PROBABILITY MEASURE FUNCTORS PRESERVING THE REGULAR PROPERTY

Ta Khac Cu

Department of Mathematics, Vinh University

Abstract Let X be a topological Hausdorff space. For each $k \in \mathbb{N}$, by $P_k(X)$ we denote the set of all probability measures on X, whose supports of no more than k points. Then probability measure functor P_k preserve the regular property.

1. Probability measure with finite supports

Let X be a topological Hausdorff space. A probability measure with finite supports on X is a function $\mu: X \to [0, 1]$ satisfying the condition

$$\mathrm{supp}\mu = \{x \in X : \mu(x) > 0\}$$
 is finite (a)

$$\sum_{x \in \text{supp}\mu} \mu(x) = 1. \tag{b}$$

For each $k \in \mathbb{N}$, let $P_k(X)$ denote the set of all probability measure on X, whose supports of no more than k points. Then every $\mu \in P_k(X)$ can be written in the form

$$\mu = \sum_{i=1}^{q} m_i \delta_{x_i}, \quad q \le k$$

where δ_x is Dirac function, that is

$$\delta_x(y) = \left\{egin{array}{ccc} 0 & ext{if} & y
eq x \ 1 & ext{if} & y = x \end{array}
ight.$$

and

$$m_i=\mu(x_i)>0,\qquad \sum_{i=1}^q m_i=1.$$

Then m_i is called the mass of μ at x_i .

Fedorchuk [Fe] introduced a topology on $P_k(X)$ as follows:

Each point

$$\mu_0 = \sum_{i=1}^q m_i^0 \delta_{x_i^0} \in P_k(X)$$

Typeset by AMS-TEX

has a neighborhood of the form $O(\mu_0, U_1, U_2, ..., U_q, \epsilon)$, where $\epsilon > 0$; $U_1, U_2, ..., U_q$ are disjoint neighborhood of $x_1^0, x_2^0, ..., x_q^0$ respectively (note that U_i can be taken from a fixed basis of topology of X).

$$O(\mu_0, U_1, U_2, ..., U_q, \epsilon) = \{\mu \in P_k(X) : \mu = \sum_{i=1}^{q+1} \mu_i, \mathrm{supp} \mu_i \in U_i, |m_i^0 - ||\mu_i||| < \epsilon \}$$
 $i = 1, 2, ..., q+1; U_{q+1} = X \setminus igcup_{i=1}^q U_i, \quad m_{q+1}^0 = 0 \}.$

It is easy to see that the family $O(\mu_0, U_1, U_2, ..., U_q, \epsilon)$ forms a basis of a topology of $P_k(X)$. This topology is called *Fedorchuk topology*.

2. The Results

In this section we shall prove that the functor P_k preserve the regular property.

Theorem 2.1. If X metrizable, then so is $P_k(X)$, for any $k \in \mathbb{N}$.

The proof of theorem 2.1 is based on the following fact due to Frink [Fr].

Theorem 2.2. [Fr]. A T_1 -space X is metrizable if and only if the following condition holds:

(Fr) For each $x \in X$ there exists a neighborhood basis $\{U_n(x)\}_{n=1}^{\infty}$ satisfying the following condition: if $U_n(x)$ is given there exists an m = m(x,n) such that $U_m(y) \cap U_m(x) \neq \emptyset$ implies $U_m(y) \subset U_n(x)$.

Proof. Obviously $P_k(X)$ is a T_1 -space. Thus, by Theorem 2.2 it suffices to verify the condition (Fr).

For each

$$\mu = \sum_{i=1}^{q} m_i \delta_{x_i} \in P_k(X), \quad q \leq k,$$

we define a neighborhood basis $\{O_n(\mu)\}_{n=1}^{\infty}$ satisfying the condition (Fr).

For each i = 1, ..., q we take $\{U^n(x_i)\}_{n=1}^{\infty}$ such that

diam
$$U^{n}(x_{i}) < \frac{1}{4} \min\{2^{-n}, \operatorname{dist}(U^{n}(x_{i}), U^{n}(x_{j})); i \neq j\}.$$
 (1)

$$\{U^n(x_1)\}_{n=1}^{\infty}$$
 satisfies the condition (Fr). (2)

We put

 $O_n(\mu_0, U_1^n, U_2^n, ..., U_q^n, \epsilon_n(\mu)),$

Probability measure functors preserving the regular property

where $U_{i}^{n} = U^{n}(x_{i}), i = 1, ..., q$ and

$$\epsilon_n(\mu)) < \min\{2^{-n}, m_i, i=1,2,...,q\}$$
 .

Let us show that $\{O_n(\mu)\}_{n=1}^{\infty}$ satisfies (Fr).

Given $O_n(\mu)$. Since $\epsilon_n(\gamma) < 2^{-n}$ for every $\gamma \in P_k(X)$ there exists an $m \in \mathbb{N}$ such that

$$\epsilon_m(\gamma) < \frac{1}{4k} \min\{\epsilon_n(\mu), m_i, i = 1, ..., q\}$$
(3)

for every $\gamma \in P_k(X)$. We shall prove that $m(\mu, n) = \max\{m, m(x_i, n), i = 1, ..., q\}$ satisfies the desired property of (Fr).

Assume that $O_m(\gamma) = O_m(\gamma, V_1^m, V_2^m, ..., V_q^m, \epsilon_m(\gamma))$ with $O_m(\gamma) \cap O_m(\mu) \neq \emptyset$. Take $\theta \in O_m(\gamma) \cap O_m(\mu)$ and write $\theta_i = \theta|_{U_i^m}, i = 1, ..., q$ and let

$$heta_{q+1}= heta|_{Xigcap_{i=1}^{q}U_{i}^{m}},A_{i}=\mathrm{supp} heta_{i},i=1,2,...,q+1.$$

Since

$$\| heta_i\| \geq m_1 - \epsilon_m(\mu) > m_i - rac{1}{4}m_i = rac{3}{4}m_i > \epsilon_m(\gamma), i = 1, 2, .., q.$$

we infer that for every $i \leq q$ there exists at least $j \in \{1, ..., r\}$ such that $A_i \cap A_j \neq \emptyset$. Let

$$G_i = \bigcup \{V_j : V_j \cap A_i
eq \emptyset\}, i = 1, ..., q; G_{q+1} = \bigcup \{V_j : V_j \subset X \setminus \bigcup_{i=1}^{i} A_i\}$$

Since $A_i \subset U_i^m$ from (2) it follows that

$$G_i \subset U_i^m$$
 for every $i = 1, ..., q.$ (4)

We shall show that $O_m(\gamma) \subset O_n(\mu)$. For every $w \in O_m(\gamma)$ we denote $w_i = w|_{G_i}$ for i = 1, 2, ..., q + 1; $w_{ij} = w_i|_{V_j}$ for $V_j \subset G_i$; $\theta_{ij} = \theta_i|_{V_j}$ for $V_j \subset G_i$. Since $w, \theta \in O_m(\gamma)$ it follows

$$\left| \|w_{ij}\| - \| heta_{ij}\|
ight| < 2\epsilon_m(\gamma).$$

Note that $k \ge r \ge \operatorname{Card}\{j : V_j \subset G_i\}$. From (3) we obtain

$$\left| \|w_i\| - \|\theta_i\| \right| \le \sum_{V_j \subset G_i} \left| \|w_{ij}\| - \|\theta_{ij}\| \right| < 2k\epsilon_m(\gamma) < \frac{1}{2}\epsilon_n(\mu)$$
(5)

for every i = 1, ..., q + 1. Hence

$$\Big| \|w_i\| - m_i \Big| \leq \Big| \|w_i\| - \| heta_i\| \Big| + \| heta_i - m_i\| < rac{1}{2}\epsilon_n(\mu) + \epsilon_m(\mu) < \epsilon_n(\mu)$$

for every i = 1, ..., q and by (5) we have

$$\|w_{q+1}\|\leq \| heta_{q+1}\|+rac{1}{2}\epsilon_n(\mu)\leq \epsilon_m(\mu)+rac{1}{2}\epsilon_n(\mu)<\epsilon_n(\mu).$$

Consequencetly from (4) we infer that

$$w \in O_n(\mu).$$

This completes the proof of theorem 2.1.

21

Theorem 2.3. If topological space X is T_1 and regular, and the topology has a σ -locally finite base, then so is $P_k(X)$ for any $k \in \mathbb{N}$.

Proof. Since X is T_1 and regular and topology has σ -lacally finite base, then X metrizable. Thus by theorem 2.1 it follows that $P_k(X)$ is metrizable and satisfies condition T_1 -space, and regular, and topology has a σ -locally finite base.

This completes the proof of theorem 2.3.

References

- 1. R.Engelking, "General Topology", Warzawa. (1997).
- V.V. Fedorchuk, "Probability measure and absolute neighborhood retracts.", So-Viet. Math. Dokl 22(1986).
- 3. Ta Khac Cu, "Probability measures with finite supports on topological spaces", J. Math and Physics. VNU, T.XIX 4(2003).