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NON-LINEAR AND LINEAR ANALYSIS
OF STIFFENED LAMINATED PLATES

Vu Do Long
College of Sciences, VNU

Abstract The non-linear displacement formulation of laminated composite plates sub-
jected to perpendicular loads by Ritz and Finite element method (FEM), are presented.
Cases of stiffened and unstiffened laminated plates are considered.

Introduction

Analysis of laminated plates has been studied by many authors [1, 2, 4]. In this
paper we deal with the non-linear static analysis of stiffened and unstiffened laminated
plates by Ritz’s method and FEM in correctizied formulation.

1. Linear and non-linear analysis of laminated plates
1.1. Laminated plates constitutive equation

The stress-strain relation for the k-layer can be expressed as follows [1]
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The relation between internal force, moments and deformations for laminated plates are
of the form [2]
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The variation of potential energy U and work done by external force acting on the
plate can be written

sU = JJ vice dxdy = | | {66} T [D]{e} dxdly , @3)
s S

SA = \]\] FOudxdy = I \] {6u}T{F} dxdy, (4)
S s

where {F} is a matrix of external force, {u}- displacement matrix of a point of the middle
surface, {u} = [u V w 1ipx Tpy}

Boundary conditions
a) Simply-supported edges

u=w—0 at X=0]X=a V=w=20 at y =0,y =0
Tox —0 at y —0;y = 6 ipy = 0 at X=0X=

b) Clamped edges

u=V=w=Ipx=Tpy =0 (itX=0X=ay—0y=0»b

c) Mixed conditions. Clamped-suported edges

u=w="T)y=0 atX = 0; X = a;y = 0;y = 6
V=1Tx=0Q at y=0y=>0

1.2. Stiffener constitutive equation

Stiffeners are related with plate. Stiffener directions are placed along rectangular
lines. Stiffener displacement components are deflection and rotation along stiffener direc-
tions. For x-stiffener we have relation between the deflection and the rotation Tpx = dw/dx.
The deformation along x-axis can be written:

2 dipx dw
£x p z dx z dx2 -

The stiffener potential energy along x-axis is calculated as follows

Usx = | [[[£xn:n<dV:iEJZ\] dx, (5)

X

where E - elascity modulus and Jz- inertial moment for 2-axis of stiffener. Similarly, we
get the stiffener potential energy form along y-axis

u-“=iJ 1 le o'dv=1Ej“j (& 2 idy ©6)
\Y y
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2. Methods of calculating.

2.1. Ritz’s methodiZ

Based on Lagrange’s minimum principle of the complete potential energy (U —A)
we have O(U - A) =0

The potential energy U of stiffener laminated plates is equal to the total stiffener
potential energy Ub and the plates potential energy Us: U = Ub+ Us

We put J = u —A, which reduces:

J= 211 dxdy + \EJzJ (7 T)2dx+}+EJzJ dy-jj {u}T[Ftdxdy,
S X y S
(7)
where {u} = [u, V,w, Thx,Tpy} = [ui,u2,u3, 114, 115)
n
Displacement components can be approximated by vi —  ttia® Q(x,y), where

functions (fia are linearly independent, and must be chosen such that the boundary con-
ditions are satisfied.

We can write them in matrix form {u}5xl = [$]5x5n «{a}5nxl
From here the deformation can be caculated by

{£}sxl — [B(a)(xiy)lsx5n 5nx 1 (8)

where [B(a)(x,y)} depends on dia of first degree. The stiffener displacement along x-axis
is approximated as follows

w=bhi + QX+ b&x + O3
dw 9
Ipx = -J- = b2+ 263X + 3b4x
ax
or in matrix form

Ho= [t x x2 x3][oi 62 b3 &4]T = [F(X)] *[6] (9)

The coefficients bi, (i — 1,4) are calculated by deflection and rotation value of two
boundary points of stiffener

an
[bi B2 63 64]T = [Hx]4x5n b = [Hx] w{a} (10)
-asnJsnx 1
From (9), (10) we have
rd2w cp_ :
dx2 dxz2 ([FOOIMIx){a}) = [Gx]iX5n-{a}5nxI (11)
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Similarly, for y-stiffener we get
(i 2 =["y]Ix&n m{&}onx

From (7) -F (12) we obtain
J= \ \] \] {a}T[B}TD][B}{a} dxdy + tEJ z\] {a}T[Gx]T [Gx}{a} dx+
S X

tEJzj {a}T[Gy}T[Gy]{a}dy- | | {F}T[<>Ka}dxdy.
y S
Denote that

I i [B)t[D)[B\dxdy = [B(a)]5,x5n, EJZj [GXJT[Gx}dx = [Gx]5nx5n,
S X

EJZ\] [Gy] [Gy]dy = [Gy]c>x5n, I I {-MIxOtrMoxon My = {~}Ix5n’

Long

(12)

(13)

(14)

(15)

y S
where [B(a)] depends on {a*a } of second degree and J becomes a function of multi-variable
Oia
J - 2WIX5n([®(a)l + iGs] + iGy])5nx5nia}5nxl ~ {F}Tx5nM 6 n X1>
where

{a}T = [an, ai2, e=«ain, 021,022, se+02n, ' *+&BL>"525 s+ +"5n] = [~1, (2, *=*a5n]-

Minimization of J

SJ = 0 reduces (7(:-‘]—:0, Vz = 1, 5n.
a,

We get a system of (5n) algebraic equations in matrix form for finding ci.
[if(a)]5nx5n{a}5nxi = {F}5nxI ,

where [K(a)\ depends on coefficients ai of second degree.
The system (16) can be solved by an iterative method

[K@)" {af)} = {F}.

(16)

For a plate with simply -supported edges, displacement components are chosen

., TTX X . W7TXN . 7T/
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2.2. Finite element methodi 2,3].

The plate is devided into 16 small rectangular elements with the size (a/4) x (6/4).

The element (e) having nodes (z,j, k, I) isstudied. At a point M(x, y) in the element
(e) we choose

u = CL\+ 02X + 03y 4-04 Xy,
= 5+ <B6X 4-0,7y -1-ag Xy ,
w = a94-aiox + an y +ai2xy, (18)
yx = al3+ ai4 X+ Olby + al6 Xy,
yy = 0*17 + flI8 x + a1l9y + &20£ Y,

and in matrix form (18) can be written

M&X1= [F(X,y)}5x20 «M 20X (19)

In the 4 nodes (i,j,/c,/) we have

918 4
2 rMm |11
w

q19 20x1
920

Vi o Xi Vi °c e ° °©

al
0 o 1 U yi o2
(20)
M x1yi ° ° 519
L&0  7ox1
0 0 @ ? ~20x20
Xj = al4; = °

/4:  xi1 = C, yi= bl4
Then the equation (20) has the form {o}e20xi = [-4]20x20 « W 20Xl
Instead of finding {a»} we find displacement components {q}e

{ay20xi — [**120x20 ' {QY 20x1

The displacement in a point M(x,y) is calculated through displacement of nodes

M sx| = [F{x,y)}5x20 m 20x20 * {q}e20X1 = [Ar(".y)]5x20{g}e20x| » (21)

where [7V(X, y)]sx20 = [F{X, y)]5x20 m[-4]20x20
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From (21) we obtain

{E£}L1 = i£Sx £yy ixy XX Xy Xxy lyz liz 1T = (<?)e18x20{<7320X 1 (22)

and matrix[B(g)e] depends on {g}e of first degree.
In [2] , [Be] = [Be}NL + [Be}L , reduces [0Be]{q}e = [Be]NL{b6ge}, we have the

{SGee} = ([B*] + 2m NL){ege} = m {dqe}, (23)

where [BS]8x20 = [Be]L + 2[J3e]WL.
From here we get the variation of potential energy of a rectangular element (e)

m i = 1 f {& }x8[Cls*s{e}ixI*:A/ =W }T(// ra r[0][B]dz<ij,) (24)
S, Se
Put
[Ke]zox2o = 11 m T[D][Be}dxdy,
Se

the relation (24) can be written as the following

m ) = {6ge}T[KE{qY. (25)

A stiffener is discretized into beams in element (e) of plates. For x-stiffener we have
a relation between the deflection w and nodal displacements

W — [N\(x)] Ix44<7)4x i1

that reduces /\
(26)
where
[Si(z)l, ="~ r 11- P7)
The potential energy of x-stiffener is calculated as follows
vu = \111 =1 {i” HU[BINBWN &’ m (28)
Similarly, we get the potential energy of y-stiffener
uty = iE Jz{qye}T (J[BT}T[BT}ydy){ay” (29)
y
We denotes
=iw .(/raiT[B & 4 [A-]4X4=iEJ,(j\BT1iiBTiydy) , (30)

X y

and the variation of potential energy of beam can be written

{«£} = {SRIT["K<?r, = {<"e}T["I{<?}ye (31)
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The variation of work done by external force is calculated as follows
{<Me} = \] \] { " e}ix5{F }5xi dxdy = i6{ie}TJJ [N{x,y)e}T{F}dxdy. (32)
Se

The plate has 25 nodes, i.e. there are 125 nodal displacement components. Denotes
the global vector of displacement {o}

{<?H25xl = [ui Vi Wi ipXi fTliyi--- U25 V25 W25 Ipx25 ~25 ]T

In the element (e) we have relation between nodal and global displacements

{9)20x 1 = [£e]20x125{<?}125x1 (33)

Nodal displacements of beam {g}xe depends on global displacements {¢}as follows

{£)ax1 = K kx 125{9}125x1 {q}Txl — [Ey]4xI25-{<z}I25x]-

A stiffened laminated plate is discretized into Le element (e), Lxe beams - along
x-axis and Lye beams - along y-axis.

From (25), (31) -F (34), for stiffened laminated plates we have the variation of po-
tential and work done by external forces

Lc L of i'jle

su=y isUi+Yw ;x+Y ,weg
e=1 e=l e=l

fi9)r iy }L 'JT\K%L\+ YIL%\t \KI\[L%\+ X X ]TLirjlILy) {.},

e=1 e=| e=|
Le Le «p
OA = = £ // {6q}T[Le}T [N(x,yy}T{F}dxdy
e=1 e=l g
= {<MT (J21Le}T J i W(x, y)e]T{-F}dxdy). (35)
e=1 Sc

The global stiffness and the forces matrix are determined such as

w » » = Y. JL\T\K‘'W ]+ X >IFKIM i+ Z[LiiT[K‘][wyi
e—1 e=| e=1

{mP}I125x] = y ~ ~ e]l25x20 (36)
6=1 Se

Then equations (35), (36) can be rewritten

ov = {0q}T {K}{a}, SA = {Sq}T {P}.
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According to OU = OA and (37) we have the equation for finding global displace-
ments in the matrix form

[K]125x 125 {*?}125x 1 — {-P}125xI-

Because matrix [K] depends on {q} of second degree, we can solve (38) by an
iterative method [K"k~1"]{q"} = {P}

3. Numerical results

We consider a four layer laminated plate:a = 400mm; b/a = 2; h = 10mm or
h = 20mm,Ei = 280GPa; E2 = Es = 7GPa\G\2 — G\s — 4,2GPa\ 023 —3,5GPa\
W2 —M3 —u23 —0, 25.

With stiffeners placed along x-axis and y-axis : E = 200GPa; bx=10mm or
bx = 20mm; by = 10mm or 6y = 20mm]hx = 2bx V hy = 2by.

The plates is acted on by perpendicular extenal force p = 25N/mm 2]

Boundary conditions : 4-simply- supported edges (SS);

2-simply- supported and 2-clamped edges (CS); 4-clamped edges (CC);

The first case:  Laminated plate 0°/90°/900/0°;

The second case: Laminated plate 45°/ —450/ - 45°/45°,

For illustration in the table 1-2 numerical calculation ofdeflection Wmaxat the
center of plate is presented for the unstiffened plate and stiffened plate.

Table 1. Plate 0790790700. ss.
FEM: Unstiffened plate uv>max = 0.0100m (L), Wmax = 0.0091m (NL)
Ritz’s: UnstifFened plate wm8 = 0.0103m (L), Whax = 0.0091 m (NL)

*

Stiffener size Quantity of umox. FEM. (m) li'max. Ritz’s, (m)
(TO stiffener Linear Non-linear ~ Linear Non-linear
by =0.01 iDy 0.0100 0.0091 0.0101 0.0089
hy - 0.02 3Dy 0.0099 0.0091 0.0100 0.0089
=0.02 iDy 0.0094 0.0088 0.0092 0.0083
1)y - 0.04 89 .. 0.0087 0.0082 0.0085 0.0078
for ®0.01 ID * 0.0080 0.0075 0.0081 0.0076
K - 0.02 3D* 0.0068 0.0066 0.0071 0.0068
K 0.02 \D X 0.0045 0.0044 0.0047 0.0046
1. 0.04 10 x 0.0032 0.0032 0.0033 0.0033
-5y - 0.01 1o x. 1Dy 0.0081 0.0076 0.0081 0.0075
Z = hy = 0.02 3 3Dy 0.0069 0.0066 0.0070 0.0067
K =0.01, by =0.02 1£5%, |£>y 0.0079 0.0075 0.0075 0.0071
hr = 0.02, /iv=0.04 3DX 3Dy 0.0064 0.0062 0.0062 0.0060
bx = by =0.02 ID*, 1Dy 0.0049 0.0048 0.0044 0.0044

hx = =oo 3DX 3Dy 0.0032 0.0032 0.0031 0.0031
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Table 2.Plate 45°/ - 45°/ - 45°/45°. ss.
FEM: Unstiffened plate wn8X—0.0133m (L), Wmax —0.0119m (NL)
Rit.z’s: Unstiffened plate wmax = 0.0128m (L), wmax = 0.0111m (NL)

SillTener size Quantity of Mnax’ THM (m) urrnax+ Ritz’s. (?n)

n stiffener Liear Non-linear Linear Non-linear
« - 001 D, 0.0129 0.0117 0.0123 0.0108
(i 0.02 ‘w 0.0124 0.0113 0.0120 0.0106
. - 0.02 \1),, 0.0115 0.0107 0.0107 0.0097
na o 0.01 3p., 0.0100 0.0095 0.0096 0.0090
b, - 0.01 10, 0.0110, 0.0102 0.0108 0.0098
# 0.02 31>, 0.0096 0.0091 0.0095 0.0089
| ., 0O 1A, 0.0058 0.0056 0.0060 0.0058
1 001 Snor 0.0039 0.0039 0.0040 0.0040
« 0.01 1/3.r. 1A, 0.0108 0.0101 0.0104 0.0095
s . 0.02 0.0091 0.0088 0.0091 0.0085
h, 0.01. . 0.02 1/3x. 10y 0.0100 0.0095 0.0092 0.0086
in. 002 [/, 0.04 3D X. M{£>, 0.0078 0.0076 0.0076 0.0073
i « 0.02 lox. luy 0.0058 0.0057 0.0055 0.0054
I A kK 004 3D,.. 3Dy 0.0037 0.0037 0.0036 0.0036

y
o @ B
0.8 ya— T

0 0.4

Fig 1 Deflection w along vertical cuts (1), (2), (3) of unstiffened plate 0°/900/900/0°,
FEM, non-linear problem, ss, p —25A/mm2. w —(10~3m), ,y —(m).
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Fig 2. Deflection w along vertical cuts (1), (2), (3) of stiffened plate 0°/90°/90°/0°,
FEM, non-linear problem, ss, p = 25N/mm2. w - (10-3ra), vy - (m).
(a) - 3Dx with bx = 0.01, hx = 0.02, (6) - 1Dx with bx = 0.02, hx = 0.04,

Conclusions

- Displacement in non-linear problem is smaller than that one in linear problem. If
external force is small, displacement in non-linear problem approximately equal with linear
displacement. When external force increases, the difference between linear and non-linear
displacement also get increased.

- The difference between result by Ritz’s method and FEM in the case ss is not
more than 0,8%-

- Ritz’s method is suitable for cases with simply-supported edges; while FEM is
used for cases with more complex boundary conditions.

- Time for solving by Ritz’s method (about 5 mins) is much shorter than by FEM
(about 25 mins). This publication is completed with financial support of the Council for
Natural Science of Vietnam.
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