NON-LINEAR AND LINEAR ANALYSIS OF STIFFENED LAMINATED PLATES

Vu Do Long
College of Sciences, VNU

Abstract

The non-linear displacement formulation of laminated composite plates subjected to perpendicular loads by Ritz and Finite element method (FEM), are presented. Cases of stiffened and unstiffened laminated plates are considered.

Introduction

Analysis of laminated plates has been studied by many authors [1, 2, 4]. In this paper we deal with the non-linear static analysis of stiffened and unstiffened laminated plates by Ritz's method and FEM in correctizied formulation.

1. Linear and non-linear analysis of laminated plates

1.1. Laminated plates constitutive equation

The stress-strain relation for the k-layer can be expressed as follows [1]

$$
\left[\begin{array}{c}
\sigma_{1} \tag{1}\\
\sigma_{2} \\
\sigma_{6} \\
\sigma_{4} \\
\sigma_{5}
\end{array}\right]=\left[\begin{array}{ccccc}
Q_{11} & Q_{12} & Q_{16} & 0 & 0 \\
Q_{12} & Q_{22} & Q_{26} & 0 & 0 \\
Q_{16} & Q_{26} & C_{66} & 0 & 0 \\
0 & 0 & 0 & Q_{44} & Q_{45} \\
0 & 0 & 0 & Q_{45} & Q_{55}
\end{array}\right] \cdot\left[\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\varepsilon_{6} \\
\varepsilon_{4} \\
\varepsilon_{5}
\end{array}\right]
$$

The relation between internal force, moments and deformations for laminated plates are of the form [2]

$$
\begin{equation*}
\{\Sigma\}=[D]\{\varepsilon\} \tag{2}
\end{equation*}
$$

where

$$
\begin{gathered}
\{\Sigma\}=\left[\begin{array}{llllllll}
N_{x} & N_{y} & N_{x y} & M_{x} & M_{y} & M_{x y} & Q_{y} & Q_{x}
\end{array}\right]^{T} \\
\{\varepsilon\}=\left[\begin{array}{llllllll}
\varepsilon_{x x}^{0} & \varepsilon_{y y}^{0} & \gamma_{x y}^{0} & \chi_{x} & \chi_{y} & \chi_{x y} & \gamma_{y z}^{0} & \gamma_{x z}^{0}
\end{array}\right]^{T} \\
{[D]=\left[\begin{array}{ccccccccc}
A_{11} & A_{12} & A_{16} & B_{11} & B_{12} & B_{16} & 0 & 0 \\
A_{12} & A_{22} & A_{26} & B_{12} & B_{22} & B_{26} & 0 & 0 \\
A_{16} & A_{26} & A_{66} & B_{16} & B_{26} & B_{66} & 0 & 0 \\
B_{11} & B_{12} & B_{16} & D_{11} & D_{12} & D_{16} & 0 & 0 \\
B_{12} & B_{22} & B_{26} & D_{12} & D_{22} & D_{26} & 0 & 0 \\
B_{16} & B_{26} & B_{66} & D_{16} & D_{26} & D_{66} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & A_{44} & A_{45} \\
0 & 0 & 0 & 0 & 0 & 0 & A_{45} & A_{55}
\end{array}\right]}
\end{gathered}
$$

The variation of potential energy U and work done by external force acting on the plate cán be written

$$
\begin{align*}
\delta U & =\iint_{S} \Sigma \delta \varepsilon d x d y=\iint_{S}\{\delta \varepsilon\}^{T}[D]\{\varepsilon\} d x d y \tag{3}\\
\delta A & =\iint_{S} F \delta u d x d y=\iint_{S}\{\delta u\}^{T}\{F\} d x d y \tag{4}
\end{align*}
$$

where $\{F\}$ is a matrix of external force, $\{u\}$-displacement matrix of a point of the middle surface. $\{u\}=\left[\begin{array}{lllll}u & v & w & \psi_{x} & \psi_{y}\end{array}\right]^{T}$

Boundary conditions

a) Simply-supported edges

$$
\begin{aligned}
& u=w=0 \quad \text { at } \quad x=0 ; x=a \quad v=w=0 \quad \text { at } \quad y=0 ; y=b ; \\
& \psi_{x}=0 \quad \text { at } \quad y=0 ; y=b ; \quad \psi_{y}=0 \quad \text { at } \quad x=0 ; x=a
\end{aligned}
$$

b) Clamped edges

$$
u=v=w=\psi_{x}=\psi_{y}=0 \quad \text { at } x=0 ; x=a ; y=0 ; y=b
$$

c) Mixed conditions. Clamped-suported edges

$$
\begin{array}{lll}
u=w=\psi_{y}=0 & \text { at } & x=0 ; x=a ; y=0 ; y=b \\
v=\psi_{x}=0 & \text { at } & y=0 ; y=b
\end{array}
$$

1.2. Stiffener constitutive equation

Stiffeners are related with plate. Stiffener directions are placed along rectangular lines. Stiffener displacement components are deflection and rotation along stiffener directions. For x-stiffener we have relation between the deflection and the rotation $\psi_{x}=d w / d x$. The deformation along x-axis can be written:

$$
\varepsilon_{x}=\frac{z}{\rho}=z \frac{d \psi_{x}}{d x}=z \frac{d^{2} w}{d x^{2}}
$$

The stiffener potential energy along x-axis is calculated as follows

$$
\begin{equation*}
U_{s x}=\frac{1}{2} \iiint_{V} \varepsilon_{x} \cdot \sigma_{x} d V=\frac{1}{2} E J_{z} \int_{x}\left(\frac{d^{2} w}{d x^{2}}\right)^{2} d x \tag{5}
\end{equation*}
$$

where E - elascity modulus and $J_{z^{-}}$inertial moment for z-axis of stiffener. Similarly, we get the stiffener potential energy form along y-axis

$$
\begin{equation*}
U_{s y}=\frac{1}{2} \iiint_{V} \varepsilon_{y} \cdot \sigma_{y} d V=\frac{1}{2} E J_{z} \int_{y}\left(\frac{d^{2} w}{d y^{2}}\right)^{2} d y \tag{6}
\end{equation*}
$$

2. Methods of calculating.

2.1. Ritz's method [2]

Based on Lagrange's minimum principle of the complete potential energy $(U-A)$ we have $\delta(U-A)=0$

The potential energy U of stiffener laminated plates is equal to the total stiffener potential energy U_{b} and the plates potential energy $U_{s}: \quad U=U_{b}+U_{s}$

We put $J=U-A$, which reduces:
$J=\frac{1}{2} \iint_{S}\{\varepsilon\}^{T}[D]\{\varepsilon\} d x d y+\frac{1}{2} E J_{z} \int_{x}\left(\frac{d^{2} w}{d x^{2}}\right)^{2} d x+\frac{1}{2} E J_{z} \int_{y}\left(\frac{d^{2} w}{d y^{2}}\right)^{2} d y-\iint_{S}\{u\}^{T}[F] d x d y$,
where $\{u\}^{T}=\left[u, v, w, \psi_{x}, \psi_{y}\right]=\left[u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right]$
Displacement components can be approximated by $u_{i}=\sum_{\alpha=1}^{n} a_{i \alpha} \varphi_{i \alpha}(x, y)$, where functions $\varphi_{i \alpha}$ are linearly independent, and must be chosen such that the boundary conditions are satisfied.

We can write them in matrix form $\{u\}_{5 \times 1}=[\Phi]_{5 \times 5 n} \cdot\{a\}_{5 n \times 1}$
From here the deformation can be caculated by

$$
\begin{equation*}
\{\varepsilon\}_{8 \times 1}=[B(a)(x, y)]_{8 \times 5 n} \cdot\{a\}_{5 n \times 1}, \tag{8}
\end{equation*}
$$

where $[B(a)(x, y)]$ depends on $a_{i \alpha}$ of first degree. The stiffener displacement along x-axis is approximated as follows

$$
\begin{aligned}
w & =b_{1}+b_{2} x+b_{3} x^{2}+b_{4} x^{3} \\
\psi_{x} & =\frac{d w}{d x}=b_{2}+2 b_{3} x+3 b_{4} x^{2}
\end{aligned}
$$

or in matrix form

$$
[w]=\left[\begin{array}{llll}
1 & x & x^{2} & x^{3}
\end{array}\right]\left[\begin{array}{llll}
b_{1} & b_{2} & b_{3} & b_{4} \tag{9}
\end{array}\right]^{T}=[F(x)] \cdot[b] .
$$

The coefficients $b_{i},(i=\overline{1,4})$ are calculated by deflection and rotation value of two boundary points of stiffener

$$
\left[\begin{array}{llll}
b_{1} & b_{2} & b_{3} & b_{4}
\end{array}\right]^{T}=\left[H_{x}\right]_{4 \times 5 n}\left[\begin{array}{c}
a_{11} \tag{10}\\
a_{12} \\
\vdots \\
a_{5 n}
\end{array}\right]_{5 n \times 1}=\left[H_{x}\right] \cdot\{a\}
$$

From (9), (10) we have

$$
\begin{equation*}
\left[\frac{d^{2} w}{d x^{2}}\right]=\frac{d^{2}}{d x^{2}}\left([F(x)]\left[H_{x}\right]\{a\}\right)=\left[G_{x}\right]_{1 \times 5 n} \cdot\{a\}_{5 n \times 1} \tag{11}
\end{equation*}
$$

Similarly, for y-stiffener we get

$$
\begin{equation*}
\left[\frac{d^{2} w}{d y^{2}}\right]=\left[G_{y}\right]_{1 \times 5 n} \cdot\{a\}_{5 n \times 1} \tag{12}
\end{equation*}
$$

From (7) $\div(12)$ we obtain

$$
\begin{align*}
J & \left.=\frac{1}{2} \iint_{S}\{a\}^{T}[B]^{T} D\right][B]\{a\} d x d y+\frac{1}{2} E J_{z} \int_{x}\{a\}^{T}\left[G_{x}\right]^{T}\left[G_{x}\right]\{a\} d x+ \\
& +\frac{1}{2} E J_{z} \int_{y}\{a\}^{T}\left[G_{y}\right]^{T}\left[G_{y}\right]\{a\} d y-\iint_{S}\{F\}^{T}[\Phi]\{a\} d x d y \tag{13}
\end{align*}
$$

Denote that

$$
\begin{align*}
& \iint_{S}[B]^{T}[D][B] d x d y=[\mathbb{B}(a)]_{5 n \times 5 n}, \quad E J_{z} \int_{x}\left[G_{x}\right]^{T}\left[G_{x}\right] d x=\left[\mathbb{G}_{x}\right]_{5 n \times 5 n} \\
& E J_{z} \int_{y}\left[G_{y}\right]^{T}\left[G_{y}\right] d y=\left[\mathbb{G}_{y}\right]_{5 n \times 5 n}, \quad \iint_{S}\{F\}_{1 \times 5}^{T}[\Phi]_{5 \times 5 n} d x d y=\{\mathbb{F}\}_{1 \times 5 n}^{T} \tag{14}
\end{align*}
$$

where $[\mathbb{B}(a)]$ depends on $\left\{a_{\imath \alpha}\right\}$ of second degree and J becomes a function of multi-variable $a_{i \alpha}$

$$
\begin{equation*}
J=\frac{1}{2}\{a\}_{1 \times 5 n}^{T}\left([\mathbb{B}(a)]+\left[\mathbb{G}_{x}\right]+\left[\mathbb{G}_{y}\right]\right)_{5 n \times 5 n}\{a\}_{5 n \times 1}-\{\mathbb{F}\}_{1 \times 5 n}^{T}\{a\}_{5 n \times 1}, \tag{15}
\end{equation*}
$$

where

$$
\{a\}^{T}=\left[a_{11}, a_{12}, \cdots a_{1 n}, a_{21}, a_{22}, \cdots a_{2 n}, \cdots a_{51}, a_{52}, \cdots a_{5 n}\right]=\left[a_{1}, a_{2}, \cdots a_{5 n}\right]
$$

Minimization of J

$$
\delta J=0 \quad \text { reduces } \quad \frac{\partial J}{\partial a_{i}}=0, \quad \forall i=\overline{1,5 n}
$$

We get a system of ($5 n$) algebraic equations in matrix form for finding a_{i}.

$$
\begin{equation*}
[K(a)]_{5 n \times 5 n}\{a\}_{5 n \times 1}=\{\mathbb{F}\}_{5 n \times 1} \tag{16}
\end{equation*}
$$

where $[K(a)]$ depends on coefficients a_{i} of second degree.
The system (16) can be solved by an iterative method

$$
\left[K(a)^{(k-1)}\right]\left\{a^{(k)}\right\}=\{\mathbb{F}\}
$$

For a plate with simply -supported edges, displacement components are chosen

$$
\begin{aligned}
u & =a_{11} \sin \left(\frac{\pi x}{a}\right)+a_{12} \sin \left(\frac{\pi x}{a}\right) \sin \left(\frac{\pi y}{b}\right) \\
v & =a_{21} \sin \left(\frac{\pi y}{b}\right)+a_{22} \sin \left(\frac{\pi x}{a}\right) \sin \left(\frac{\pi y}{b}\right) \\
w & =a_{31} \sin \left(\frac{\pi x}{a}\right) \sin \left(\frac{\pi y}{b}\right)+a_{32} \sin \left(\frac{3 \pi x}{a}\right) \sin \left(\frac{3 \pi y}{b}\right), \\
\psi_{x} & =a_{41} \sin \left(\frac{\pi y}{b}\right)+a_{42} \sin \left(\frac{\pi x}{a}\right) \sin \left(\frac{\pi y}{b}\right) \\
\psi_{y} & =a_{51} \sin \left(\frac{\pi x}{a}\right)+a_{52} \sin \left(\frac{\pi x}{a}\right) \sin \left(\frac{\pi y}{b}\right)
\end{aligned}
$$

2.2. Finite element method $[2,3]$.

The plate is devided into 16 small rectangular elements with the size $(a / 4) \times(b / 4)$.
The element (e) having nodes (i, j, k, l) is studied. At a point $M(x, y)$ in the element (e) we choose

$$
\begin{align*}
u & =a_{1}+a_{2} x+a_{3} y+a_{4} x y \\
v & =a_{5}+a_{6} x+a_{7} y+a_{8} x y \\
w & =a_{9}+a_{10} x+a_{11} y+a_{12} x y \tag{18}\\
\psi_{x} & =a_{13}+a_{14} x+a_{15} y+a_{16} x y \\
\psi_{y} & =a_{17}+a_{18} x+a_{19} y+a_{20} x y
\end{align*}
$$

and in matrix form (18) can be written

$$
\begin{equation*}
\{u\}_{5 \times 1}=[F(x, y)]_{5 \times 20} \cdot\{a\}_{20 \times 1} \tag{19}
\end{equation*}
$$

In the 4 nodes (i, j, k, l) we have

$$
\begin{align*}
\{q\}^{e} & =\left[\begin{array}{c}
q_{1}{ }^{e} \\
q_{2} \\
\vdots \\
q_{19}{ }^{e} \\
q_{20}{ }^{e}
\end{array}\right]=\left[\begin{array}{c}
\{u\}^{2} \\
\{u\}^{j} \\
\{u\}^{k} \\
\left.\{u\}^{l}\right]_{20 \times 1}
\end{array}\right]_{20}=\left[\begin{array}{cccccccc}
1 & x_{i} & y_{i} & x_{i} y_{i} & \cdots & 0 & 0 & 0 \\
\vdots & & & & & & & \\
0 & 0 & 0 & 0 & \cdots & 1 & x_{i} & y_{i} \\
x_{i} y_{i} \\
\vdots & & & & & & & \\
1 & x_{l} & y_{l} & x_{l} y_{l} & \cdots & 0 & 0 & 0 \\
\vdots & & & & & & & \\
0 & 0 & 0 & 0 & \cdots & 1 & x_{l} & y_{l} \\
x_{l} y_{l}
\end{array}\right]_{20 \times 20}\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{19} \\
a_{20}
\end{array}\right]_{20 \times 1}
\end{align*}
$$

where $x_{i}=0 ; \quad y_{i}=0 ; \quad x_{j}=a / 4 ; \quad y_{j}=0$,
$x_{k}=a / 4 ; \quad y_{k}=b / 4 ; \quad x_{l}=0 ; \quad y_{l}=b / 4$.
Then the equation (20) has the form $\{q\}^{e}{ }_{20 \times 1}=[A]_{20 \times 20} \cdot\{a\}_{20 \times 1}$.
Instead of finding $\left\{a_{i}\right\}$ we find displacement components $\{q\}^{e}$

$$
\{a\}_{20 \times 1}=[A\}_{20 \times 20}^{-1} \cdot\{q\}_{20 \times 1}^{e}
$$

The displacement in a point $\mathrm{M}(x, y)$ is calculated through displacement of nodes (i, j, k, l).

$$
\begin{equation*}
\{u\}_{5 \times 1}=[F(x, y)]_{5 \times 20} \cdot[A]_{20 \times 20}^{-1} \cdot\{q\}_{20 \times 1}^{e}=[N(x, y)]_{5 \times 20}\{q\}_{20 \times 1}^{e} \tag{21}
\end{equation*}
$$

where $[N(x, y)]_{5 \times 20}=[F(x, y)]_{5 \times 20} \cdot[A]_{20 \times 20}^{-1}$

From (21) we obtain

$$
\{\varepsilon\}_{8 \times 1}^{e}=\left[\begin{array}{lllllllll}
\varepsilon_{x x}^{0} & \varepsilon_{y y}^{0} & \gamma_{x y}^{0} & \chi_{x} & \chi_{y} & \chi_{x y} & \gamma_{y z}^{0} & \gamma_{x z}^{0} &]^{T}=\left[B(q)^{e}\right]_{8 \times 20}\{q\}_{20 \times 1}^{e} \tag{22}
\end{array}\right.
$$ and matrix $\left[B(q)^{e}\right]$ depends on $\{q\}^{e}$ of first degree.

In $[2],\left[B^{e}\right]=\left[B^{e}\right]_{N L}+\left[B^{e}\right]_{L}$, reduces $\left[\delta B^{e}\right]\{q\}^{e}=\left[B^{e}\right]_{N L}\left\{\delta q^{e}\right\}$, we have the relation

$$
\begin{equation*}
\left\{\delta \varepsilon^{e}\right\}=\left(\left[B^{e}\right]_{L}+2\left[B^{e}\right]_{N L}\right)\left\{\delta q^{e}\right\}=\left[B_{*}^{e}\right]\left\{\delta q^{e}\right\} \tag{23}
\end{equation*}
$$

where $\left[B_{*}^{e}\right]_{8 \times 20}=\left[B^{e}\right]_{L}+2\left[B^{e}\right]_{N L}$.
From here we get the variation of potential energy of a rectangular element (e)

$$
\begin{equation*}
\left\{\delta U_{b}^{e}\right\}=\iint_{S_{e}}\left\{\delta \varepsilon^{e}\right\}_{1 \times 8}^{T}[D]_{8 \times 8}\{\varepsilon\}_{8 \times 1}^{e} d x d y=\left\{\delta q^{e}\right\}^{T}\left(\iint_{S_{e}}\left[B_{*}^{e}\right]^{T}[D]\left[B^{e}\right] d x d y\right)\{q\}^{e} . \tag{24}
\end{equation*}
$$

Put

$$
\left[K^{e}\right]_{20 \times 20}=\iint_{S_{e}}\left[B_{*}^{e}\right]^{T}[D]\left[B^{e}\right] d x d y
$$

the relation (24) can be written as the following

$$
\begin{equation*}
\left\{\delta U_{b}^{e}\right\}=\left\{\delta q^{e}\right\}^{T}\left[K^{e}\right]\{q\}^{e} . \tag{25}
\end{equation*}
$$

A stiffener is discretized into beams in element (e) of plates. For x-stiffener we have a relation between the deflection w and nodal displacements

$$
w=\left[N_{1}(x)\right]_{1 \times 4}\{q\}_{4 \times 1}^{x e},
$$

that reduces

$$
\begin{equation*}
\varepsilon_{x}=z \frac{d^{2} w}{d x^{2}}=z\left[B_{1}^{e}(x)\right]_{x}\{q\}^{x e} \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
\left[B_{1}^{e}(x)\right]_{x}=\frac{d^{2}\left[N_{1}(x)\right]}{d x^{2}} \tag{27}
\end{equation*}
$$

The potential energy of x-stiffener is calculated as follows

$$
\begin{equation*}
U_{s x}^{e}=\frac{1}{2} \iiint_{V}\left[\varepsilon_{x}\right]^{T}\left[\sigma_{x}\right] d V=\frac{1}{2} E J_{z}\left\{q^{x e}\right\}^{T}\left(\int_{x}\left[B_{1}^{e}\right]_{x}^{T}\left[B_{1}^{e}\right]_{x} d x\right)\{q\}^{x e} \tag{28}
\end{equation*}
$$

Similarly, we get the potential energy of y-stiffener

$$
\begin{equation*}
U_{s y}^{e}=\frac{1}{2} E J_{z}\left\{q^{y e}\right\}^{T}\left(\int_{y}\left[B_{1}^{e}\right]_{y}^{T}\left[B_{1}^{e}\right]_{y} d y\right)\{q\}^{y e} . \tag{29}
\end{equation*}
$$

We denotes

$$
\begin{equation*}
\left[K_{x}^{e}\right]_{4 \times 4}=\frac{1}{2} E J_{z}\left(\int_{x}\left[B_{1}^{e}\right]_{x}^{T}\left[B_{1}^{e}\right]_{x} d x\right),\left[K_{y}^{e}\right]_{4 \times 4}=\frac{1}{2} E J_{z}\left(\int_{y}\left[B_{1}^{e}\right]_{y}^{T}\left[B_{1}^{e}\right]_{y} d y\right) \tag{30}
\end{equation*}
$$

and the variation of potential energy of beam can be written

$$
\begin{equation*}
\left\{\delta U_{s x}^{e}\right\}=\left\{\delta q^{x e}\right\}^{T}\left[K_{x}^{e}\right]\{q\}^{x e}, \quad\left\{\delta U_{s y}^{e}\right\}=\left\{\delta q^{y e}\right\}^{T}\left[K_{y}^{e}\right]\{q\}^{y e} \tag{31}
\end{equation*}
$$

The variation of work done by external force is calculated as follows

$$
\begin{equation*}
\left\{\delta A^{e}\right\}=\iint_{S_{r}}\left\{\delta u^{e}\right\}_{1 \times 5}^{T}\{F\}_{5 \times 1} d x d y=\left\{\delta q^{e}\right\}^{T} \iint_{S_{e}}\left[N(x, y)^{e}\right]^{T}\{F\} d x d y \tag{32}
\end{equation*}
$$

The plate has 25 nodes, i.e. there are 125 nodal displacement components. Denotes the global vector of displacement $\{q\}$

$$
\{q\}_{125 \times 1}=\left[\begin{array}{llllllllll}
u_{1} & v_{1} & w_{1} & \psi_{x_{1}} & \psi_{y_{1}} \cdots & u_{25} & v_{25} & w_{25} & \psi_{x_{25}} & \psi_{y_{25}}
\end{array}\right]^{T}
$$

In the element (e) we have relation between nodal and global displacements

$$
\begin{equation*}
\{q\}_{20 \times 1}^{c}=\left[L^{e}\right]_{20 \times 125}\{q\}_{125 \times 1} \tag{33}
\end{equation*}
$$

Nodal displacements of beam $\{q\}^{x e}$ depends on global displacements $\{q\}$ as follows

$$
\{q\}_{4 \times 1}^{x e}=\left[L_{x}^{e}\right]_{4 \times 125} \cdot\{q\}_{125 \times 1} \quad\{q\}_{4 \times 1}^{y e}=\left[L_{y}^{e}\right]_{4 \times 125} \cdot\{q\}_{125 \times 1}
$$

A stiffened laminated plate is discretized into L_{e} element (e), $L_{x e}$ beams - along x-axis and $L_{y e}$ beams - along y-axis.

From $(25),(31) \div(34)$, for stiffened laminated plates we have the variation of potential and work done by external forces

$$
\begin{align*}
\delta U & =\sum_{e=1}^{L e} \delta U_{b}^{e}+\sum_{e=1}^{L_{A}} \delta U_{s x}^{e}+\sum_{e=1}^{L_{y, e}} \delta U_{s y}^{e} \\
& =\{\delta q\}^{T}\left(\sum_{e=1}^{L e}\left[L^{e}\right]^{T}\left[K^{e}\right]\left[L^{e}\right]+\sum_{e=1}^{L_{x e}}\left[L_{x}^{e}\right]^{T}\left[K_{x}^{e}\right]\left[L_{x}^{e}\right]+\sum_{e=1}^{L_{y e}}\left[L_{y}^{e}\right]^{T}\left[K_{y}^{e}\right]\left[L_{y}^{e}\right]\right)\{q\}, \\
\delta A & =\sum_{e=1}^{L e} \delta A^{e}=\sum_{e=1}^{L e} \iint_{S_{e}}\{\delta q\}^{T}\left[L^{e}\right]^{T}\left[N(x, y)^{e}\right]^{T}\{F\} d x d y \\
& =\{\delta q\}^{T}\left(\sum_{e=1}^{L e}\left[L^{e}\right]^{T} \iint_{S_{e}}\left[N(x, y)^{e}\right]^{T}\{F\} d x d y\right) . \tag{35}
\end{align*}
$$

The global stiffness and the forces matrix are determined such as

$$
\begin{align*}
{[K]_{125 \times 125} } & =\sum_{e=1}^{L e}\left[L^{e}\right]^{T}\left[K^{e}\right]\left[L^{e}\right]+\sum_{e=1}^{L_{x e}}\left[L_{x}^{e}\right]^{T}\left[K_{x}^{e}\right]\left[L_{x}^{e}\right]+\sum_{e=1}^{L_{y e}}\left[L_{y}^{e}\right]^{T}\left[K_{y}^{e}\right]\left[L_{y}^{e}\right] \\
\{P\}_{125 \times 1} & =\sum_{e=1}^{L e}\left[L^{e}\right]_{125 \times 20}^{T} \iint_{S_{e}}\left[N(x, y)^{e}\right]_{20 \times 5}^{T}\{F\}_{5 \times 1} d x d y \tag{36}
\end{align*}
$$

Then equations (35), (36) can be rewritten

$$
\delta U=\{\delta q\}^{T}[K]\{q\}, \quad \delta A=\{\delta q\}^{T}\{P\} .
$$

According to $\delta U=\delta A$ and (37) we have the equation for finding global displacements in the matrix form

$$
[K]_{125 \times 125}\{q\}_{125 \times 1}=\{P\}_{125 \times 1}
$$

Because matrix $[K]$ depends on $\{q\}$ of second degree, we can solve (38) by an iterative method $\left[K^{(k-1)}\right]\left\{q^{(k)}\right\}=\{P\}$

3. Numerical results

We consider a four layer laminated plate: $a=400 \mathrm{~mm} ; b / a=2 ; h=10 \mathrm{~mm}$ or $h=20 \mathrm{~mm} ; E_{1}=280 G P a ; E_{2}=E_{3}=7 G P a ; G_{12}=G_{13}=4,2 G P a ; G_{23}=3,5 G P a ;$ $\nu_{12}=\nu_{13}=\nu_{23}=0,25$.

With stiffeners placed along x-axis and y-axis: $E=200 G P a ; b_{x}=10 \mathrm{~mm}$ or $b_{x}=20 \mathrm{~mm} ; b_{y}=10 \mathrm{~mm}$ or $b_{y}=20 \mathrm{~mm} ; h_{x}=2 b_{x} \vee h_{y}=2 b_{y}$.

The plates is acted on by perpendicular extenal force $p=25 \mathrm{~N} / \mathrm{mm}^{2}$;
Boundary conditions : 4-simply- supported edges (SS);
2-simply- supported and 2-clamped edges (CS); 4-clamped edges (CC);
The first case: Laminated plate $0^{\circ} / 90^{\circ} / 90^{\circ} / 0^{\circ}$;
The second case: Laminated plate $45^{\circ} /-45^{\circ} /-45^{\circ} / 45^{\circ}$;
For illustration in the table 1-2 numerical calculation of deflection $w_{\max }$ at the center of plate is presented for the unstiffened plate and stiffened plate.

Table 1. Plate $0^{\circ} / 90^{\circ} / 90^{\circ} / 0^{\circ}$. SS.
FEM: Unstiffened plate $w_{\text {max }}=0.0100 m(\mathrm{~L}), \quad w_{\max }=0.0091 m(\mathrm{NL})$
Ritz's: Unstiffened plate $w_{\max }=0.0103 m(\mathrm{~L}), \quad w_{\max }=0.0091 \mathrm{~m}(\mathrm{NL})$

Stiffener size (m)	Quantity of stiffener	$w_{\text {max }}$. FEM. (m)		$w_{\text {max }}$. Ritz's, (m)	
		Linear	Non-linear	Linear	Non-linear
$b_{n}-0.01$	$1 D_{y}$	0.0100	0.0091	0.0101	0.0089
$h_{y}=0.02$	$3 D_{y}$	0.0099	0.0091	0.0100	0.0089
$b_{u}=0.02$	$1 D_{y}$	0.0094	0.0088	0.0092	0.0083
$h_{y}=0.04$	$3 D_{y}$.	0.0087	0.0082	0.0085	0.0078
$b_{r}-0.01$	$1 D_{x}$	0.0080	0.0075	0.0081	0.0076
$h_{x}-0.02$	$3 D_{r}$	0.0068	0.0066	0.0071	0.0068
$h_{x} \quad 0.02$	$1 D_{x}$	0.0045	0.0044	0.0047	0.0046
$h_{1} \quad 0.0 .4$	$3 D_{x}$	0.0032	0.0032	0.0033	0.0033
$b_{r}=b_{y}{ }^{\circ}-0.01$	$1 D_{x} \cdot 1 D_{y}$	0.0081	0.0076	0.0081	0.0075
$h_{x}=h_{y}=0.02$	$3 D_{x}, 3 D_{\psi}$	0.0069	0.0066	0.0070	0.0067
$b_{x}=0.01, b_{y}=0.02$	$1 D_{x}, 1 D_{y}$	0.0079	0.0075	0.0075	0.0071
$h_{x}=0.02, \quad h_{y}=0.04$	$3 D_{x}, 3 D_{y}$	0.0064	0.0062	0.0062	0.0060
$b_{x}=b_{y}=0.02$	$1 D_{x} .1 D_{y}$	0.0049	0.0048	0.0044	0.0044
$h_{x}=h_{y}=0.04$	$3 D_{x}, 3 D_{y}$	0.0032	0.0032	0.0031	0.0031

Table 2.Plate $45^{\circ} /-45^{\circ} /-45^{\circ} / 45^{\circ}$. SS.
FEM: Unstiffened plate $w_{\max }=0.0133 m(\mathrm{~L}), \quad w_{\max }=0.0119 m(\mathrm{NL})$
Rito's: Unstiffened plate $w_{\max }=0.0128 m(\mathrm{~L}), \quad w_{\max }=0.0111 \mathrm{~m}(\mathrm{NL})$

suffener size	Quantity of	$u_{\text {mat }}$	EM. (m)	u_{m}	itz's. (m)
(ili)	suffener	Linear	Non-linear	Linear	Non-lincar
$h_{0}-0.01$	$1 D_{4}$	0.0129	0.0117	0.0123	0.0108
10.10 .02	$3 D_{10}$	0.0124	0.0113	0.0120	0.0106
111000	$11)$	0.0115	0.0107	0.0107	0.0097
h, 0.0.11	$3 D_{1}$	0.0100	0.0095	0.0096	0.0090
b. 0.01	$1)_{r}$	0.0110.	0.0102	0.0108	0.0098
h) 0020	31),	0.0096	0.(0)91	0.0095	0.0089
1.0) 0 O	11)	0.0058	0.0056	0.0060	0.0058
i 010.01	$3 \mathrm{~S}_{r}$	0.0039	0.0039	0.0040	(0.0040
	$11)_{r} .11 D_{11}$	0.0108	0.0101	0.0104	$0 .(0) 95$
1. $h_{11} \quad 0.10 .12$	31) $31.3 D_{y}$	0.0091	0.0088	0.0091	0.0085
11.00, $011 . h_{3} \cdot 0.02$	$1 D_{r}, 1 D_{4}$	0.0100	0.0095	0.0092	0.0086
$1100021_{4} 00.04$	$3 D_{5} \cdot 3 D_{4}$	0.0078	0.0070	0.0076	0.0073
$b_{1} b_{0} 0.02$	$1 D_{s} .1 D_{4}$	0.0058	0.0057	0.0055	0.0054
$h_{1} h_{1}$ 0, 0.t	3D $)_{r} .3 D_{y}$	0.0037	0.0037	0.0036	0.0036

Fig 1. Deflection w along vertical cuts (1), (2), (3) of unstiffened plate $0^{\circ} / 90^{\circ} / 90^{\circ} / 0^{\circ}$, FEM, non-linear problem, $\mathrm{SS}, p=25 \mathrm{~N} / \mathrm{mm}^{2} . w-\left(10^{-3} m\right), \quad, y-(m)$.

Fig 2. Deflection w along vertical cuts (1), (2), (3) of stiffened plate $0^{\circ} / 90^{\circ} / 90^{\circ} / 0^{\circ}$, FEM, non-linear problem, $\mathrm{SS}, p=25 \mathrm{~N} / \mathrm{mm}^{2} . w-\left(10^{-3} m\right), \quad y-(m)$.
$(a)-3 D_{x}$ with $b_{x}=0.01, h_{x}=0.02$,
(b) $-1 D_{x}$ with $b_{x}=0.02, h_{x}=0.04$,

Conclusions

- Displacement in non-linear problem is smaller than that one in linear problem. If external force is small, displacement in non-linear problem approximately equal with linear displacement. When external force increases, the difference between linear and non-linear displacement also get increased.
- The difference between result by Ritz's method and FEM in the case SS is not more than $0,8 \%$.
- Ritz's method is suitable for cases with simply-supported edges; while FEM is used for cases with more complex boundary conditions.
- Time for solving by Ritz's method (about 5 mins) is much shorter than by FEM (about 25 mins). This publication is completed with financial support of the Council for Natural Science of Vietnam.

References

1. Tran Ich Thinh, Mechanics of Composite Materials, Ed. Education, (1994) (in Vietnamese).
2. Dao Huy Bich, Non-linear analysis of laminated plates, Viet nam Journal of Mechanics, Vol 24, $\mathrm{N}_{0} 4$ (2002), pp. 197-208.
3. Chu Quoc Thang, Finite element method, Science and Technical publisher, (1997) (in Vietnames)
4. M. Kolli and K. Chandrashekhara, Non-linear static and dynamic analysis of stiffened laminated plates. Int, J. Non-linear Mechanics, Vol.32. N ${ }_{0}$ 1(1997) pp. 89-101.
