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Abstract: This paper approaches the problem of lateral oscillation of beams
subjected to axial load by means of seeking the exact solution of the linear Math.eu
equation with the periodic function h(t) having a determined form

ii + h(t)u = 0 • 1)

However when h(t) — k + ajcosiot, the equation (1) does not posses an exact solution 
but with the values of parameters k, a lf 0) satisfying some determ ined conditions, we 
can seek an approximated solution. Obtained results are sum m arized as follows:

The general exact solution for the equation (1) with h(t) having a determined form 
can be expressed in the form of known mathematical functions. It illustrate? he 
“butterfly" effect of the Chaos phenomenon.

The condition and algorithm for finding the approximated solution of the eqinton  

(1) with

h(t) = 0)2(k + coscot) . 2)

From obtained results we can discuss about the oscillation of beam s.

1. Lateral o sc illa tion  o f  beam s subjected  to ax ia l load

Fig. 1 shows the oscillation of 
a beam having constant cross 
section subjected to axial load P(t). 
El, EA, ỊI, t and p represents the 
bending and axial rigidity, mass 
density, length and external 
damping coefficient of the beam 
respectively.

T U"'1='W
W(x.i)

Fig .l.  A beam  subjected tc axial load

The oscillation of the beam can be described as follows [2]

EIwIV + pw + |IW -
EA u(*,t) + i j ( w n )*dx w 11 = 0 , (1 1 )

W IV w 11 - th e  4th an d  2nd order d e r iv a t iv e s  of w  w ith  r e s p e c t  to  X, 

w w - the 2nd and 1 st order derivatives of w with respec t to t.

The boundary conditions for displacement are  w ri t te n  as

1



2 D ao H u y  B ichy N g u y e n  D a n g  B ic h

w(0) = w(í  ) = wn(0) = wn( 0  = 0. (1.2)

1 IS assum ed th a t  the  axial wave is negligible and  U(£, t) is the  d isplacem ent 
a t th e r ig h t  end of the  beam . The boundary conditions (1.2) can be satisfied  when 
w(x. It)is set as

w(x,t)=u(t)s in™ . (1.3)

Substitute (1.3) in to  (1.1) it  yields

ii + 2Dc0jủ + (Oj [l + q(t)]u + ỴU3 = 0 , (1.4)

where

_ tc4E I  1 7I2E A  B
q ( t ) = u ( ể , t ) ^ ;  (0, y = 7 — V ;  2D©! = J i .

It I ( i r  4 ụ ĩ  Ịi

Ii order to investigate the phenomenon in the oscillation of beams subjected to 
axial lads, at first the following equation should be examined

u  +  C0 j [ l  +  q ( t ) ] u  =  0  . ( 1 . 5 )

I'q(t) = a coscot, the equation (1.5) leads to the classical M ath ieu’s equation

ii + C02(k + aj cos<at)u = 0 , (1.6)

where k = ^ ị ,  a 1 = - ặ .  (1 .7)
Cl) CO

I. Su jp lem en tary  eq u a tio n

Cmsider the  following set of equations [3]

V + V2 = A.(u -  a ) -  CO2, (2.1)

ÚV =
u -  a

tn v h ia  V, u a re  functions of t; x, a, Cl) a re  pa ram eters .  

A ter V being  e lim ina ted  from (2.1), (2.2) it  yields

(2 .2 )

ii 2Ú2 ,
+ 7~ V = M u - a ) - t o  . ( 2 - 3 )

u - a  ( u - a )

Iistead of the  function V, function y is used, w ith the  following alteration:

v = - .  (2.4)
y

F'om (2 .2), (2.4) y can be calculated
1
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Using (2.4), (2.5), the  equation  (2.1) can be w ri t te n  as

ý + to2y = X .

The solution of (2.6) is

y = + A cos(ot + (p),
CO

where cp, A -  in teg ra l  constan ts .
Equation (2.3) can be a l te rn a ted  into the  form:

d I . o \ 4 .2 „ \2  . o..2—  (ú2) ----- -— ù 2 = -2Ằ.(u -  a )2 + 2oýí(u -  a ) ,
du  u -  a

th a t  yields

Ũ2 = -y(u -  a f (u -  a f  -  —  (u -  a )  +
Y Y

CO

7 - integral constant.
After solving (2.9) i t  can be found th a t

CO
u -  a

x. + pcos(cot + \\i)

where vy - in tegra l constan t,

p 2 = X2 -  (02y > 0.

(2.6)

(2.7)

(2 .8 )

(2.9)

'2  1 0 )

(2 . 1 1

(2.12

From (2.5), (2.7), (2.10) it can be inferred  that:

y = -!T [?i + pcos(a)t + n/)],
CD

A _  pA = - iy .  tp = Vị/.
CO

Our aim is to find any supp lem en ta ry  M ath ieu ’s equ ation  which has an  exsci 
solution. D ifferentia ting  the  equation  (2.9) with respect to t  we obtain

ii = -(u  -  a)[2y(u -  o f  -  3>t(u -  a )  + a)2 j.

and from (2.5) we have

ay  + 1  ay  + 1 

Based on (2.14), equation  (2.13) can be w ritten  in the  form

u u[2y(u - o f  -  sx{n -  a )  + .

(Ỉ.13

(Ĩ.14

0 . 5

S ubs titu te  u - a  calculated  in  (2.10), y calculated  in  (2.12) with Vị/ -  O u t  

(2.15) it yields
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ù + co 2yco2_________ 2ctỴ -f 3^ co2 + 3aẦ + 2ya2
(>, + p cos cot)2 A, + p cos cot co2 + aX + a p  COS cot (2.16)

3. S o lu tio n  and  c h a r a c te r is t ic  o f  the  so lu t io n

E quation (2.16) has  the  following p a rt icu la r  periodic solution

u CO2 + aX + ap  cos cot 
X + p coscot

= a  + CO

X + p COS cot (3.1)

When the  p a r t ic u la r  solution (3.1) is found, the  genera l solution for equation 
(2.16) can be e s t im a ted  as  follows

11 =
CO2 + CLẤ + aPcoscot 

Ằ + (3 coscot
c, + c -J o(a. + pcoscox)2dx

(a)2 + aA, + aPcoscox)~ 

in which Cj, C2 -  in teg ra l  constan ts .

From (3.2), the  velocity Ú and acceleration ii can be calculated

(3.2)

pco3 sin cot
(a. + pcoscot)2

t
c , + c 2 J  

0

(x. -f Pcoscox)2dx

(co2 -f aẰ. + apcoscox)"

ii = CO (02co4y 3ẰC02 w
(^ + pcoscot)3 (x + pcoscot)2 X + pcoscot c , +

(x + |3cos(ox)2dx

0 (co2 + aX + apcoscoxV

It is assum ed  th a t  when t = 0

u(0) = u 0, ú(0) = ú 0 .

(3.3)

.(3.4

(3.5)

Based on the in it ia l  condition (3.5), from (3.2) and  (3.3), the  in tegra l constants 
Cj, C2 can be found:

c  = (^ + PK> c  _ (co2 + q X + qp)ủ0
0)J +a>i +  a p ’ 2 >. +  (3

(3.6)

Hence, it  can be concluded th a t  (3.2) is the  general solution for (2.16).
Based on (3.2), (3.3) the  g raphs  of the  functions u(t) and  u(u) with different 

pa ram eters  can be plotted  as shown in Figs 2-5.

There exist co n s tan t  m axim a and  m inim a of the  function un d e r  the integral in 
(3.2). Therefore, it  can be proved th a t  th is in tegra l be generalized  diverse when 
t-»co. From Figs. 2-5, i t  can be observed th a t  the  solution u(t) expressed in (3 .2) 
have the charac te ris t ic  of

• Diffusively variab le  lim u(t) = 00 .
t —>00

The solution (3.2) depends sensitively on the in it ia l  boundary  condition 
when jr0 = 0 i t  is periodic, when jr0 * 0 i t  has  the  exceptional characteristic
of the effect nam ed  “bu tte rf ly” as seen in the “chaos” phenomenon.
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CO a p aX
2 7.48 9.69

Uo ú„ ay ,/2
0 0.813 3,46

Fig.2. G raph of function u(t)

CD a p a  A.
2 7.48 9.69

Uo Uo a y l/2

0 0.813 3,46

Fig.3. G raph of function ú(u)

CO a p aX
2 -0,19 -1,25

Uo Ử0 ay1/2

0 1,56 0,19

Fig.4. G raph of function u(t)

4. P o t e n t i a l  o f  e q u a t i o n  (2.16)

In equation  (2.16) the  following function is called po ten tia l  of the  equation

, V 2yco2 2ay + 3X. to2 + 3aX + 2ya '2 ^
( x  +  p  cos cot)2 Ằ. +  P c o s c o t  CO2 +  (XẰ +  a p  COS cot

With the  following condition
X2 - p2 > 0; CO2 + 2 a X +  y a 2 >  0, (4.2)

the potentia l function h(t) is continuous and  periodic.

From (4.1) yields
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dh
dt.

4a 2ỴC02 2 a 2Ỵ 4- 3aA. co2 + 3aẰ. 4- 2ya2

(aẰ, + apcos  cot)3 (aA. 4- aPcos wt)2 (co2 4- aX + ap  c o s c o t ) 2
aPsincot. (4.3)

th a t  can be rea rran g e d  as 

dh
dt

p/ \ co3a 4p4 sin cot
I ( c o s  0 ) t ) ----------------------------- —r ----------------------------------rr-

(aA. + aPcoscot)3(co2 + aA. + a(5 coscot|
(4.4)

n which

f(cos cot) = cos3 cot -  3 — cos2 cot
p

A. „ co X „ 7-V  + 3 —- — + 2 
p2 ap  p

coscot +

I3 ^2 l 2  ̂ 2 ^A. CO A _ A. , (0
- r  +  ------ - 5 - -  6 — -  4 ----
p3 ap  p2 p ap

(4.5)

dhLet —— = 0 only w hen sin cot = 0 , from (4.4) it can be seen th a t  
dt

f( cos cot) * 0 w ith all t such th a t  -1  < coscat < 1 .

In order to sa tisfy  (4.6) the  following p re lim inary  req u ire m e n t  can be used

in which

f(i)=

vP V

A2 ' 2 '\
8 +

0)
ap

1 - 4 CO

ap

f Ằ l ì Ằ2 ( 2 > (0 Ằ (  2 \  
. CO— + 1 ----- 8 -  — 1 + 4 —

u  J _p2 p ~ I  a P,

(4.6)

I

(4.7)

(4.8)

(4.9)

From the  condition (4.7) together with (4.8), (4.9) it yields
2

2 — > 8 + 
p

2 - < - 8  
p

CO

a 2p2
+ 68 -  , or

ap

0) „  O)2
- 5 - 5 - +  68 -  — -  , or

a  pp \  a 2p2 ap  ’

8 -  5 Ụ  + 68 -  —  < 2 — < -8  + J - ^ 2  + 68 -
\  a  (3 ap  p ỵ  a  p

0)
ap

(4.10)

(4.11)

(4.12)

When any of the  conditions (4.10), (4.11), (4.12) is satisfied, the  prelim inary 
requirem ent (4.7) can be a ssu red . However, in o rder to fully satisfy  (4.6), the graph 
of the function h(t) should be plotted, in which the set of p a ra m e te r  satisfied (4.7) is 
used. The criterion for (4.6) being fully satisfied is se t  such as it has  one maximum 
and minimum only in a period when sin cot =0.

To solve the  above m entioned problem, h(t) is approx im ated  by g(t) such as 
both functions are  con tinuous and  periodic.
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g(t) = k + 3.i coscot . (4.13)

When any of the  conditions (4.10), (4.11), (4.12) is sa tisfied , h(t) and g(t) would 
have obtained the  sam e m axim a and m inim a when sin cot =0. Hence, it can be 
inferred th a t  the function h(t) be approxim ated  by g(t) w hen  th e ir  m axim a and  
minima are respectively equal.

When coscot = -1, we have

2yco2 2 a y  +  3Ả CO2 + 3 a k  +  2 a 2y _  k  a  (4  1 4 )

( ả  -  p )2 X. -  p  (02 +  a X  -  a P

When coscot = 1 , we have

2yco2 2ay  + 3Ả CO2 + 3 a  Ả. + 2 a 2Ỵ = k + 

X. + p CO2 + aẰ  + aP{ w f

From (4.14) and  (4.15) it has

1 •

a i =
a p

2CO

k = -
CO

2 CO +

2 a 2y -  aA. CO2 + 3aX, + 2 a  Y 

CO2 + 2aX  + a 2y

0.)̂  ■+■ 3aA, + 2a

a 2y

2 (2a 2y -  ((
a 2X, CO2 + 2a X  + a  Y

2y \ ( ờ 2 +  aA.)

Based on (4.16), (4.17) it yields

CO

a p

k + a

X

p , a
X? 1

2 - 1 p2

Ằ.
+ a

a p  p

V  2  ̂ A 2 *1CO A. (O A,
—— + — + 1 = ---- + .

l a p  p J a p  p

(4.15)

(4.16)

( 4 . 1 7 )

(4.18)

( 4 . 1 9 )

X. 2
With known values of a 1; k and CO, the value of — and  — can be found by 

solving the set of equation  (4.18), (4.19).

5. A lgorithm  for f in d in g  the  a p p rox im ated  so lu t io n

Given th a t  the  following equation  should be solved:

ii + to2(k + aj coscot)u = 0 , (5.1)

The following a lgorithm  for finding its approx im ated  solution should be 
followed:
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• Solving the set of equation  (4.18), (4.19) with the  values of CO2, k, a, given in

(5.1), we obtain the  values of — , —
p «p

» Checking the  conditions (4.10), (4.11), (4.12 ). If none of them  are satisfied, 
the approxim ated solution cannot be found by th is  proposed algorithm . If 
these conditions are  satisfied we plot the g raph  of the  function h(t) with the 
identified set of pa ram eters .

• If the function h(t) does not posses a m axim um  and  a m inim um  only when 
sin cot — 0, the approxim ated  solution cannot ỒG found by th is proposed 
algorithm.

» If the function h(t) satisfies the abovementioned condition, formula (3.1 ) with 
its respective param eters  can be considered as the solution of (5 .1).

Example  1.

Find the approxim ated solution of the following equation:
i i  -  4(0,00659 -  0,033415 COS 2 t)u  = 0 . (5.2)

Substitute

CO = 2, k = - 0,00659, a , = 0,033415, (5.3)
intc(<- (4*19), the resu lts  are

A. CO2
“  = 12, ^ - =  - 3,361344538 . (5.4)
p  a p

N th  the set of p a ra m e te rs  (5.4), condition (4.10) is satisfied.
?iom (2.11) and (5.4) it  can be inferred that:

a p =  - 1,19; a X =  -14 ,28; cry = 5 0 ,6 2 5 5 8 .  (5.5)

ỉísed on (5.5), (5.3) the  g raphs of h(t), g(t) can be plo tted  as shown in Fig. 6. 
Fron olere, it can be shown th a t  the function h(t) has only a m axim a and a minima
whin s n 2 t  — 0. The functions h(t), g(t) have iden tica l values of maxima and
minna which are the approxim ation  of each respective o ther. Therefore, it can be 
c o n  lidid th a t  (3.2) with the  conditions u(0) = u o,ú(0) = ủ 0 = 0 is the  approxim ated 
s o l i t i > n o f  ( 5 . 1 )

u = (*■ t  P k  CO2 + a X  + a p  cos cot 
CO + aX + ap  Ầ. + p coscot (5.6)

}e appioxim ated  solution (5.6) respective to the  p a ra m e te rs  identified in 
(5 5 }ai the form of

1 1 - 1  Q/IQ7QC 1 0 , 2 8  +  1 ,1 9  COS 2 tu = l,348735un X ----  -------- — ------------------ /5 7\
14,28+ 1,19 cos 2t ' 1 ;

Jibstitute (5.7) into (5.2), it is observed th a t  (5.7) is the  approxim ated 
soliti>nof (5.2).
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E x a m p le  2.
Find the  approx im ated  solution of the  following equation:

ii + 4(0,001783728 -0 ,0 07702649  COS 2t)u = 0 .  (5.8)

Substitu te
CO =  2, k  =  - 0 , 0 0 1 7 8 3 7 2 8 ,  a, =  0 , 0 0 7 7 0 2 6 4 9 ,  '5.9)

into (4.18), (4.19), the  re su l ts  are

^  = 8,25, - = - 0 , 5 3 5 5 9 4 6 7 2  . (5.10)
p a p

With the  set of p a ra m e te rs  (5.10), condition (4.10) is satisfied.

From (2.11) and  (5.10) it can be inferred  th a t

a p =  7 ,48 ;  a X =  6 1 ,7 1 ;  a 2y = 9 3 8 ,0 4 .  (S.11)

Based on (5.9), (5.10) the  g raphs of h(t), g(t) can be plo tted  as shown ii F,g 7 
From there  it can be shown th a t  the function h(t) h as  only a m axim un a id  a 
minimum w hen  sin 2t = 0. The functions h(t), g(t) have identical values of traum a 
a n d  minima, which a re  the  a p p r o x im a t io n  of each r e s p e c t iv e  other. Therefo'e it Can
be concluded th a t  (3.2) w ith  the  conditions u(0) = u 0, ủ(0) = u0 = 0 s  the

approxim ated solution of (5.1)

(0 a p a..

2 7.48 51/1

a2y k a
938.04 0.001783728 -0.0'702i49

• KFig.7. Graph of function h(t), g(t) wih -  = 82!

(x + p)u0 CO2 +  aX 4- q p  COS cot

1 (02 + + aP ?i + pcoscot

The approx im ated  solution (5.6) respective to th e  pa ram ete rs  ldeitfi.d in 

(5.5) has the  form of

I I

1

| J

CO a(3 aX

2 -1.19 -14.28

a 2y k ai
50.62558 -0.00659 0.033415

Fig.6 Graph of function h(t), g(t) with p = 12
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.. _ A Qy1r Q/l 65,71 +  7 , 4 8 C O S 2t
U 1 =  0,94534u0 X — — — l ỉ l r . ------- . (5  1 3 \

61,71 + 7,48 COS 2 t  ̂ '

Substitu te  (5.13) into (5.8), it is observed th a t  (5.13) is the  approxim ated  
solution of (5.8).

6. D iscu ssion

In order to satisfy (4.6), the condition (4.7) plays only a role of prelim inary  
Ĩ e q u ire m e n t ,  b u t  it  IS p o ss ib le  to e s ta b l is h  a m ore  p r e c ise  c o n d it io n  h o w e v e r  more  
com p lex  in  ca lcu la t io n .

The accuracy of above mentioned approximate method depends on the ratio -
p '

From obtained resu lts  for u(t), the d isp lacem ent w(x, t) of beam s can be found
A c k n o w le d g e m e n t .  This research is completed with the  financial support of the 
National Council for N a tu ra l  Sciences.
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