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O N  D I S C R E T IS A B L E  F O R M U L A S  IN  D U R A T I O N  C A L C U L U S  

Pham  Hong Thai
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A b s tra c t  Model checking problem for real-time systems is a hard problem and has high 
complexity because time model of system is dense and continuous. Especially, as known, 
almost accumulated timed properties which are expressed by duration formulas in Duration 
Calculus is undecidable or decidable but with very high complexity. However, fortunately 
for some formulas, to avoid high complexity we can only check them in integral model of 
time instead of real time model. Such formulas are called discretisable formulas. In this 
paper, we show a subclass of formulas in Duration Calculus which is constructed from a 
linear constraint of state durations is discretisable and based on this we also give some 
ideas for checking them. The our results includes some results of the others.

1. In troduction

Discrete time model of real-time systems was considered widely in recent years. 
A reason of the consideration is as many verification problems in dense time model are 
undecidable, even for decidable problems, its complexity is also very high. In the other 
hand, techniques for verifying real-time systems in discrete time model are simpler and 
have lower complexity. Such verification methods are based on the assumption th a t states 
are observed at integer time points only. A wide class of integral-time verification methods 
have been shown as model-checking algorithms (eg. [3]) or theorem proving systems [4]...

However, it will be better if answer to verifying in discrete time model also supplies 
us the answer to dense time model. That means if a property is true in the discrete time 
model then it is also correct in dense time model. Such properties are called discretisable 
properties and instead of verifying in dense time we only verify them in integer time by 
simpler techniques and lower complexity.

W ith this aim in [7] the authors constructed discretising models of timed autom ata 
in which generated untimed sequences of symbols are the same as in original model. Or in 
[5] Thomas Henzinger et al. proved some properties such as time-bounded invariance and 
time-bounded response are discretisable. These properties is only concerned to instant 
time of systems and are called instant properties, for example reachability property in [7] 
and time-bounded reachability in [5].

How about are duration properties ? W hat properties of them are discretisable? 
Duration properties are properties concerning to accumulated time of states of system. For 
these properties, Zhou Chaochen et al. proposed and advanced a logic is called Duration 
Calculus [10] in which these properties can be expressed and calculated. As an example, 
Linear Duration Invariant (LDI) is a formula in Duration Calculus and is mentioned at 
first in [11]. This formula expresses a property of real-time systems as ”in any observation
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for system, if the (time) length of observation interval belongs in a certain interval [B, E] 
then the time durations of states of the system have to satisfy a certain linear constraint” . 
Many real-time requirements in the practice can be expressed by LDI, for example safety 
properties of gaz burner [10] • railroad crossing system [14].

There were many works dealing with LDI and its subclass. Model checking algo­
rithms in these works concentrate on two ways : in first one, system is represented by 
timed regular expressions [11-14] and model checking problem is reduced to solving linear 
programming problems. In the other one integral region graph of autom ata is used to 
solve problem if checking property is discretisable [15] or combine both methods [16,17]. 
However, most of them only deals with restricted systems as real-time autom ata, sub­
class of models of Duration Calculus ... or for subclasses of LDI. For example, ”Duration 
bounded reachability property” which was observed in [2]. This is a formula that is the 
same as LDI but coefficients in the formula are restricted to positive reals only. In [12] the 
authors proved discretisability of Linear Duration Constrain - LDC (a subclass of LDI) 
with integral coefficients. By a different technique, the authors in [15] proved LDC with 
real coefficients is also discretisable.

In this paper we prove ạ* lager class of formulas (including LDI) is discretisable. 
For this, we consider LDC with semantics larger than in [15]. In [15] authors considered 
LDC with observations for system is started and ended at time points at which transitions 
of system is taken. In this paper, starting and ending time points of an observation are 
arbitrary. It is important focus for ability extending proof of discretisability of LDC to 
LDI and some other formulas.

The remainder of the paper is organized as follows. In the next section we recall 
some notations of real-time systems as timed automata, duration formulas as LDC and 
notion of discretisability. In section 3 we give proof discretisability of LDC and based on 
this in section 4 we prove discretisability of LDI and some others duration formulas. At 
final, in conclusion we give a short discussion about ability of checking LDI by zone graph 
of timed automata.

2. M odel o f R eal-T im e System s and Properties

2.1 T im ed  A u to m a ta

In this paper we get timed autom ata as model of real-time systems. As timed 
autom ata have become typical and have been deliberated very well, so in this section we 
only present summarily about them, the details readers is referred to [6].

A timed automaton has a finite set of states s  and a finite set of clock X  which are 
real value variables. Each state transition of automaton is assigned by a time constraint 
as enabled condition and a subset of clocks which is called reset set. The time constraint 
represents requirement that a transition may be taken only if the current values of the 
clocks satisfy this constraint. And, the reset set shows that all clocks in it are reset to 
zero when transition is taken. Transitions are taken instantaneous, while time can elapse 
at states of timed autom ata. The value of a clock equals the time elapsed since the last 
time it was reset.
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Let $ (X )  be set of time constraints 0, which are conjunctions of the simple con­
straints of form x < c \ c < x \ x  — y < c \ c < x  — y where X, y G X  and c is a natural 
constant.

As often, we denote sets of natural and nonnegative real number by N  and R + , 
respectively. Formally, timed autom ata can be defined as follows.

D efin ition  1 .[Timed Automata] A timed automaton A  is a tuple (5, So, X,  E),  where
- s  is a finite set of states,
- So is an initial state,
- E is a finite set of symbols,
- X  is a finite set of clocks,
- E C  S x $ ( X )  X £ x 2 x x S  is a finite set of transitions. A transition (s ,0, a, A, s') E E  

represents that if system is staying at state 5 and current values of clocks satisfy 
time constraint Ộ then system can transit to  s ta te  5' and then  the clocks in A must 
be reset to zero. The transition causes an event which be denoted by symbol a.

D efin ition  2. [Behaviors] A behavior of timed automaton A  is a infinite sequence of timed 
states

• • (̂ 771J ) • • •

that satisfies following conditions
1. So is initial state of timed automaton A , to = 0.
2 . time does not decrease, i. e. t L < ti+ 1 for all i > 0 .
3. time progresses, i. e. for any T  e R + , there is some i > 0 such that ti > T.
4. ti is time point that system changes its state to Si, for all i > 0. That means, the

system stays a t Si- 1 in di — ti - . t i - 1 time units and then  transits to Si by some 
transition (S i- 1 , 0, a, A, Si).
In this paper behavior of timed autom ata is considered as a sequence of time states 

instead of sequence of time transition as in other papers, however semantics of timed 
automata is not changed. In the other hand, we only consider discretising of time points 
so we do not discuss about events (i.e symbols in S) here.

A behavior is called integral behavior iff for all i > 0, ti is integral.
Example 1. Sequences of timed states Pi =  (so, 0)(s i, 2.3)(s2> 3 .0 )($3 ,4 .2) . . .  and p2 = 
(so,0)(si,2)(s2,3)(s3,5) . . .  are behaviors of some timed automaton, where p2 is integral 
behavior.

D efin ition  3 .[Observations] Let Ò, e G are two timed points with 0 < b < e < OÒ. An 
observation on interval [6, e] (ơịb e]) of a behavior p is any part of p that it starts at time 
point b and ends at time point e. An observation is called integral if for all time point ti 
and two endpoints 6, e of it are integral values, ê = e — b be called the length (of time) of 
observation ơịbe]-

For simplicity of notations sometimes we also call observation Ơ on interval [6, e] by 
observation Ơ for short.

Given an observation ơịb e] of a behavior p, item 3. in definition 2 guarantees that 
our system is nonZeno system [6]> i.e. in any observation interval of system it has only
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finite number of states. Hence, ơịb e] can be formally expressed as a finite sequence of 
time-states with two timed bounds Ò, e as follows

O' • ( ^ u — 1 ? t u  — l )  b \ S U, ^ u ) (^ n 4 - l ? ^ u + l)  • • • (^VJ t y )  € ( ^ f + l 7 i v + l )

where 1 < u < V, b (tu- 1 <  b < tu) is beginning time point of observation before the 
system transits to state su and e (tv < e < ty+i) is ending time point of observation after 
the system transits to and stays at state Sy. That means state su- 1 occurs in tu — b time 
units before the system  transits to s ta te  SU1 and similarly s ta te  Sy appears in e — ty tim e 
units after the system  transits to s ta te  Sy on Ơ. Figure 1 illustrates an observation Ơ in 
time interval [Ò, e) of timed autom ata A.

] &u • ■ ■ sv Sr-t-J
------------------- o ------------------ •<>....... o  — -  .....  ....... ... . o ....... —  . , , 0 -------------------c ----------------

t-u-i b tu . . .  tv e. t.r+1

Fig 1. The observation a on time interval [6,e]

Let Ơ ! \ 1 tu — 1) b (5U, £u ) 15 îi-4-1) • • • Ĩ  ̂ (^v+1 Í observation
on interval [fe,e]. Then accumulated time that the system stays at state 5 in time interval 
[Ò, e] can be calculated by

V

d* =  Ỉ 2  ( t j + i - t j ) ’ 
j = u —  1 ,  S j = S

where t'u_ l = b, t'j = tj (Vj =  u..v), t'v+l =  e.

2 .2  F orm ulas  in  D u ra tio n  Calculus

Properties (or timed requirements) of real-time systems is often .specified by for­
mulas in some real-time logics as temporal logic [1], duration calculus - ’DC [10]. In this 
paper we consider duration properties tha t are properties saying about accumulated time 
of states and are expressed by formulas of DC. Duration Calculus is a real-time logics 
and well-known as a logic expressing such duration properties, however it is not presented 
here. We will directly represent subclasses of formulas in Duration Calculus which are 
compositions of simpler formulas called Linear Duration Constraint and it is not hard to 
understand semantics of these formulas.

D efin itio n  4. [Linear Duration Constraint - LDC] Given a timed autom aton A  with the 
set of states 5 . A linear duration constraint over s  is a formula (f of the form :

m n.
V  : Ỵ ^ C i  /  Si  <  M ,

2 = 1  J

where coefficients Ci,M  are real numbers, Si G s .  f  s (is said be duration of 5, one of 
operators in DC) denotes the accumulated time of state 5 that it occurs in some time 
interval.
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As semantics, LDC represents a property of system which can be informally un­
derstood as follows : In any observation time interval of system, presence time durations 
ds of states Si  must satisfy a linear constraint as expression X^7/=1 cidsi <  M .  In this 
semantics system is observed on time interval [b, e] with the endpoints Ò, e is arbitrary.

2.3. D iscre tisab ility

Given a timed automaton A  and a property p, a question is : whether system A  
satisfies property p or not ? A system is called satisfying property p if p  is evaluated 
to true on all behaviors of system. There were many methods to solve this problem e.g. 
model checking algorithms that most of them is used to check properties expressed in timed 
computational tree logic (TCTL)[8]. Results in field of checking DC formulas are rarely 
now. Reason of this situation is because potential complexity of checking problem DC 
formulas is very high. As we known almost of DC formulas is undecidable. Undecidability 
and high complexity come from real model of time and accumulation of time (on states) of 
timed requirements. Even under discrete time model, class of decidable duration formulas 
which was known up to now has still been very small [18].

So for avoiding high complexity whether we can check satisfiability of property for 
system only on integral behaviors instead of real behaviors. For some properties, this is 
available, they are called discretisable properties.

D efin ition  5.[Discretisability] A real-time property p of timed autom aton A  is said dis- 
cretisable iff the property p is satisfied by the A  exactly when p  is satisfied by all the 
integral behaviors of A.

The our purpose in this paper is finding class of such formulas in DC. At first, 
we consider Linear Duration Constraint which is presented in above paragraph. Proof of 
discretisability of this formula was given in [15]. However, in the next section, we give 
another proof for advanced semantics of the formula in our paper.

3. D iscretisability  o f LDC

3.1. N o t io n  o f  e -d iscre tis ing  and  S o m e  P roperties

D efin ition  6 .[e-discretising] Given positive reals X and e(0 < € < 1). x e is an integer 
which defined from X as follows

[xj if fraction of X is less than or equal e 
[x] otherwise.

T hat is, X will be rounded to floor or ceiling of X depending on values of fraction of X and 
e. For example, if X = 4.38, then Xo.3 =  5 and £0.42 — 4-
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L em m a 1 . Given a < b are two integer numbers and t i , t j  are nonnegative real numbers, 
where ti > tj. Then we have

a < ti -  tj < b a < tie — tje < 6, Ve G [0,1)

Proving the lemma is easily, so we do not present it here.
As a consequence of the lemma, if ti > tj then tie > e  [0,1) (applying

lemma with a — 0), th a t means under e-discretising tem poral order of states occurring in 
a behaviors is not changed.

L em m a 2 . Given {a?;},{/3ị} (i = l..n ) are sequences o f positive real numbersJ where 
sequence is not decrease and sequence Pi is not increase ("0 < a\  < c*2 < . . .  <

0 1  > 0 2  > . . .  > 0n > 0). Let {Aj}(i =  l..n) be a sequence o f real numbers
which has the property : sum of each really prefixes o f  sequence is positive. That is
]cr=i A-i > 0, (1 < V < n  — 1). Then we have

1. y  Aj < 0 => y ^ o t jA j  < 0,
i= 1 i = l

n n

2 . > 0 = ^ / M i  > 0
1= 1  1= 1

Proof.
71 n

1. Assume that ^  Ai < 0. Let A =  = a \ A i + a 2 A 2 ~\------hanA n. As a i  < Ơ2

1= 1  2= 1

and A\  > 0 so A < Ơ.2 A 1 +  OL2 -A-2 +  • • • +  Oi.nA n =  OL2 ^A\ +  A 2 ) -f- OÍ3Ẩ3 +  • • • +  ctnA n .
Similarly, as a 2 < a 3 and A \ +  A ‘i > 0 so A < as(A  \ -f Ấ2 +  Ạ3)+  0:4^4  H------ f-anA ni
. . .  and so on ... finally, we have A < an(Aị -f A 2 +  • • • -f A n) < 0.

n 11

2. Assume that ^   ̂A{ >  0. Let A — ^   ̂@iAl — /5i yl 1 @2 Ả 2 +  • • • 4“ (3riA ri. As /3i > /?2
1=1 i=i

and Ẩi > 0 so A > /?2 4̂ i +  P2 A 2 +  •••-+■ finAn =  /?2(^1  +  *̂ 2) +  P3A 3 +  • ■ • +  0nAn. 
Similarly, as p2 ^  /?3 and *̂ 1 + ^ 2  > 0, so A > /?3(Ẩi 4-A2 4-^4a) -Ì-/34Ẩ4 4- • ■ • -h/37i^4n ,
. . .  and so on ... Finally we have A > 0n(Aị + A 2 + ' • • + A n) > 0.

L em m a 3. Given {at}, { t j ,  (i = l..m )  are two sequences o f any real numbers, where 
ti > 0, Vi = 1 ..772. Then we always find a reai number e G [0,1) such that

771 m

2=1 i = l

Proof. Let { /0, / 1, / 2, •••,/(/} be a set of fractions of real numbers ^  ( i G / = { l , 2 , . . . , m } ) ,  
such that 0 =  /0  < /1 < /2  < • • • < fq < 1. Let /fc, (fe =  0..g) be a set of indexes of ti s 
such that fraction of ti equals to /fc, that is Ik = {i G 11 ổi =  /*:}, where Si stands for the 
fraction of tị. Let Ak — ^  di (k = 0 ..q).

ieik
Now let 11s partite the sequence {Ak } qk==1 to d -fl successive segments

\ Á ị ,  Ầ 2  5 • • • ĩ • • • 1 }» • * • ’ 1 +  1 ? - 1 + 2 ) • • • J }  J

1 + 2 5 • • • 1 -^ợ}



On discretisable formulas in duration calculus 59

such that for each segment the hypothesis about A ịS  of Lemma 2 is satisfied. That is 
indexes k \ , &2, . . . ,  kci is defined such that sum of Ai s in each really prefix of each segment 
is greater than 0 and sum of all Ai's in each segment is less than or equal to 0. In general, 
sum of all Ai’s in last segment ((d +  l ) th segment) is greater than 0. It is easily to see 
that the indexes fci, ẢĨ2,. . . ,  fed can be found by the following procedure

i =  1; sum =  0 ; 
for (k =  1; k < q; k++)
{

sum + =  Ak\
if (sum < 0 ) { ki =  k; sum =  0 ; i+ + ; }

}
For simplicity, let p = k(i. So, in general, p  (0 < p < q) divides sequence {̂ 4/c}fc=1 to two 
parts. The first one consists of d segments, sum of Ai s of each segment is less than or
equal to 0. The second one consists of rest Ai s (from Ap+ 1  to Aq) and their sum is a
positive number. Concretely

f c i - f l  q
Ak < 0 [i =  0 ..d — 1),- (with convention fco =  0) and Ak > 0 .

/c =  /c j - f  1 k  =  p - \ -  1

Hence, by applying the Lemma 2 we have-
A', +  1 p  d —  1 fci +  l  Q

fkAk  < 0, and (1 fk)Ak  > 0 .
/e=fc; +  l  k — 1 i=0/e=/c.i +  l  fc = p + l

From above result it implies that

V Q
— ^  fkAk  +  ^ 2  (-*■ ~ fk)Ak  > 0 

k=l k=p+ 1

Now, to prove the lemma, let € = fp. Then we have
- tie =  [ t i \  =  t i  — ỏi i f  Si <  € =  /p , i.e. i f  i £  I \  u  /2  u  . . .  u  7p, and

- tit =  [ t i l  =  ti -  ỏi +  1 i ĩ  Si >  e =  f p , i.e. i f  i G /p +1 u  Jp+2 u  . . .  u  Iq.
Therefore,

m m
^   ̂O'it'ie ^   ̂Q/ịti — ^   ̂ diỏi -f" ^   ̂ ối)
?:=1 i= i ie/iu ...u /p  i€Jp+iU...u/9

— “ / 1  ^  ^ f l i ------------- / p  ^   ̂ t t iH-

iE.il i£ỉp

+  ( l ~ / p + l )  ^  a i  H-------+  (1 ~  f q )  a i
i€zlp+i i£lq

p Q
=  —  ^  ĩ k A k  +  ^  (1 -  f k ) A k  >  0. 

k=l k=p+1

In the rest cases, if p = 0, we can easily see that
m m q

^   ̂ ^   ̂CLjtj — ^  ^(1 fk -̂A-h 0
2=1 i=  1 /c =  l
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and if p = q, we have

^   ̂ ^   ̂CLiti — ^   ̂fk-^k ^  0*
i = l  2=1 / c= l

m

So. finally we have C L ị t i t  >  CLịti  for all cases. The lemma is completely proved.

L em m a 4. Given p : (so, to)(5i , t i ) . . .  (sm,£m) . . .  is a behavior of timed automaton A  
and Ơ : ( s u - i A - i )  b (su, t u)(su+ i,tu+i) . . .  e (sv+i , ^ + i )  is an observation o f p in
the time interval [6, e]. Then for all e £ [0,1)

1 . pe : (so,ioc)(si,iie) • • • (5m, w )  • • • is integral behavior o f A.
2. Ơ£ ( 5^  — 1 , l ) e )  be (SUì t ue^(su-±-1 • • • (^Uỉ +  l  5 ̂ ( i>+ l)e )  ^  âiso inte­

gral observation o f pe, i.e Jist and order of states appearing on time interval [be,ee] 
of integral behavior pe are the same as on interval [6, *e] o f behavior p.

1. To prove pe be also a behavior we need proving following items
- Monotonicity: Consider for all j  > i. As p is a behavior, so tj > tị. Applying the 

lemma 1 we also have tje — tie > 0 ) i-e- tje > tie,Vj > i-
- Time progress: Let any integer number T. As p is a behavior so 3ti : ti > T, this 

implies t ie > T, due to T  is integer. Hence, pe also satisfies time progress property.
- Transition preserve: For all i > 0, we need proving that tie is also time point

at which the au tom aton transits state to Si. In fact, due to p is behavior so at 
time point u  the au tom aton transits to Si by some transition <  S i- 1 , </>, a, A, Si > . 
Assume th a t ộ  consists of tim e constraints of form a < X < b and t j  is last time 
point clock X is reset before the autom aton transits to s ta te  Sị. Then, value of X 
a t tim e point ti is ti -  t j .  T h a t is a < tị -  tj <  b) by the lemma 1 we also have 
a < tie — tje <  b. Hence, by induction it can see th a t tje is also last time point 
clock X is reset before time point tie along p e and value of X at tie is tie — tje that 
satisfies time constraint Ộ. By similar proving, if Ộ is of form a < x  — y  < b then this 
inequality is also satisfied a t integral time point tie. Thus, tie are also time point at 
which the autom aton transits from Si- 1 to Si by the transition  <  S i_ i,0 ,a , A,St >. 
In short, pt is also a (integral) behavior of the autom aton.

2. We are considered that by Lemma 1 ediscretising does not change list of states 
occurring on behavior p in general (on interval [6, e] in particular ) and the order of 
time points of these states (included 6, e). Hence, this item of the lemma is proved. 
Figure 2 expresses a case of discretising Ơ on [6, e] to ơt on [be,ee].

Proof.

Ơ :
[b\ f 'u -2  tu - 1

su—2 ^ti—1 
♦------- ------ -----

b tu . . . e

$u ••• Sv

b , =  [6J tw : . .  tv ,  e t =  H

Fig. 2. A case of an observation with be = [b\ and ec =  [e]
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3 .2 . D iscre tis ing  L D C

Given a timed automaton A  and a LDC formula (p. Let Ơ be an observation on 
time interval [6, e] of A . Let 6 denote Y^nLi °i I  si °f V?) where f  Si is the duration of state
S i .  Then 9(ơ) is value of 9 being valuated on the observation Ơ. Concretely, with the 
observation Ơ ( s u—\ , t u —ị') b ( s Uì Ì 1) • • • {_^v) t v )  ̂ (^v-hiì ^v-{-1) W6 hcivG (s6G fiể*

1):
m  I V —  1

9 { ơ )  =  CS u _ l ( t u  — b)  +  Cj  I  ( ^ 7  +  1  —  t j )

i = l  \ j = u , S j = S i

where cSu_1 and cSv is coefficients of states su- 1 and Sy in <p, corresponding. By expanding 
sum and let t ; ’s be common factors, we have.

V

ớ(ơ) =  +  cSve -  c8u_1b
i= u

where a,;’s are real numbers th a t depending on Ci’s.

D efin ition  7.[Satisfiable] Given an timed automaton A  and a formula LDC if
- an observation ơ  : (su- i ,< u - i )  b (s«,iu)(su+x,iu+i ) . . .  ( s v , t y )  e (s„+i,i„+i) on 

time interval [b, e] is called satisfy (fi (be denoted by ơ Ị= If) iff 9(a) < M.
- an behavior p =  (s0 , t 0)(s l , t i ) ( s 2 , t 2) ■. ■ (sm, t m) .. .  is called satisfy <p (be denoted 

by p 1= tp) iff a 1=  V5 f°r a l̂ observations Ơ on p.
- an timed automaton A  is called satisfy (p iff all behaviors of A  satisfy If, i.e p (= <p

for all behaviors p.
In the case <p is not satisfied by ơ, p or timed automaton A, we denote Ơ ^  tp,

p ^  ÍỌ or A  ^  ip.
Now we prove that LDC is a discretisable property. That means a timed automaton

A  satisfies a formula LDC tp iff all integral behaviors p of A  satisfy ip

T h eo rem  1 . Anv linear duration constraint ip is discretisable with respect to timed 
automaton A.

Proof : Declaration of A  1= => p Ị= <p for all integral behaviors p is obvious. For inverse
we will prove that if there exists a behavior p of A  such that p ^  <p, then we also can find 
e such that integral behavior pf ip.

In fact, assume that behavior p does not satisfy ip. T hat means there exists 
ơ '■ {Su— l j^u-l )  (Su>iu)(®u+l?^u+l) ■ • ■ ® f i  1-®- ^  By
definition of LDC, we have

V

0{ơ) =  ^ ữ ị t ị  +  cSve -  cSu_,b > M
i  =  u

V

From Lemma 3, 3e G [0,1) such that dịtit + cSvee — cSu_1 be >  9(ơ) >  M .

In the other hand, from the Lemma 4 with this 6 we receive integral behavior p£ and 
sequence of time states on interval [b£,e £] is also an observation (integral). Hence, it is

+  cs„(e -  tv)
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easily to see that 9{ơf) =  ^2i=uCLitie +  cs e€ — cs _lbe. So 9(ơe) > M  and we receive pc 
on which there is observation ơe unsatisfying ip. That is, we find an integral behavior pe 
and p € ip.

In summary, LDC is discretisable w.r.t the timed automata.

4. Som e D iscretisable C lasses o f D uration P roperties

On based of discretisability of LDC, in this section we discuss about discretisabiỉity 
of some classes of formulas in DC.

4-1 H is to ry  P roperties

History properties are properties which checking them concerns list and temporal 
order of states in observations. Often, that are properties requiring behavior of system 
must go or not through a certain Sequence of states. In general, formulas considered in 
this section are of form if — Sequel ==> LDC with Sequel is sequence of states of system. 
Given an observation Ơ on the time interval [6, e], Ơ f= ip iff sequence of states on [b, e] is 
either matches to Sequel and 9(a) < M  or does not match.

T h eo rem  2 . A ny history property (p is discretisable with respect to timed automata.

Proof. Discretisability of these formulas can be proved easily from lemma 4 th a t it is re­
minded e-discretising does not change list and occurring order of sta tes in any observation.

For interpretation, we give two such classes of formulas was shown be discretisable 
in [15,16].

Inter-State Duration Properties [15]

ses J

where s  is the set of states of A  U,SG 5, and all cs and M  are reals.
In formula (/?1, [[VỊ] 0 is a DC formula which is true at an interval [í 1, Í2] iff — 2̂ 

and at point time 1 1 system stays at state u. is true at an interval [í i , Í2] iff system
does not stay at any time point between 1 1 and Í2- Thus, a timed autom aton satisfies ip I 
iff for all observation a on [6, e] such that if timed automaton at time points b and e stays 
at state u and from b to e, system does not stay at u then 0 (a) < M .

Temporal Duration Properties - TDP [16]

<P2 -  □ ( r K i r r K i r . . - ' T r * t i i  => / S ^ M )>
ses J

where s  is the set of states of A , Si, ’s are states and all cs(s G 5), M  are reals.
Semantics of formula ifi2 is if observation Ơ goes through sequence of states in order 

slx, 5 2̂, . . . ,  Sik (such that at time point b and e, system stays at states Ui, Uk, respectively) 
then 6 (a) < M .
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The case studies are used to illustrate for above kinds of formulas reader is refer to 
[15. 16].

4-2. C o m b in a t io n  o f  L D C s

A class of general duration formulas that is considered by many authors (e.g. *[12]) 
are Disjunctions or Conjunctions of LDCs. In [12] authors only considered these formulas 
with integral coefficients. Here, we discuss about discretisability of them in general case 
that means coefficients of formulas are reals.

Conjunction of LDCs

From proof of discretisability of LDC we can easily see that a conjunction of LDC’s 
is also discretisable. Assume that there exits an observation Ơ that does not satisfy -01 , 
i.e there exits k such that ơ {J2T=icki Ị ski < M/c), hence 0(cr) >  Mfc. By Theorem
1. there exits e E [0 , 1) such that 0(ơe) > M k , too. So ơe ụ=- ^ 1, in the other word ĩpi is 
discretisable formula.

Disjunction of LDCs

Up to now vve have still not known whether this formula is discretisable (even for 
case of integral coefficients). However, a subclass of Ĩp2 which is called Linear Duration 
Invariant is discretisable. T hat is formula that is researched in many works [11, 13, 14]. 
Discretisability of this formula is proved below.

Ậ.3. L inear  D u ra tio n  In v a r ia n t  - L D I

D efin ition  8 . Given a timed automaton A  with the set of states s .  A linear duration 
invariant over s  is a formula in Duration Calculus of the form :

where B ,E  are integer numbers, and coefficients Ci ,M are real numbers. B  < E  (E  may
be oo), S i  G S.

Semantics of LDI can be informally understood as follows : In any observation 
interval of system , if the length Í  of interval satisfies the premise of ip (i.e B < Í  < E) then 
durations ds. of states Si  of system must satisfy the conclusion of ip, (i.e cids < M).

T h eo rem  3. A n y  linear duration invariant ip is discretisable with respect to timed au­
tomaton A.

i=l

Proof. Similar to proof in Theorem 1. we assume that there exists an observation Ơ on 
time interval [6, e] such that ơ D, that means B  < e — b < E  and 9(ơ) > M. By
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Theorem 1 we can find an integer observation ơt such th a t 0{ơ€) >  M .  Therefore, we 
only need prove an extra thing, that is the length of integral observation er£ on interval 
[be,e t] also must be belong in [B,E\, this is easily implied from Lemma 1 and hypothesis 
B  < e -  b < E. Thus, from assumption of ơ ^  D we also find an integer observation ơt 
such that ơt ^  D, too. And we can see that formula LDI Ip is discretisability.

5 .C onclusion

In this paper we made some comments to discretisability of some classes of formulas 
in duration calculus. Due to as we known verifying such formulas is very hard, so discreti- 
sability of them is meaningful. According to [12] formulas of form combination of LDC 
(with integral coefficients) is checking by mixed integer linear programming. Time com­
plexity of this algorithm is very high by coưiplexity of mixed integer linear programming 
problem. However, idea of discretising in [5] that was applied in [12] was emotion for later 
algorithms of checking LDI, LDC, TDP [13, 14, 16]. Especially, in [15,16] authors was 
given algorithms for checking LDC and TDP with complexity is the same as complexity 
of reachability problem on based of searching region graphs of timed autom ata. These 
algorithms can be improved by using zone graph instead of region graph because size of 
zone graph [9] is smaller than size of region graph.

Main result of this paper is proof about discretisability of Linear Duration Invariant 
which is considered in recent years. Especially, discretisability of LDI is an important 
feature for constructing a checking algorithm which based on traverse zone graph. Á 
zone graph is an abstraction of state space of timed autom ata [8]. Paths, of graph is 
corresponding to behaviors of timed autom ata, so we can check true of LDI OI1 every 
paths of graph. To do this, each vertex of graph is assigned to cs, where cs is coefficient of 
state s in formula LDI and s is state which belongs to vertex is considered. Similarly, we 
assign a value of length to each edge of graph. This value expressed maximum time length 
which autom ata can be taken transition from this vertex to another vertex of edge. Hence, 
with each fragment on a path  of graph which represents an observation Ơ we can easily 
calculate i  and ớ(ơ) and hence check conditions in LDI. However, as starting and ending 
points of observations are arbitrary (in real time model) so number of observations on each 
path is infinitive. By discretisability of LDI we can choose starting  and ending points of 
observation on paths are integral points, so the number of an observations becomes finite. 
That is some ideas about checking algorithm based on zone graph. W ithin the scope of 
this paper we do not discuss about details of algorithm. We hope th a t an detail algorithm 
will be advance and implement in the future.
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