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A bstract.This works presents the theoretical study on several correlation integrals of the 
capacitance transients of the deep levels. The deconvolution of the transient signals was 
the major subject of the number of methods referred to under the common name as the 
Deep Level Transient Spectroscopy methods. In general the separation of the overlapping 
exponential decays C(t)  does not provide a unique solution, so the detection of the closely 
spaced deep levels by these transients should base mainly on the temperature dependence 
C(T), not only on the C(t). The results show that the average emission factor en is 
obtainable directly from various correlation integrals of the capacitance transients and the 
average activation energy E  of the deep levels is detectable via the shift operators of the 
transients according to the temperature. A new scanning technique is suggested.
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Nom enclature

We call a normalized capacitance Cn(t) at fixed temperature T  the function Cn{t) — 
C q 1 X [C(t) - C l ] ,  where Co is C(t)  at t -  0 and Cl is C(t)  a t t = 00 . For 0 <  t < 00 , 
c„{t) always specifies the relation 0 < C7l(t) < 1 , i.e. L(t) = Ln[Cn (t)\ has definite and 
negative value within (0.1). Taking Ln  oil L{t) is not possible but M( t )  — Ln[—Ln[Cn(t)]] 
has definite values. By replacing t by T  we have a normalized capacitance Cn(T)  at fixed 
gate this Cn(T) is not exponential. For section 3, w = E / k  where E  is the activation 
energy of the deep level and k is the Boltzman constant .

1. Introduction

The problem of separation of the closely spaced levels in Deep Level Transient 
Spectroscopy has last for decades but no clear answer is available until now. Several people 
suspected that the problem is ill-posed in principle [4]. By its nature the problem finalizes 
in the search for a unique decomposition of any exponential decay into a finite combination 
of several other ones. Theoretically all exponential functions is expandable into an infinite 
series of the other exponential components, so we may expect the existence of many finite 
approximations which satisfy the precision limit. Thus the critical question follows: i f  
there exist many decompositions so which o f  them, preserves the physical meaning or is 
that the true physical reality what the DLTS discovers?
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The DLTS in its nature is not a purely measurement technique but involves a lot 
of analysis, so the obtained results can hardly be attached directly to the physical reality 
without some theoretical presumptions. One of the basic. presumptions was about the 
duality of the DLTS peaks and the emission factors of the deep centers. This was so 
evident that needed no explicit statement, however we must re-state here that the word 
"emission center" must be understood statistically, i.e. the DLTS peak reflects only the 
statistical behaviour of the underlying physical reality and not the physical reality (of the 
emission centers) themselves. Thus giving a set of emission centers, the appearance of 
DLTS peaks follows the statistical rules for composition of the output signals which must 
not be a simple one-to-one relation in principle.

There are known various interpretations of the level resolution [2]. Providing that 
the deep levels are s ta tistica l term s, the level closeness m ust also be understood statis­
tically. i.e. closeness as the sm allest observable variation in the statistical behaviours of 
the levels. We may call this closeness the local closeness. The physical meaning OÍ this 
definition is that in some temperature range the statistical contributions of the levels to 
the output signals are not comparable, whereas in some other range they are quite unclis- 
tinguishable. Some levels may be seen as the closely spaced within one T  range but not 
out of it. Consequently, if only one level contributes to the output signal while all others 
remain inactive then this level is far from the rest and is separable by the sense of the 
underlying DLTS technique. As the evident consequence, the local closeness will require 
more smoother temperature scan than for the normal techniques (e.g. for D.v. Lang’s 
classical DLTS [6] or for s. Weiss and R. Kassing’s Fourier DLTS [7]).

Now let us turn to the problem of the statistical rules for composition of the final 
output signals. Until now no one hesitates to write:

n

c „ ( 0  =  (1.1)
2 —  1

which automatically assumes the composition additiveness. Although this relation has 
provided satisfied results when the levels are well separated, there is no clear reason for 
the additiveness in case of the closely spaced levels. As known, for the perfect exponential 
decays, the level contributions are nọt statistically independent (the known Levy theorem 
states that for any two Gaussian distributions, and thus the exponential ones, the final
composition is always Gaussian, see [5]). IÍ one assumes the final emission factor to

be efinal =  Ì t  'PÁe )em  where Pi(e) is the sta tistical weight (emission factor’s density
2 = 1

distribution) then final output Cn (i) evidently becomes:

n
c n (t) =  e~íe/”‘a' = Ị Ị e - ‘Pi(e)e"i (1.2 )

1=1

It is questionable whether (1.1) or (1.2) takes place. With regards to the above 
stated problems, we present in this article the study on several correlation integrals of 
the output signals C(t)  and C(T)  and suggest, a scan technique which bases mainly on 
scanning the C( T)  according to the temperature. As shown below, the emission factor
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and activation energy may be retrieved directly from the statistical study of the output. 
Evidently these values correspond to the locally closed states if these states exist.

2. Correlation integrals

By definition all correlation functions R{r)  of a signal F(t)  involve the shift operator 
of that signal T r [F(£)] =  F(t  — r)  and represent the average of signal over the preset period 
T. Naturally, the correlation functions filter noise, bu t also remove the  fine local structure 
of the signals (see e.g. [3]).

2.1. Correlation integrals at fixed T.
Taking correlations at fixed T  defacto means averaging signal according to time 

t. At fixed temperature the development of signal after a time t wholly depends on the 
emission constant en and has a simple exponential form e~Cllt. Let A be a period width 
and integrate through the whole period.

2.1.1. Cross-correlation otion of Cn (t) and c~^(t)’

A/2

- A / 2

(for all T )

2.1.2. Autocorrelation of L(t).

A/2

R(r)  =  J  J ( - e nt ) ( - e nt +  enr)dt =
— A/2

2.1.3. Autocorrelation of — .

A/2

R { t } = \ J  ( t )( i-T )dt = e”
- A / 2

One may also check th a t a cross-correlation of L ( t ) ~ i  and — X is always 1.

A/2

w - i
- A / 2

2.2. Correlation integrals at fixed t.
This class of correlation functions illustrates the averaging process according to tem­

perature T. i.e. the process of filtering the temperature noise. Write Cn (T ) =  e~tpT e V 
L ~ l/ l (T) — p T 2e~w/ T and put M ( T ) =  Ln[—L ( T )~ ỉ t̂ ] =  Ln(p)  +  2Ln(T )  — lu/T .  The 
correlation is considered within one segment of T  so we integrate from T\ to TV Let 
A T  = T2 -  Tỵ.
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T2
R(r)  = PT2e - * p { T - r ) 2e - t t d T  =

T,

= J _  /’[_Z_]2e-(T- T ^ d T
A T  J T  — T

T i

Substitute X  = ị , X i  = - fr ,x2 = T~ and Ax =  x 2 -  X ị .  In unit of X  and replace Ơ 
for r  as a new shift:

C(x) = e~tpx~2e~'1’*, L(x)  = - t px~2e~UJX, L (x )~ i  =  p x ~ 2e~UJX and the correlation
integral is:

X 2  _  x 2

1 f  px~ 2e~“x ^  e~wơ /*■ Ơ 2
R(ơ) = —— ------  ----- ^----- 7——zdx = ——  / (1 -  - )  dx

Ax J (p(x — ơ) 2e w(x Ax J X
X \  x l

After integration:

R(a)  = e - ^ ị ĩ  + 2 ơ L n ^ - —  +  ơ 2( - ^ — )] 
v ' 1 Ax X1X2

By pu tting  A =  B  =  ^  we obtain:

1 r 1 +  2<J A -b B , 
a; =  - L n  -------— T--------

Therefore the correlation integral directly determines the activation energy of the 
deep level.

3. Shift operator Cn{T  X p) =  Tp[Cn(T)]

According to tem pera tu re  T  the shift operator T p moves Cn(T)<f)nto Cn(T  X p) for 
a real positive multiplicative constant p : Cn(T X p) =Tp[Cn (T)]. In the following sections 
Tp will be derived (many aspects of the shift operators are explored in [1]).

3.1. Shift operator o f  CnỰT), L n ( T ) and M n (T ) .
D iv id ing  C n ( T  x p )  =  e - tp (T xp)2e - T ^  by  C n ự j  =  e [ - t p T * e ~ *  I le ads  to:

Cn( T x p )  = T p[Cn (T)} = lCn ( T ) / e ~ f{lp~1}

Similarly:
UJ ( 1 T Vp(Ỉ-D-L( T x p )  =  T p[L(r)] =  [L(T)]p2e 

M ( T x p )  = Tp[M{T)} = M (T ) +  2Ln(p) _  ^ ( 1  -  1)
(3.1.1)
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3.2. Calculation o f energy using shift operators.
With UJ =  E / k  and by relation (3.1.1):

(3.2.1)

So an arbitrary shift from L(T)  to L(T  xp)  determines a energy constant significant 
within this temperature shift [T —> Txp].  A technique for detection and analysis of closely 
spaced levels by scanning CJ in various temperature range is suggested. We call it the 
’Selective Temperature Scan Technique’ (STST).

4. Conclusion

Not only u  but also p is detectable via shift operators. For calculation purposes we 
have simplified (3.2.1) to the following relations. Suppose a shift from (Ti,ti)  to (Tk,tk) 
and use short notes Li = L(Ti) ,Lk  =  L(Tịc).

In practical case we put ti = tịc and chose T/c as close as possible to Tx , i.e. Tfc 
displaces from Tj only by one scan step. The displacement Tk — Tt refers to the sensibility 
limit of the temperature setting and the scanning range [T1...T2] refers to the statistical 
weight. For general case where t i fa k ,  the tk —ti means the tim e variation of the statistical 
weight. The functionality of method is adjustable by these three parameters. Note that 
the above relations hold only for cases where the statis tical contribution  of one deep center 
(in the scanning temperature range) is significantly greater than of all the rest. 
A ck n o w led g em en ts .  The authors would like to thank the Center for Materials Science, 
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