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Abstract. A new procedure for description and calculation of the interaction 
potential and force constants for fee crystals containing an arbitrary number n 
of impurity atoms have been developed. Analytical expressions for the effective 
atomic interaction potential, the single-bond and effective spring constants have 
been derived. They depend on the number of the impurity atoms and approach 
those derived by using anharmonic correlated Einstein model, if all the 
impurity atoms are taken out or they replace all the host atoms. Numerical 
results for Ni doped by Cu atoms show significant changes of the interact on 
potential and spring constants of the substance if the number of impurity atoms 
is changed.

1. I n t r o d u c t io n

Interaction potential and force constants are very im portan t for studying a lot 
of physical properties such as thermodynamic param eters  of the crystals. r'hey art 
contained in the first cum m ulant or net therm al expansion, the second curru lan to i 
Debye-Waller factor, the third cumulant, and the therm al expansion e:pansior 
coefficient, which are investigated intensively in the X-ray absorption fine structure 
(XAFS) experiment and theory [1-11]. It is also very im portant to SU'1) 
thermodynamic properties of m aterials containing im purity  atoms and of all)} 
systems [12. 17-19]. Some investigations for crystals containing one impurity atom 
have been done 117-19]. But more than  one impurity atom can be dope:! into a 
crystal. This case can lead to the development of procedures for studying 
thermodynamic properties of alloys with nano s truc tu re  which aie often 
semiconductors containing some components with different atomic sortes.

The purpose of this work is to develop a new procedure for descrip ion and 
calculation of the interaction potential and force constants of fee crystals containing 
some impurity atoms, where one impurity atom [1.7-19] is only an speciá case OÍ 
this theory. Our development is derivation of the analytical expression; for tie- 
effective atomic interaction potential, the single-bond and the effective spring 
constants for the case when the cluster involves one or more im purity  atons. Using 
the atomic distribution of the host (H) atoms and the dopant (D) atoms in I cluster 
one can deduce the percentage of these constituent elem ents in the substaice or in 
an alloy. All these expressions are different if the num ber of impurity atons 
changes so th a t  one can deduce the results for the case with different perceitagesoi
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component elements of which an alloy consists. The resu lts  in the case if all 
impurity atoms are taken  out or in the case if all host atoms are replaced by the 
impurity atoms are reduced to those derived by using the anharm onic correlated 
Einstein model [7] for the  pure m aterials. Numerical calculations have been carried 
out for Ni crystal doped by one or more A1 impurity atoms, and the resu lts  are 
compared to those of the pure materials.

2. F o rm a l i s m

We consider a fee crystal doped by some impurity atoms or dopants (D), the  D 
atoms replace the host (H) atoms located in the centre of crystal planes. Supposed 
th a t  the XAFS process is taken place in the surface (001) between the D atom 
(indicated by D(]) in the centre and the H  atom located at the position B (indicated 
by Hfị) as described in Figure la.
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Figure 1. Distribution and vibration of H  and D atoms in fee volume (a)
and in its (001) surface (b).

Now move the D() atom by an amount X D along the line A B , then the H B atom 
moves backward by an am ount X H so th a t  the mass centre rem ains unchanged, the 
other atoms are fixed. We have relations

X dM d = X h M h => XH = - y —X D = e.XD , e = , (1)
m h  IV1H

where M H, M 0 are the mass of H  and D atom, respectively.

This motion leads to increasing the potential energy. The contributions of the 
springs in the surface (001) are caused mainly by the atoms in the bond A B , and 
those of the springs penperdicular to AB  are negligible (see Figure lb). Therefore,
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th e y  consist of contributions of the spring D-HA by the value K HDX D~ / 2; OÍ the 

spring D-Hb by K HD( X H + X D) 2 / 2;  and of the spring between H h and H  on the 

extended AB  by K HHX H2 / 2.

Hence, the contribution of the atoms on the plane is given by

Besides bonding with 4 H  atoms at 4 
verteses of the plane (001), the D{) atom is 
bonded with 8 other neighboring atoms (see 
Figure 2) located in the centre of 8 
neighboring planes counting from 1 to 8. 
They are numbered by 1, 2, 3, 4 and are the 
neighbors of the Hịị atom. The remaining 
atoms are the neighbors of D0, but they are 
also the neighbors of the  H/i atom. Supposed 
th a t  n is the total num ber of dopant atoms in 
the two neighboring lattices of D0 atom and 
among the atoms a t positions 1, 2, 3, 4 there 
are n ] dopant (D) atoms, then among the 
positions 5, 6, 7, 8 there  are n> -  n - 1 - n ] 
dopant (D ) atoms (0 </Zj, n 2 <4).

The bond linking the D() atom with each of the atoms fom 1 to 4 builds with X D 
an angle of 60°. th a t  is why the effective displacement of the bond from D„ to these 

atoms is given by X Dcos(60°) = X D/ 2 .  The bond from D{) to the atoms numbered by

5, 6, 7, 8 builds with X D an angle of 120°, th a t  is why the effective displacement of 

the bond from D {) to these atoms is given by X /;cos( l20 °)  = - X D / 2  . Hence, the 

potential contributed by these 8 atoms is equal to

y DO -  + n2 )-~^K DD(—X Dy  + ( 8 - n x -  n2)- — K  HD(— X  Dy
2 2 2 2 (3)

•̂1 +  ^2  17 y r  2  ~  ~  ^ 2 )  T T  Y  2

= ------   K DDA I) + -----------g  H D ^  D

The line bonding H a with 4 atoms numbered by 1, 2, 3, 4 also builds with X H 
an angle of 60° and the line bonding H B with 4 other out of the surface (001) 
neighbors of H h builds with X H an angle of 120°, then the potential contributed by 
these interactions is given by

Figure 2. The neighbors of D0 atom.
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VH0 -  ~ ^ K hdX h 2 + -—- ~ - K h„ X h ~ +4

= j K hoX „ ‘ * ^ i1 k „ „ X h ‘ . (4)

Therefore, the total potential increase is the sum of all the above 
contributions

V/ot =Vp + Vdo + VH0
2 . 1

2 K h d ^ d  + ~ k hd(x h + -^o)2 + — K h h X h 2

or

n \ + n - i V V 2 , (8 - n , - n 2) ^  v 2  (5)
+  g  A D/5A D +  g -----------k h d a d

I n \  T S  Y  '2. ~  l l \ )  j r  Y  2

+  g  k h u a h  +  g  k h h a h

Substitu ting  (1) into (5) we obtain

Vlnl = ~ K III)X I)2 + ị K HD(c + \ f x n2 + ị c 2K HHX D2

. 'h +>h V  2 , (8 -/Ĩ ,  - n , )  „  v  ,
+ I) + t, K HDA D

n , e 2 v  2 ( 8 - n , ) e 2 ^  v  ,
+  Q A ™ A /J +  “  A / / / / A Do o

V = Ỉ  j (' 12_nl +(,"l + 'h>K Dl) + \ y ,
íoí 8 |  +[4fc + l )-  + /!,£- + 1 2 - / 1 , - n . , ] K HD\

Using X  = X H + X D = (e+l).XD and comparing (6) to Vtot = — ifgffX2 the effective 

force constant is resulted  as

K  ỊỊ = ------—v ^ l 2 - n l )z1K H!i +(«1 + n , ) K nn +[4(e + l ) :i + « le2 +12-ÍỈ, -n . , \K m  I

4(v 1 ; ,............................... , <’ >
-  77 7 7 7 P ^ _ / l i ) c2^///y + ( r c -  1 )^DD +[4(c + l ) 2 +/21e 2 + 1 3 - n ] i í f / ơ Ị

4(8 + 1)“

For the case without impurity, 1 . e., 6 = 1, Kol) = ÍL/yy; = AT////, we obtain

(̂•IT-pure = . (8)

This result coinsides with the one derived by using the correlated Einstein 
model [7] which is considered and used widly [8-18].
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The above r e s u l t s  are the harmonic potential increases due to replacing the H 
atoms from number 1 to 9 by the D atoms (n <9). In the case of more increase of D 
atoms in the surface (001) we suppose tha t the 10"' D atom is located at the place B , 
the 11"' D atom at the place A. the 12th and 13th D atoms at the rem aining places. 
As it has been noted at the beginning, the contributions to the potential increase of 
the last two are (.insignificant th a t  is why it is not im portant th a t  they are the D or 
the H  atoms. Now we consider some concret cases:

For n = 10, then n , = n-> = 4:

v „  = = 2

-  —K hdX dz + — K dd4 X d2 + — K hdX d ~ + K ddX d + — K ddX d + — K hdX d (9) 

+ 3 K hd 2 r/ 7 K DD + 3 K hd
= ------------- -------------- A  D ^  A  tiff --- ----------------:

For n = 11, 12, 13:

2
Vh)l -  ]^Kl)nX n~ + - K 1)D4 X ị /  + — K HI)X d~ + K ddX d + 9 K DnX D + 2 K HDX  

= (4K  1 ) 1 )  + K H I )  )XD~ => K v1C -

HD^D
(10)

From (7, 8, 10) we obtain

V  V  4-X  1 K D D + 3 K HD  , g , s  ) 4 K D D + K HŨ"■ y à {)nK HH +0U)n + vồll/, 12/1 +Ò13/|/ ọ

1̂0 n 1̂1/t ̂12/1 (S)13/1
4(e +1 )2

( 1 2 - n} )e2K HH + ( n - l ) K DD + 

+ [4(c +1)^ +/Ij82 +13 —

(11)

Using this expression we can calculate the effective force constant Krf{- with 
different number of impurity atoms replacing the neighboring H  atoms of the D() 
atom located at the centre of the fee lattice.

Applying the Morse potential in the approximation for weak anharm onicity by 

the expansion

V (x)  = ơ(e"2tuc - 2e~iư)= d ( -  1 + a V  - a 3* 3 +•••) (12)

for e a c h  atomic p a i r  or its f o r m  by using t h e  definition [7] y = x - a  as the deviation

f r o m  t h e  e q u i l i b r i u m  v a l u e  X a t  t e m p e r a t u r e  T, w h e r e  a  = ( x ) , X -  r  -  r0 , r  IS

instantanious bond length, and r0 is its equilibrium value

V(y) = Da2(I -  Saa)y2 - D a Ầy :i + Daz(2 -  3aa)ay + Z)a2a 2(l -  a.a) -  D (13)
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we obtain the following single-bond spring constants 

Khh  “ 2DHa2H (l - 3 a H( X H}) = 2DHa

K dd -  2DD(Xfl(l-3aD(X D))

= 2DDaD 1 - —(&]()„ + ỗn/ỉ + ô12/, + SỊ3/Í )aDa -  (l -  ỏr]n -  Ô10/ỉ -  ỏUn -  Ỉ>ỉ2n )aD - — 
l  1 + c

(14)

(15)

K hd -  2DHDa ~HD(\  3aHD( X HD^) = 2D hdu ~hd 1 3 a HD. — (16)

and the Morse potential param eters  DIW, a HD for the case with im purity  can be 

obtained by averaging those of the host atoms D H , aH and of the dopant atoms 

D0 , aD , where

D Du + D D u  Ơ I I  + D n ct D u d u -f D nCL3H r i y D ^2 _ ^H^Il  'rxyDuD . „3 _
//D -  0 > u f/D -  ^  ^  » U//D -  ^  ^

2 £>/ /+£>D D h +Dd
(17)

Substitu ting  the values of (14-16) into (11) we obtain the effective spring 
constant

*eff -  560n D" a"
10/1 ID Da~D , 3  Ì 1 — a «a 

2 /;
+ >̂D HDaịi ị)

+(Ồ]|/Ỉ + Ổ12/Í + 8i:j„) 4DDa'ò + DHDàịfD

1 òíì.. ồ+ 0/1 ~~ u  1 0/?  w  1 1/1 u 1 2// U 13/J

2fc + u 2

(12 -/i l )£2ũ //a w2 3ea/ya^ , 9 3ttna^
e+ 1

+ (/1 -  ì)DDan 1- 'D'
e + 1

+ [4(e + l)2 +7ZjC2 + 13-7?]DWDa 2HirxHD

(18)

Now we tes t  the case when there is not any im purity  atom, i.e., tt = 0, we 
obtain:

/ \ J  3 ^
V _ pun*)EFF -  5DHaH Ị 1 -  — a Ha (19)

This result coinsides totally with the one derived by using the anharmonic 
correlated Einstein model [7]. From Eq. (13) we obtain the harmonic term
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or for different cases

v HiAy)= \ K HDy2 ’ v HHÌy)=^ K HHy2’ v D ũ ( y ) - 2 K DDyz (21)

and the anharm onic  term  of the interaction potential is given by

VaJ y ) = K , y \  K , = - D u \ (22)

Since th is  term  is cubic power of the param eter y  we can use an expression 
similar to Eq. (5), for the cases n = 1 r 9  

V'Mut = K , HDX , f  + K mD( X H + X D f  + K w h X h

X  V
n xK. i DD

D

+ n ỵK ÌHD
V 2 ,

+ nzK;WD
D + (4 )K1

D
V 2 ,

+ (A-n<))K_
( - X  \A P
V 2 y

+ (4 -  n } )K1
X H

\ * /
+ 4-K3HH

/  V  ^
-  a h

and from this we deduce 

K wỉỉ(c + ÌÝ = K ]HD + K :]Hn(8 + l):i +£AK :wn + - g.— {K.WI) - K :wn)+ g ~(Kahd -K .ahh)

zr> A' ,, = ------— + (n, -n.,)K-WD +[8(e + l)3 + n ,e :i +8 + n 2 -  rt., j;
8(c + 1) 

1 Í/

{(8 — /2, )e: ỉ +(n,  - n 2)K WD +[8(e + l):i + n ,e 3 + 8 + «2 -  H.J ]X3WƠ|;

K , ||T = ------- —- 1(8 -  n ] )c:iDHa jj +(n l -  n2 )Dd<1 q + [8(e + 1): + n,e + 8 + n2 -  n, ]Dhda
S( E + 1 )

3
HD

For the case 11 -  10 we obtain K :](,n
17 Dp ujj + 3D/iV aHD

16

and for rc = 11, 12, 13 it is given K 3eỊỊ = -
l y D p á ụ  + P l lD a HD 

16

At the end we obtain

( 1 - 5 0n " 510n ~ Sl l n ~ S12n~S13n  ̂ [ ( 8 - ^ )e3P fíq'fí + {nx - n2)DD0?D
8(e + 1): [8(8 + 1)3 + n}£3 + 8 + n2 -  n} ]D HDaHD

10/2

\ l P Dà)j +3DHDaAHD +8 + s  ) 19Ppttp +
_  '  1 1 „  1 0 * 1  1 Q n  1 /1

16 l l r t  12n 13/1 16

(23)

which for n = 0(w ithout impurity) is reduced to the resu lt derived by using the 

anharm onic correlated Einstein model [7]
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^ 3eff- H  -  ~ ~ D HaH . (24)
4

The rem ain ing  anharm onic  contribution taken  from Eq. (15) is given by

Da ( 2 - Saa)ay ^ 2 D a zay => K 2a =2Da z 2̂5)

which contains 275a2 . Based on the  sim ilarity  betw een K 2a of Eq. (25) and K h of 

Eq. (20) we can use Eq. (18) to deduce

K 2vịĩ = 5Ồ0nDHa ị  + “ 7DDazD + 3DHDaịm +(ổ]ỉn +ồl2n + Ổ13/?) 4DDa2D +DHDa2HD

1 -  ^0n ~  à\0n ~  ^1 ìn ~  s  12/1 ~  ^13/J ~~ n \ + ( 11 ~ U D Da D +

2(8 + l)2 I 4- [4(c + l)2 + riịÈ2 + 13 -  n]DHDa 2
HD

Hence, the  to tal anharm onic  contribution to the  atomic in teraction potential 
m ust be given by

v ’,.n h C y)=  K -Mi-ay + K-.toỉiỳ' ■ (2?)

For the case n -  0 , i., e., th e re  is not any dopant atom, from Eqs. (26, 28, 30) we 
obtain

V , M  = ^ K h:FFy i + Vn, M ,  (28)

K eff = 5D a2Ị \ - | c t a  , Vnnh(y) = 5Da2ay -  l ^ y  • (29)

These re su l ts  coinside with those derived by using  anharm onic  correlated 
E instein  model [7] which is considered and used widly in XAFS theory for the pure 
m ateria ls  [8-18] providing good agreem ent with experim ent even for Cu with strong 
anharm onic  contributions.

3. N u m e r i c a l  r e s u l t s  a n d  d i s c u s s i o n s

Now we apply the above derived expressions to num erica l calculations for fee 
crystal Ni doped by several Cu atoms. We calculated the Morse potential of‘ Ni and 
Cu by using the procedure presen ted  in [19, 21). The re su l ts  are  i llustra ted  in 
Figure 3 showing very good ag reem en t with experim ent [15] for the  case of Ni.

Using these  calculated  Morse potentials we calculated  single-bond and 
effective spring co ns tan ts  for pure  Ni and for Ni doped by several im purity  atoms 
Cu. The resu lts  are  w rit ten  in Table I. The effective spring  constan ts  are different 
when Ni is doped by 11=1, 3, 5, 8 Cu atoms.
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r (A 0)

Figure 3. Calculated Morse potential for Ni (solid), Cu (dash), and an comparison to
experiment [15] (dot) for the case of Ni.

T ab le  I. Effective spring constants of Ni doped by n -  0, 1, 3, 5, 8 Cu atoms and of
pure Cu.

N 0 1 3 5 8 Cu-pure

A'.rr (eV / A2) 4.1757 3.8072 3.7544 3.7016 3.6668 3.1204

K2rtỊ( e V / Ẵ 2) 4.2389 3.8803 3.8266 3.7728 3.7358 3.1655

K:lt,n( e V / Ẵ :>) -1.5047 -1.3155 -1.3047 -1.2939 -1.3010 -1.0753

Although the values of K 2efl- are  significant b u t  the  te rm  K 2eĩĩay  contains a 

very small factor a (about 0.007 Ả a t 300 K), th a t  is why th is  te rm  contribu tes not 
so much to the effective potential. The effective po ten tia ls  of the system of Ni 
i llustra ted  in figure 4 calculated  by using the  effective sping constan ts  of Table I 
are quite different from the  pair potential of Ni shown in figure 3 denoting the 
importance of the constructed  effective potential of the system . Figure 4 also shows 
significant changes of the  effective potential of Ni when it is doped by the im purity  
Cu atoms. The g rea te r  the  num ber of dopant atom Cu is, the  bigger the  change of 
the effective potential. The above properties considered for one c lus te r  can be 
deduced for the whole crystal. These changes will influence on the  therm odynam ic
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param eters of the crystals like on the cum ulants studied in the XAFS spectroscopy 
[7, 8, 11, 13, 19].

Figure 4. Effective potential of pure Ni and of Ni doped by 0 ,1 , 3, 5, 8 Cu atoms and
of pure Cu.

4. C o n c lu s io n s

This work has developed a new procedure for description and calculation of 
the effective potential, single-bond and effective spring constants including 
anharmonic contributions of a crystal doped by an a rb itra ry  num ber n of impurity 
atoms.

Derived expressions of the considered quantities approach those derived by 
using the anharm onic correlated Einstein model for the pure m aterials which 
provides very good agreem ent with the experiment and is used widly [7-18].

This work also denotes the importance of the effective potential of a system 
and its relation with the pair potential, which is especially im portan t for the XAFS 
theory [7, 8, 11, 13, 19].

The above properties considered for one cluster can be deduced for the whole 
crystal so tha t from this procedure one can deduce a method for description and 
calculation of the atomic interaction effective potential and force constants of an 
alloy consisting of different percentage of constituent elements.
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