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A bstract The non-linear displacement formulation of laminated composite plates sub­
jected to perpendicular loads by Ritz and Finite element method (FEM), are presented. 
Cases of stiffened and unstiffened laminated plates are considered.

Introduction

Analysis of laminated plates has been studied by many authors [1, 2, 4]. In this 
paper we deal with the non-linear static analysis of stiffened and unstiffened laminated 
plates by Ritz’s method and FEM in correctizied formulation.

1. Linear and non-linear analysis of lam inated plates
1.1. L am ina ted  p la tes co n s titu t ive  equation

The stress-strain relation for the k-layer can be expressed as follows [1]
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The relation between internal force, moments and deformations for laminated plates are 
of the form [2]

{£> =  [D]{£(, (2)

where

{£}

[D]

[Nx Ny N Xy M x My M Xy Q y Q x f ,

[ 4 r £yy 7 °Ixy X x X y  X x y  1
0 ~  
yz I

0 f  
xz  J ’

A n A 12 -A 16 B n B n Bie 0 0  -

-A 12 A  22 ^ 2 6 B \ 2 B 22 ■B26 0 0

4̂-16 A -26 "466 B \ g -S '26 B e e 0 0

f l u B 12 ■Big D u D \ 2 D i e 0 0

B \ 2 B 22 -026 D 12 D 22 D 2 6 0 0

B m -S 26 B e e D i e D i e D e e 0 0

0 0 0 0 0 0 A 4 4 A 1 5

0 0 0 0 0 0 ^ 4 5 ^ 5 5  -

T ypeset by 4 a^S-TeX

43



44 V u D o Long

The variation of potential energy u  and work done by external force acting on the 
plate can be written

SU = J J  Yjỏe dxdy = ỊỊ {ỏe}T [D]{e} dxd] 
s s

SA = J J  F ỗ u d xd y  = Ị J  {ỏu}T {F} dxdy ,
s  s

{ố£} [D]{e} dxdy , (3)

(4)

where {F} is a m atrix of external force, {u}- displacement matrix of a point of the middle 
surface, {u} =  [u V w ĩpx ĩpy}

B oundary conditions
a) Simply-supported edges

u = w — 0 a t X = 0] X = a V = w = 0 at y = 0 ,y  = b] 

ĩpx — 0 at y — 0; y =  6; ĩ p y  =  0 at X = 0; X = a

b) Clamped edges

u =  V =  w  =  Ipx =  ĩpy =  0 (it X =  0] X =  a\ y  — 0: y  =  b

c) Mixed conditions. Clamped-suported edges

u =  w  =  ĩị)y =  0 at X =  0; X =  a; y  =  0; y  =  6

V =  ĩpx =  Q at y =  0; y =  b

1.2. S t i f f e n e r  co n s t i tu t iv e  equation
Stiffeners are related with plate. Stiffener directions are placed along rectangular 

lines. Stiffener displacement components are deflection and rotation along stiffener direc­
tions. For x-stiffener we have relation between the deflection and the rotation ĩpx =  dw/dx. 
The deformation along x-axis can be written:

2 dĩpx d w 

p€x z dx z dx2 -

The stiffener potential energy along x-axis is calculated as follows

Usx = ị  [ [ [  £x ■ crx dV = ị  E J Z J  dx  , (5)
X

where E  - elascity modulus and Jz- inertial moment for 2-axis of stiffener. Similarly, we 
get the stiffener potential energy form along y-axis

u - ‘ = ì J Ị Ị e ' o ’ d v = l E j ‘ j ( dẠ ? í d y  (6)
V  y
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2. M e th o d s of c a lcu la tin g .

2.1. R i t z ’s m e th o d ị2]

Based on Lagrange’s minimum principle of the complete potential energy (U — A) 
we have Ỗ(U -  A) = 0

The potential energy u  of stiffener laminated plates is equal to the to tal stiffener 
potential energy Ub and the plates potential energy Us: u  =  Ub +  Us

We put J  = u  — A, which reduces:

J = 2 I I  d x d y + \ E J z J  (7 T )2 d x + l- E J z J  d y - j j  { u } T [F} d x d y ,
s  X y s

( 7 )
w h e r e  { u }  =  [u,  V,  w ,  ĩỊ)x , ĩpy} =  [ u i , u 2 , u 3 , 114, 115)

n
Displacement components can be approximated by U i  — ttia ^ Q(x ,y ) , where

a=i
functions (fia are linearly independent, and must be chosen such that the boundary con­
ditions are satisfied.

We can write them in matrix form {u}5xl = [$]5x5n • {a}5nxl 
From here the deformation can be caculated by

{ £ } s x l  — [ B ( a )(x i y ) ] s x 5 n  ' 5 n x  1 (8)

where [B(a)(x,y)} depends on dia of first degree. The stiffener displacement along x-axis 
is approximated as follows

w = bị +  Ò2 X +  b‘Ằx  +  Ồ4X3

dw 9
'Ipx =  - J -  =  b 2 +  2 6 3x  +  3 b 4 x  , ax

or in matrix form

H  =  [ 1  X  X 2  x3][òi 62 b3 64 ]T =  [F(x)] • [6]. (9)

The coefficients bi, (i — 1,4) are calculated by deflection and rotation value of two 
boundary points of stiffener

T[bị ỉ>2 63 64] = [Hx] 4x5n

a n  
^12

- a 5 n  J 5 n x  1

=  [Hx] ■ {a} ( 10)

From (9), (10) we have

r d 2w
dx 2

cp_ 
dx2 ( [F ( x ) ] [Jf i x ] { a } )  =  [Gx] i X5n-{a}5nxl (11)



Similarly, for y-stiffener we get

= [^y] lx5n {o-ịõnxl (12)
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(ị 2 — [^y]lx5n ■ {&}õnxl

From (7) -T- (12) we obtain

J =  \ J J  {a}T [B}TD][B}{a} dxdy + l- E J z J  {a}T [Gx]T [Gx}{a} dx+
s X

l- E J z j  {a}T [Gy}T [Gy] { a } d y -  Ị Ị  {F}T[<ĩ>]{a} dxdy. 
y s

(13)

Denote that

I ị  [B)t [D)[B\ dxdy = [B(a)]5„x5n, E J Z j  [Gx}T [Gx}dx = [Gx]5nx5n ,
s X

E J Z J  [Gy] [Gy] dy = [Gy]c>nx5n, Ị Ị  {-^Ịlxõ t^ lõxõn^^y  =  {^}lx5n ’ (14)
y s

where [B(a)] depends on {a*a } of second degree and J  becomes a function of multi-variable
O'ia

J  -  2 W lx5n([® (a )l +  iGs] + íGy])5nx5nía }5nxl ~ {F }ĩx5nM ó n X 1 > (15)

where

{a}T = [an , a i2, • • • ain, 0-21, Ỡ22, • • • 0>2n, ' • • &51> 5̂25 • • • ^5n] =  [^1, Ỡ2, • • * a5n]- 

Minimization of J
d J

SJ  =  0 reduces 7-— = 0 , Vz =  1, 5n.
da,

We get a system of (5n )  algebraic equations in matrix form for finding CLi.

[if(a)]5nx5n{a}5nxi =  {F}5nxl , (16)

where [K(a)\ depends on coefficients a-i of second degree.
The system (16) can be solved by an iterative method

[K (a)(^ 1}]{a(fc)} =  {F}.

For a plate with simply -supported edges, displacement components are chosen
. ,  7TX  x . ■/ 7 T X N . .7TJ/
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2.2. F in ite  e lem en t m e th o d ị  2 , 3 ] .

The plate is devided into 16 small rectangular elements with the size (a/4) X (6/4). 
The element (e) having nodes (z, j , k, I) is studied. At a point M (x, y) in the element

(e) we choose
u  =  CL\ +  ữ 2  X  +  ữ 3  y  4 -  Ỡ 4  X  y ,

=  ữ 5 +  <26 X 4- 0,7 y  -1- ag X y  , 

w =  a9 4 -aiox  +  a n  y + ai2 x y ,  (18)

ý x  =  a 13 +  ai4 X +  Ỡ15 y +  a 16 X y , 

ý y  =  0*17 +  fl l8  x  +  a 19 y +  &20 £  y , 

and in matrix form (18) can be written

M&X1 =  [F(x,y)}5x20 • M 20XI 

In the 4 nodes ( i,j,/c ,/)  we have

(19)

91
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Ỡ19
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Then the equation (20) has the form {ợ}e20xi =  [-4] 20x20 • W 20XI 
Instead of finding {a»} we find displacement components {q}e

{ a } 2 0 x i  — [*^]2()x20 ' { qY

(20)

20x1

The displacement in a point M (x ,y )  is calculated through displacement of nodes

M s x l  =  [F{x,y )}5x 20  ■ 20x20 • {q }e20X1 =  [Ar(^.y)]5x2o{g}e20xl » (21)

where [7V(x, y)]sx20 =  [F{x, y)]5x20 ■ [-4]20x20
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From (21) we obtain

{ £ } L l  =  i£Sx £ yy  ĩ x y  X x  X y  X x y  l y z  l i z  ]T =  (<?)e ] 8 X 20 {<7} 20 X 1 ( 2 2 )

and matrix[B(g)e] depends on {g}e of first degree.
In [2] , [Be] =  [Be}NL +  [Be}L , reduces [ỗBe]{q}e = [Be]NL{ỗqe} , we have the

{<5ee} =  ([B*]l  +  2m NL){6qe} = m { ỏ q e} , (23)

where [BS]8x20 =  [Be]L +  2[J3e]WL.
From here we get the variation of potential energy of a rectangular element (e)

m i  =  I f  { & ‘ } ĩ x 8[ C ] s * s { e } ỉ x l * : Ạ /  =  W } T ( / /  r a r [0 ][B ']dz< ij ,)  (24)
s„ Se

Put
[Ke]2 0 X2 0 =  I I  m T [D][Be}dxdy,

Se

the relation (24) can be written as the following

m )  = {ỏqe}T [K£){ q Y . (25)

A stiffener is discretized into beams in element (e) of plates. For x-stiffener we have 
a relation between the deflection w and nodal displacements

that reduces

where

w — [N\ ( x ) ]  1x4{<7 ) 4 x i 1 

^  . (26) 

[S ĩ(z)l, =  ^ r 11- P 7)

The potential energy of x-stiffener is calculated as follows

vu = \ I I I  = ì ^ { í ” }T(/[Bĩlĩ[BĩW^) {«}” ■ (28)
V  X

Similarly, we get the potential energy of y-stiffener

yeuty = ị E J z{qye}T (J [B Ĩ} ĩ[B Ĩ}yd y ){qy
y

(29)

We denotes

=  i w . ( / r a i ĩ [ B & 4  [A-']4X4 = ị E J , ( j \ B ĩ Ị ỉ ị B ĩ ị ydy) , (30)
X y

and the variation of potential energy of beam can be written

{ « £ }  =  {<5<fe}T[ ^ K < ? r ,  =  {< ^e}T [^]{<?}ye (31)



The variation of work done by external force is calculated as follows

{<^4e} =  J J  { ^ e}ĩx5{F }5xi dxdy = i ỗ(ỉe}T J J  [N{x,y)e}T {F}dxdy.  (32)
Se

The plate has 25 nodes, i.e. there are 125 nodal displacement components. Denotes 
the global vector of displacement {ợ}

{ < ? } l2 5x l  =  [ u i  Vi  W i  ìpX ị ĩỊjy i - - -  U25 V25 W 25 Ipx 25 ^ 2 5  ]T

In the element (e) we have relation between nodal and global displacements

{ 9 ) 20 x 1 =  [ £ e ] 20 X125 {<?} 125x1  ( 3 3 )

Nodal displacements of beam {q}xe depends on global displacements {ợ} as follows

{<7) 4 x 1 =  K k x  125  • {9 } 125x 1 { q } T x l  — [£y]4xl25-{<z}l25xl-

A stiffened laminated plate is discretized into L e element (e), L xe beams - along 
x-axis and Lye beams - along y-axis.

From (25), (31) -T- (34), for stiffened laminated plates we have the variation of po­
tential and work done by external forces

L/C Lj !• f  i'j/e

s u  = ỵ i 5Uỉ + Ỹ w ; x + Ỷ , w e.y
e = l  e=l  e=l

= f i9 ) r  ị ỵ } L ' ] T \K % L ‘ \ + Y }L % \t \KI\[L%\+ X X ] T [irj][L y ) {,} ,
e = l  e = l  e = l

Le L e  « p

ỎA = =  £  / /  {õq}T [Le}T [N (x ,y y }T {F }dxdy
e = l  e = l  g

= {<MT ( J 2 l L e }T  J ị  W ( x ,  y)e]T{-F} dxdy ) .
e =  1 Sc

The global stiffness and the forces matrix are determined such as

w » »  =  Y . [ L ‘ \T \ K ‘ W ] + X > Ỉ F K I  M i + Z [ L i ì T [ K ‘ ][ưyị
e — 1 e = l  e = l

{ ■ P } l 2 5 x l  =  y ~ ^ e ] l 2 5 x 2 0

6=1 Se

Then equations (35), (36) can be rewritten

ô ư  =  { ô q } T { K } { q },  SA =  { S q } T { P } .
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(35)

(36)
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According to ÔU = ỖA and (37) we have the equation for finding global displace­
ments in the matrix form

[ K ] 1 25 x  125 {*?} 125x  1 — { - P } l 2 5 x l -

Because matrix [K] depends on {q} of second degree, we can solve (38) by an 
iterative method [K^k~ l^ ] {q ^ }  =  {P}

3. N um erical results

We consider a four layer laminated plate:a =  400mm; b/a =  2; h =  10m m  or 
h =  2 0 m m ,E i  =  280GPa; Ẽ 2 =  Es = 7 GPa\G \ 2  — G\s — 4 ,2GPa\ Ơ23 — 3 ,5 GPa\
V\2 — 1̂3 — u 2 3  — 0, 25.

W ith stiffeners placed along x-axis and y-axis : E  = 200G Pa; bx =  10mm or
bx = 20mm; by =  10mm or 6y =  20mm]hx =  2bx V hy = 2by.

The plates is acted on by perpendicular extenal force p =  25N / m m 2]
Boundary conditions : 4-simply- supported edges (SS);
2-simply- supported and 2-clamped edges (CS); 4-clamped edges (CC);
The first case: Laminated plate 0°/90°/90ơ/0°;
The second case: Laminated plate 45°/ — 45ơ/  -  45°/45°;
For illustration in the table 1-2 numerical calculation of deflection Wmax at the

center of plate is presented for the unstiffened plate and stiffened plate.
T a b le  1. Plate 0 7 9 0 7 9 0 7 0 0. s s .

FEM: Unstiffened plate u>max =  0.0100m (L), Wmax =  0.0091m (NL)
Ritz’s: UnstifFened plate wm&x =  0.0103 m (L), Wmax =  0.0091 m  (NL)

*
Stiffener size Quantity of u)mox. FEM. (m) ii’max. Ritz’s, (m)
(TO stiffener Linear Non-linear Linear Non-linear

b y = 0 .0 1 iDy 0.0100 0.0091 0.0101 0.0089

hy -  0.02 3 Dy 0.0099 0.0091 0.0100 0.0089
= 0.02 i D y 0.0094 0.0088 0 .0 0 9 2 0 .0 0 8 3

1 / ‘V -  0 .0 4 á
QCO 0 .0 0 8 7 0 .0 0 8 2 0 .0 0 8 5 0.0078

fc.r ■- 0 .0 1 I D * 0.0080 0.0075 0.0081 0.0076
K - 0.02 3D* 0.0068 0.0066 0.0071 0.0068

K 0.02 \D X 0.0045 0.0044 0.0047 0.0046

1 I t s 0.04 à3 D x 0.0032 0.0032 0.0033 0.0033

b r - b y  -  0.01 l O x .  \ D y 0.0081 0.0076 0.0081 0.0075z = hy = 0.02 3 3Dy 0.0069 0.0066 0.0070 0.0067

K = 0.01, by = 0.02 1£>*. l£>y 0.0079 0.0075 0.0075 0.0071
hr = 0.02, /iv = 0.04 3DX, 3Dy 0.0064 0.0062 0.0062 0.0060

bx = by = 0.02 ID*, 1 Dy 0.0049 0.0048 0.0044 0.0044

hx II II 0 0 3DX, 3Dy 0.0032 0.0032 0.0031 0.0031
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T able  2 .Plate 45°/ -  45°/ -  45°/45°. s s .
FEM: Unstiffened plate wmSLX — 0.0133m (L), Wmax — 0.0119m (NL) 
Rit.z’s: Unstiffened plate wmax =  0.0128m (L), wmax =  0.0111m (NL)

SillTcncr size Quantity of M m a x  ’ 1;HM (m) U ' r n a x *  Ritz’s. (?n)
(///) stiffener , ■Linear Non-linear Linear Non-linear

K -  0.01 I D , 0.0129 0.0117 0.0123 0.0108
f , !ỉ 0.02 : w „ 0.0124 0.0113 0.0120 0.0106

t ‘; - 0.02 \ 1 ) „ 0.0115 0.0107 0.0107 0.0097
h ti 0.01 3 D „ 0.0100 0.0095 0.0096 0.0090
b , - 0.01 1Ơ, 0.0110, 0.0102 0.0108 0.0098
/# 0.02 3I>, 0.0096 0.0091 0.0095 0.0089

I t ' r O.O’J 1A, 0.0058 0 .0 0 5 6 0.0060 0.0058
1 0.0 1 ;s n r 0.0039 0.0039 0.0040 0.0040

K 0.01 1 /J.r. 1Ạ, 0.0108 0.0101 0 .0 1 0 4 0.0095
. !>>, - 0.02 0.0091 0 .0 0 8 8 0 .0 0 9 1 0 .0 0 8 5

h , 0 .0 1 . - 0 .0 2 1 / J x .  l O y 0 .0 1 0 0 0 .0 0 9 5 0.0092 0 .0 0 8 6

i h ' 0 .0 2 / ; , 0 .0 4 3 D X. .'{£>„ 0.0078 0 .0 0 7 6 0.0076 0.0073

i K 0 .0 2 l ơ x. 1 U y 0.0058 0.0057 0.0055 0.0054

! ^ K 0.04 3D,.. 3Dy 0.0037 0.0037 0.0036 0.0036

y

0.8
(1) (2) (3)

7------ / T

0 0.4

Fig 1. Deflection w along vertical cuts (1), (2), (3) of unstiffened plate 0°/90o/90o/0°, 
FEM, non-linear problem, s s , p — 25Ar/m m 2. w — (10~3m), ,y  — (m).
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Fig 2. Deflection w along vertical cuts (1), (2), (3) of stiffened plate 0°/90°/90°/0°, 
FEM, non-linear problem, s s , p = 25N /m m 2. w -  (10- 3ra), y -  (m).

(a) -  3Dx with bx = 0.01, hx = 0.02, (6) -  1 Dx with bx = 0.02, hx =  0.04,

Conclusions
- Displacement in non-linear problem is smaller than that one in linear problem. If 

external force is small, displacement in non-linear problem approximately equal with linear 
displacement. When external force increases, the difference between linear and non-linear 
displacement also get increased.

- The difference between result by Ritz’s method and FEM in the case s s  is not 
more than 0 ,8%-

- Ritz’s method is suitable for cases with simply-supported edges; while FEM is 
used for cases with more complex boundary conditions.

- Time for solving by R itz’s method (about 5 mins) is much shorter than by FEM 
(about 25 mins). This publication is completed with financial support of the Council for 
Natural Science of Vietnam.
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