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Abstract: This paper approaches the problem of lateral oscillation of baayg
subjected to axial load by means of seeking the exact solution of the linear Ma:h ¢,
equation with the periodic function h(t) having a determined form

i+h(th=0. 1)

However, when h(t) = k + a,cosot, the equation (1) does not posses an exact solutiyp
but with the values of parameters k, a;, o satisfying some determined conditions, we
can seek an approximated solution. Obtained results are summarized as follbwe

The general exact solution for the equation (1) with h(t) having a determined fo-p,
can be expressed in the form of known mathematical functions. It illustrate; pe
“butterfly” effect of the Chaos phenomenon.

The condition and algorithm for finding the approximated solution of the equatgp
(1) with

h(t)=w2(k+alcosmt). 2)

From obtained results we can discuss about the oscillation of beams.

1. Lateral oscillation of beams subjected to axial load

Fig. 1 shows the oscillation of |
a beam having constant cross
section subjected to axial load P(t). =< T T —

EI, EA, p, ¢ and B represents the -%PU”"‘-"(U
bending and axial rigidity, mass W(x.t)
density, length and external Fig.1. A beam subjected tcaxil]oaq

damping coefficient of the beam
respectively.

The oscillation of the beam can be described as follows [2]

4
Elw' +Bw +pw —%A—[U(l, t)+% j(wll)zdx}wll =0,
0

w!V  w! - the 4th and 2nd order derivatives of w with respect to x,

’

w, w - the 2nd and 1% order derivatives of w with respect to t.

The boundary conditions for displacement are written as

1

(11)
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w(0) = w(t)=w"(0) = w'(¢) = 0. (1.2)

I is assumed that the axial wave is negligible and U(¢, t) is the displacement
at theright end of the beam. The boundary conditions (1.2) can be satisfied when
w(x, t)is set as

w(x,t)= u(t)sin% : (1.3)

Substitute (1.3) into (1.1) it yields

i+ 2D, 0+ 0 1+q(t)lu +yu® =0, (1.4)
where
4 2
a(t)= U )5 ; o, = ZEL, y 12EA o, 2B,

’ 'Y-
| pet 4 ;.1€6 vl

i order to investigate the phenomenon in the oscillation of beams subjected to
axiel lads, at first the following equation should be examined

ij+mf[1+q(t)]u=0 : (1.5)
Iiq(t) = acoswt, the equation (1.5) leads to the classical Mathieu's equation
ii+w2(k+alcoscot)u=0, (1.6)
2 2
®
where k=—1, a, = _mlza . (1.7)
®

2. Su)plementary equation

Onsider the following set of equations-[3]

v+ vi=0Mu-a)- o, (2.1)

) (2.2)

.n vhicl v, u are functions of t; A, ., ® are parameters.
Ater v being eliminated from (2.1), (2.2) it yields
u 20’

- + —=AMu-a)-o’. (2-3)
u-a (u—a)'

[istead of the function v, function y is used, with the following alteration:

g, (2.4)
¥y

['om (2.2), (2.4) y can be calculated

y = (2.5)

u=a.
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Using (2.4), (2.5), the equation (2.1) can be written as
y+oly=A.
The solution of (2.6) is

A
y=——2—+ACOS((x)t+(p),
®

where ¢, A — integral constants.
Equation (2.3) can be alternated into the form:

().

u u-—-a

u? = -2i(u —a)? + 20%(u - a),

that yields

u2=-y(u—a){(u-a)2—%*—(u-a)ﬂ;—z}

y - integral constant.

After solving (2.9) it can be found that

(!)2

o= ;
A+ Bcos(ot + )

u -

where y - integral constant,
B2 = A’ —w®y> 0.
From (2.5), (2.7), (2.10) it can be inferred that:

¥ = —17[K + Beos(ot +y)],
-

(2.6)

(2.7

(2.8)

(2.9)

(2.10)

(2.11)

(2.12

Our aim is to find any supplementary Mathieu’s equation which has an exzc

solution. Differentiating the equation (2.9) with respect to t we obtain
i=—(u- a){Zy(u - (1)2 - 3n(u - o)+ wZJ.

and from (2.5) we have
yu _, _oyu

ay+1l ay+1 B
Based on (2.14), equation (2.13) can be written in the form
u= —u[2y(u - (1.)2 - 3Mu - o)+ m2] ! ;
ay +1

(£.13

Substitute u - a calculated in (2.10), y calculated in (2.12) with y = 01int

(2.15) it yields
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u+ o

2 2 2
, 2y 20y + 3 ©® + 3aA + 2ya Ju:O. 1R

(A + Bcoswt) A+ Becosot w® + al + ap cos ot

3. Solution and characteristic of the solution

Equation (2.16) has the following particular periodic solution

u _m2+ak+chosmt_a+ w* (3.1)
! A + B cos ot ) A +PBcoswt '

When the particular solution (3.1) is found, the general solution for equation
(2.16) can be estimated as follows

2 l 13
y = @ +tak+aBcosot C, +C, (% + Bcoswx)’dx ’ (3.2)
A+ Bcosmt ,0( )

-
©° + ok +apcosmx

in which C,, C, — integral constants.

From (3.2), the veiocity u and accelerationii can be calculated:

3 £ 2
i = Bw” sinmt |, +C2_[ (X+Bcosmx) dx _l+c,— A+ Bcoswt C(3.3)
(» +Bcosmt)’ I (0)2 +ak+a[3coswx)— ®° + oA+ afcosmt
4 2 2 t \2
i -2l 207y - RYXO __ ® C,+C, (X+Bcosw)\) dx 1 (3.4
(k + Bcosu)t) (k +Bcoswt)' A +Bcosot 5 (uf +al+choswx)

It 1s assumed that when t = 0
u(0) = uy,u(0) =q,. (3.5)

Based on the initial condition (3.5), from (3.2) and (3.3), the integral constants
C,, C, can be found:

c o (4B,

B ((n2 +00x+01[3)|l|0
S A A '

, = (3.6)

Hence, it can be concluded that (3.2) is the general solution for (2.16).

Based on (3.2), (3.3) the graphs of the functions u(t) and u(u) with different
parameters can be plotted as shown in Figs 2-5.

There exist constant maxima and minima of the function under the integral in
(3.2). Therefore, it can be proved that this integral be generalized diverse when

t—>w. From Figs. 2-5, it can be observed that the solution u(t) expressed in (3.2)
have the characteristic of

* Diffusively variable limu(t) = o .

t—o0

e The solution (3.2) depends sensitively on the initial boundary condition,
when y; =0 it is periodic, when Vo #0 it has the exceptional characteristic

of the effect named “butterfly” as seen in the “chaos” phenomenon.
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Fig.2. Graph of function u(t)
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Fig.4. Graph of function u(t)

© af al ® ap ak
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Fig.3. Graph of function u(u)
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Fig.5. Graph of function u(u)

4. Potential of equation (2.16)

In equation (2.16) the following function is called potential of the equation

2 2 2
h(t) _ PATO) 2ay + 31 o” + oA + 2ya

- . . (4.1)
(n+ Beosotf A+Pcosot o +ak+apcosot
With the following condition
AZ-B2>0; @+ 2al+ya*>0, (4.2)

the potential function h(t) is continuous and periodic.
From (4.1) yields
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dh _ 4o’ yw® B 2a0%y + 3ak \ o® + 3ok + 2ya’
dt (al + af cos c)t)3 (a?x + af cos wt)2 (u) + a) + af cos (Dt)z

:IQB sinwot. (4.3)

that can be rearranged as
dh

o’o'B? sin ot

—= f(cosmt) R (4.4)
dt (a?» + ap cos (x)t)?(co2 + oA + of cos oot;)J
in which »
2 2
f(cosmt):cos:‘wt—?)&coszmt [7&2—+3m—&+2Jcoswt+
B B ap B

3 2 22 2 _
(*_3 o 2 _ &_4&]. (.5)

B” oap P B aop

dh : :
Let o =0 only when sinwt =0, from (4.4) it can be seen that

f(cosmt) # 0 with all t such that -1< cosot <1. (4.6)

In order to satisfy (4.6) the following preliminary requirement can be used

f(-DHf(1) > 0, (4.7)

‘ - 2
£ 1):(5—1J K_i+(8+9iJl_(1_4‘_"_-
p B af ) p af
A B o? )2 o? )]
From the condition (4.7) together with (4.8), (4.9) it yields

4 2
2%>8+ ’ ‘§B2+68—‘°—B,or (4.10)

a (04

4 2
%< - [ (DB 68——m~ or (4.11)
’OLB 68——<2—< 8+f v 68———. (4.12)

When any of the conditions (4.10), (4.11), (4.12) is satisfied, the preliminary
requirement (4.7) can be assured. However, in order to fully satisfy (4.6), the graph
of the function h(t) should be plotted, in which the set of parameter satisfied (4.7) is

used. The criterion for (4.6) being fully satisfied is set such as it has one maximum
and minimum only in a period when sin ot =0.

in which

(4.8)

e

To solve the above mentioned problem, h(t) is approximated by g(t) such as
both functions are continuous and periodic.



On the lateral oscillation problem of... i

g(t)=k + a, cosot. (4.13)

When any of the conditions (4.10), (4.11), (4.12) 1s satisfied, h(t) and g(t) would
have obtained the same maxima and minima when sinwt=0. Hence, it can be
inferred that the function h(t) be approximated by g(t) when their maxima and
minima are respectively equal.

When cosot = -1, we have

2y _ 2ay +3A + o® + 3ok + 20°y

(L-BF A-B o? + ak —ap —koa WG

When cosot = 1, we have

2yo)2 2ay+3?\ m+3al+2ay & 4
T

= =+ 4.15
(7&+B)‘ A+P o° + ok +ap 9
From (4.14) and (4.15) 1t has
of | 202 ar o’ +3ak+2a
5y = E o 1 (4.16)
® o’y ®® + 20\ + o %y
k= -2 |20 (Qa Y zak}xl (u) + 3a}k + 2a° wa + ak) (4.17)
0N oA w? + 200 + o’y
Based on (4.16), (4.17) it yields
o2 k +a,
ool RS, . Sy 4.1
ap % i
b,
A
? -1
A
n 2 2 2
'—'zB—_—+al [&+&-1]{&+&+1J:&+& (419)
% P T B P
B2

With known values of a,, k and o, the value of 2“_ and 96 can be found by
o

solving the set of equation (4.18), (4.19).

5. Algorithm for finding the approximated solution

Given that the following equation should be solved:
ii+w2(k+alcoscnt)u=0, (5.1)

The following algorithm for finding its approximated solution should be
followed:
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» Solving the set of equation (4.18), (4.19) with the values of 0? k, a, given in

2
(5.1), we obtain the values of & o

af '

» Checking the conditions (4.10), (4.11), (4.12). If none of them are satisfied,
the approximated solution cannot be found by this proposed algorithm. If
these conditions are satisfied we plot the graph of the function h(t) with the
1dentified set of parameters.

» If the function h(t) does not posses a maximum and a minimum only when
sinot = 0, the approximated solution cannot be found by this proposed
algorithm.

» If the function h(t) satisfies the abovementioned condition, formula (3.1) with
its respective parameters can be considered as the solution of (5.1).

Kzample 1.

“ind the approximated solution of the following equation:

i - 4(0,00659 - 0,033415 cos 2t)u = 0 . (5.2)
Sibstitute
w=2,k=-0,00659, a, = 0,033415, (5.3)
intc(4.28), (4.19), the results are
A ogg L 3,361344538 . (5.4)
p af

Nth the set of parameters (5.4), condition (4.10) 1s satisfied.
‘om (2.11) and (5.4) it can be inferred that:
af=-1,19; ar=-14,28; a’y = 50,62558. (5.5)

3ised on (5.5), (5.3) the graphs of h(t), g(t) can be plotted as shown in Fig. 6.
Fronttere, it can be shown that the function h(t) has only a maxima and a minima
wha sn2t = 0. The functions h(t), g(t) have identical values of maxima and
minna which are the approximation of each respective other. Therefore, it can be
conlid:d that (3.2) with the conditions u(0) = uy,u(0)=u,= 0 is the approximated
solitimof (5.1)

(k +Bly, o +ar+ af cos mt

u=—
o’ + ak + af A+ PBcosot

(5.6)

"te approximated solution (5.6) respective to the parameters identified in
(5.5 lai the form of
10,28 +1,19 cos 2t
14,28 +1,19cos 2t -

u = 1,348735u,, x (5.7)

swstitute (5.7) into (5.2), it is observed that (5.7) is the approximated
solitin of (5.2).
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9
Example 2.
Find the approximated solution of the following equation:
ii + 4(0,001783728 - 0,007702649 cos 2tJu = 0. (5.8)
Substitute
o=2 k=-0,001783728, a, = 0,007702649, 5.9)
into (4.18), (4.19), the results are
2
A =825 O =.0,535594672 . (4.10)
With the set of parameters (5.10), condition (4.10) 1s satisfied.
From (2.11) and (5.10) it can be inferred that
ap= 7,48, ak=61,71; o’y = 938,04. (5.11)

Based on (5.9), (5.10) the graphs of h(t), g(t) can be plotted as shown 1 Fig. 7.
From there, it can be shown that the function h(t) has only a maximun a,q 5
minimum when sin2t = 0. The functions h(t), g(t) have identical values of marima
and minima, which are the approximation of each respective other. Therefoe i1 ¢4y
be concluded that (3.2) with the conditions u(0)= U, W(0)=1u3= 0 s the

approximated solution of (5.1)

Fig.6 Graph of function h(t), g(t) with % =12

[0} of al ) af
2 1.19 -14.28 2 748
a’y k a, o’y k
50.62558 -0.00659 0.033415 938.04 0.001785728

Fig.7. Graph of function h(t), g(t) wih b =8¢
. B

L+ P ©° + ak + afcos ot
(. + g |

1 2

0]

+ ol +aP

A+ Pfcosot

6.12)

The approximated solution (5.6) respective to the parameters deitfid ip
(5.5) has the form of
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65,71 + 7,48 cos 2t
61,71 + 7,48 cos 2t

u, =0,94534u, x (5.13)

Substitute (5.13) into (5.8), it is observed that (5.13) 1s the approximated
solution of (5.8).

6. Discussion

In order to satisfy (4.6), the condition (4.7) plays only a role of preliminary
requirement, but it is possible to establish a more precise condition however more
complex in calculation.

: ) . A
The accuracy of above mentioned approximate method depends on the ratio —.

From obtained results for u(t), the displacement w(x, t) of beams can be found
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