $\Rightarrow wcs^*$ -network.

In this paper we shall provide some partial answers to connections between kinds of network and weak base.

2. Main results

The following lemma is due to [5].

2.1. Lemma. Let \mathcal{P} be a point-countable cs-network for a space X. If $z \in K \cap U$ with U open and K compact, first countable in X, then $x \in Int_K(P \cap K) \subset I \subseteq U$ for some $P \in \mathcal{P}$.

First we present some connections between kinds of network

2.2. Proposition. For any space, if \mathcal{P} is a strong-k-network, then \mathcal{P} is a $c\varepsilon^*$ -network.

Proof. Let \mathcal{P} be a strong k-network, a sequence converging $\{x_n\}$ to a point $x \in X$ and an open neighborhood U of x, then there is a full cover $\mathcal{F} \subset \mathcal{P}$ of conpact sets $\{x\} \cup \{x_n : n \geq 1\}$ such that $\cup \mathcal{F} \subset U$. From the definition of a full cover, it follows that there exist a $P \in \mathcal{F}$ and a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $\{x\} \cup \{x_{n_i}\} \subset P$ so this shows that \mathcal{P} is a cs^* -network.

2.3. Proposition. Let X be a locally compact, first countable space. I \mathcal{P} is a point-countable cs-network for X, then \mathcal{P} is a point-countable ksn-network.

Proof. Let \mathcal{P} be a point-countable *cs*-network. For every $x \in X$ and any open neighborhood U of x, since X is locally compact, there is a compact neighborhood K of z. By the first countability of X it follows from Lemma 2.1 that there exists $P \in \mathcal{P}$ such that $x \in \operatorname{Int}_{K}(P \cap K) \subset P \subset U$. Now, let $\{x_n\}$ be an any sequence coverging to x. Because K is a neighborhood of x and $\operatorname{Int}_{K}(K \cap P)$ is neighborhood of x in K, there is an $m \in \mathbb{N}$ such that $\{x\} \cup \{x_n : n \geq m\} \subset \operatorname{Int}_{K}(K \cap P) \subset P \subset U$. This implies that $x \in \operatorname{Int}(\mathcal{P}) \subset \mathcal{P}$. Thus, \mathcal{P} is a ksn-network.

2.4. Proposition. Let X be first countable. If \mathcal{P} is a point-countable s-network for X, then \mathcal{P} is a k-network.

Proof. Let \mathcal{P} be a point-countable *cs*-network. Let K be a compact subset and U in open subset of X such that $K \subset U$. For every $x \in K$, it follows from Lemma 2.1 that

 $x \in \operatorname{Int}_{K}(K \cap P_{x}) \subset P_{x} \subset U$ for some $P_{x} \in \mathcal{P}$. By compactness of K there exist x_{1}, \ldots, x_{m} in K so that $K \subset \bigcup_{i=1}^{m} \operatorname{Int}_{K}(K \cap P_{x_{i}}) \subset \bigcup_{i=1}^{m} P_{x_{i}} \subset U$. Thus, \mathcal{P} is a point-countable k-network.

Now we shall give some partial answers to the inversion of above implications

2.5. Theorem. Let X be first countable. Then, \mathcal{P} is a point-countable ksn-network for X if and only if \mathcal{P} is a kn-network.

Proof. The sufficiency is obvious.

We only need to prove the necessity. Let \mathcal{P} be a ksn-network for X. For every $x \in X$ and any open set U in X such that $x \in U$, there exists a finite subcollection $\mathcal{F} \subset \mathcal{P}$ satisfying $x \in \operatorname{Int}_s(\cup \mathcal{F}) \subset \cup \mathcal{F} \subset U$. By $\{G_n\}$ we denote the countable base of neighborhoods of x such that $G_{n+1} \subset G_n$ for all $n \in \mathbb{N}$. Then there is an $m \in \mathbb{N}$ so that $G_m \subset \cup \mathcal{F}$. Otherwise, for every $n \in \mathbb{N}$ there exists an $x_n \in G_n \setminus (\cup \mathcal{F})$. It is easily seen that the obtained sequence $\{x_n\}$ converges to x but $x_n \notin \cup \mathcal{F}$ for all $n \in \mathbb{N}$. This is contrary to $x \in \operatorname{Int}_s(\cup \mathcal{F})$. Hence, $x \in (\cup \mathcal{F})^o \subset \cup \mathcal{F} \subset U$. It follows from Proposition 1.3 that \mathcal{P} is a kn-network.

It follows immediately from the proof of Theorem 2.5 that

2.6. Corollary. Let X be first countable. If \mathcal{P} is a point-countable ksn-network for X, then \mathcal{P} is a k-network.

2.7. Theorem. A space X is the first countable if only if X has a point-countable kn-network.

Proof. Let X be first countable. For every $x \in X$ by \mathcal{P}_x the base of open neighborhoods of x. Let $\mathcal{P} = \bigcup \mathcal{P}_x$. Then \mathcal{P} is a point-countable weak base.

Conversely, let $\mathcal{P} = \cup \mathcal{P}_x$ be a point-countable *kn*-network. For every $x \in X$, let $\mathcal{P}_x = \{P \in \mathcal{P} : x \in P\}$ and

$$\mathcal{B}_x = \{ (\cup \mathcal{F})^0 : \mathcal{F} \text{ is finite}, \ \mathcal{F} \supset \mathcal{P}_x \}$$

2.8. Theorem. Let X be first countable. Then X has a point-countable wcs^* -network for X if and only if it has a point-countable weak base.

Proof. The "if" part holds by the above diagram, so we prove the "only if" part. Without loss of generality we may assume that \mathcal{P} is a point-countable wcs^* -network for X which is closed under finite intersections. For every $x \in X$ by $\mathcal{Q}_x = \{Q_n(x) : n \in \mathbb{N}\}$ we denote the countable base of neighborhoods of x such that $Q_{n+1}(x) \subset Q_n(x)$ for all $n \in \mathbb{N}$, and put $\mathcal{P}_x = \{P \in \mathcal{P} : Q_n(x) \subset P \text{ for some } n \in \mathbb{N}\}$. Then, P is a neighborhood of x for each $P \in \mathcal{P}_x$. Now we show that $\mathcal{B} = \bigcup \mathcal{P}_x$ is a point-countable weak base.

It is easily seen that for each $x \in X$, \mathcal{P}_x is point-countable, and if $P_1 \in \mathcal{P}_x$, $P_2 \in \mathcal{P}_x$, then we have $P_1 \cap P_2 \in \mathcal{P}_x$. Now we prove that a subset G of X is open in X if and only if for each $x \in G$, there exists $P \in \mathcal{P}_x$ such that $P \subset G$.

In fact, let G be an open subset of X, x any element of G, and $\{P \in \mathcal{P} : x \in P \subset G\} = \{P_m(x) : m \in \mathbb{N}\}$. Assume the contrary that $Q_n(x) \notin P_m(x)$ for each $n, m \in \mathbb{N}$.

Then, take $x_{n,m} \in Q_n(x) \setminus P_m(x)$ for every $n, m \in \mathbb{N}$. Now for $n \ge m$ we choose $y_k = x_{n,m}$, where $k = m + \frac{n(n-1)}{2}$. Then the sequence $\{y_k\}$ converges to the point x. Thus, there exist a subsequence $\{y_{k_s}\}$ of $\{y_k\}$, and $m, i \in \mathbb{N}$ such that $\{y_{k_s} : k_s \ge i\} \subset P_m(x) \subset G$. Take $k_s \ge i$ with $y_{k_s} = x_{n,m}$ for some $n \ge m$. Then $x_{n,m} \in P_m(x)$. This is a contradiction.

Conversely, if $G \subset X$ satisfies the following condition: for each $x \in G$ there exists $P \in \mathcal{P}_x$ with $P \subset G$. Then, since P is a neighborhood of x for each $P \in \mathcal{P}_x$, G is a neighborhood of x. Thus, G is open in X. Hence $\mathcal{B} = \bigcup \mathcal{P}_x$ is a point-countable weak base for X.

Finally, it is well known that spaces with a point-countable cs-network, cs^* -network, or closed k-network are not necessarily preserved by closed maps (even if the domains are locally compact metric). But, spaces with a point-countable k-network are preserved by perfect maps [4]. In the remain part we give some properties of closed compact-covering maps.

The following lemma in [1] shall be used in the proof of Theorem 2.12

2.9. Lemma. If \mathcal{P} is a point-countable cover of a set X, then every $A \subset X$ has only countably many minimal finite covers by elements of \mathcal{P} .

2.10. Definition. A mapping $f : X \to Y$ is *compact-covering* if every compact $K \subset Y$ is the image of some compact $C \subset X$.

A mapping $f: X \to Y$ is *perfect* if X is a Hausdorff space, f is a closed mapping and all fibers $f^{-1}(y)$ are compact subsets of X.

2.11. Proposition.([3]) If $f : X \to Y$ is a perfect mapping, then for every compact subset $Z \subset Y$ the inverse image $f^{-1}(Z)$ is compact.

2.12. Proposition. Every a perfect map is compact-covering. Proof. It follows directly from their definitions and Proposition 2.10.

2.13. Theorem. Let $f : X \to Y$ be closed, compact-covering. If X has a point-countable kn-network (strong-k-network), then so does Y respectively. Proof. Assume \mathcal{P} is a point-countable kn-network for X. Let Φ be the family of all finite

Proof. Assume \mathcal{P} is a point-countable κn -network for \mathcal{X} . Let Ψ be the family of an initial subcollections of \mathcal{P} . For $\mathcal{F} \in \Phi$, let

 $M(\mathcal{F}) = \{y \in Y : \mathcal{F} \text{ is a minimal cover of } f^{-1}(y)\}$

and let $\mathcal{P}' = \{M(\mathcal{F}) : \mathcal{F} \in \Phi\}$. It follows from Lemma 2.8 that \mathcal{P}' is a point-countable collection of subsets of Y. Let us now show that \mathcal{P}' is a kn-network. Let K be compact in Y and U an open subset of Y such that $K \subset U$. As f is compact-covering, there exists a compact set $C \subset X$ such that f(C) = K. By continuity of f we obtain an open set $f^{-1}(U)$ in X and $C \subset f^{-1}(U)$. Then, there exists a finite subcollection $\mathcal{F} \subset \mathcal{P}$ such that $C \subset (\cup \mathcal{F})^o \subset \cup \mathcal{F} \subset f^{-1}(U)$. Let $\mathcal{F}' = \{M(\mathcal{E}) : \mathcal{E} \subset \mathcal{F}\}$, then \mathcal{F}' is a finite subcollection of \mathcal{P}' and $\cup \mathcal{F}' = \cup \{u \in Y : f^{-1}(u) \subset \cup \mathcal{F}\} \subset U$. If $W = Y \setminus f[X \setminus (\cup \mathcal{F})^o]$, then, because f is closed, it follows that W is open in Y, and $K \subset (\cup \mathcal{F}')^o \subset \cup \mathcal{F}' \subset U$ and therefore the theorem is proved.

The proof of the Theorem in the case X having a strong-k-network is similar.

From Theorem 2.12, Proposition 1.3 and Proposition 2.11, it follows that

2.14. Corollary. Let $f : X \to Y$ be a perfect map. If X has a point-countable kn-network (strong-k-network), then so does Y respectively.

References

- D. Burke and E. Michael, On certain point-countable covers, Pacific Journal of Math. 64, 1(1976), 79 - 92.
- 2. H. Chen, Compact-covering maps and k-networks, Preprint, (2003).
- 3. R. Engelking, General topology, Warzawa 1977.
- 4. G. Gruenhage, E. Michael and Y. Tanaka, Spaces determined by point-countable covers, *Pacific Journal of Math.* 113, 2(1984), 303 332.
- 5. S. Lin and C. Liu, On spaces with point-countable *cs*-networks, *Topology Appl.*, **74**(1996), 51 60.
- S. Lin and Y. Tanaka, Point-countable k-networks, closed maps, and related results, Topology Appl., 59(1994), 79 - 86.
- A. Miscenko, Spaces with a pointwise denumerable basis, Dokl, Akad, Nauk SSSR, 145(1962), 985 - 988.
- Y. Tanaka, Theory of k-networks II, Q and A in General Topology, 19(2001), 27 - 46.
- 9. Tran Van An, On some properties of closed maps, Preprint, (2002).
- 10. P. Yan and S. Lin, Point-countable k-networks, cs^* -networks and α_4 -spaces, Topology Proc., 24(1999), 345 354.